University of Anbar Engineering College Department of Mechanical Engineering

ME 4309 - Engineering Control and Measurements

(3-3-1-0)

Fourth Stage

Prepared by: Dr. Khaldoon F. Brethee

Reference:

- 1. Automatic Control Engineering, First Edition 1961, by Francis H. Raven, McGraw Hill.
- 2. Measurement Systems Applications and Design, 5th edition 2003, by E. Doebelin, McGraw Hill.

Chapter 7: State Space Method

Table of Content

Part 1 Introduction
Part 2 State Representation of Control Systems
Part 3 Solutions to the State Space Equations
Part 4 Improvement of Control System Performance by Designing a Controller and a Observer

1. Introduction to state space method

2. State representation of a spring-cart system

1. Introduction to state space method

Historic development of mathematical models:

Reasons for using state space method

- (1) It is suitable for non-linear time varying systems, e.g., dealing with a spring-cart system with B(t) instead of B as a constant.
- (2) It can give the direct solutions to differential equations with computers in the time domain.
- 2. State representation of a spring-cart system

a. Diagrammatic model

b. Diagrammatic free body

c. Laplace transform

$$Ms^{2}X(s) + BsX(s) + kX(s) = F(s)$$

$$(Ms^{2} + Bs + k)X(s) = F(s)$$
d. Transfer function

$$G(s) = \frac{X(s)}{F(s)} = \frac{\frac{1}{M}}{\frac{1}{s^{2} + \frac{B}{M}s + \frac{k}{M}}}$$

(c). State representation of the differential equations

Conventionally we use y as an output and u as an input in analysis of control systems in the state space, so M x(t) + B x(t) + k x(t) = f(t) is converted to

$$M \stackrel{\bullet}{y+} B \stackrel{\bullet}{y+} k y = u$$

The above equation can be written as

$$M y = -B y - k y + u$$

or

$$\overset{\bullet}{y} = -\frac{B}{M} \overset{\bullet}{y} - \frac{k}{M} y + \frac{1}{M} u$$

Define

$$\begin{array}{c} x_1 = y \\ \cdot \\ x_2 = y \end{array} \right\} \quad \begin{array}{c} \cdot \\ x_1 = y = x_2 \\ \cdot \\ x_2 = y \end{array} \right\} \quad \begin{array}{c} \cdot \\ x_1 = y = x_2 \\ \cdot \\ x_2 = y \end{array} \right\}$$

•

$$x_1 = x_2$$

•
 $x_2 = -\frac{B}{M}x_2 - \frac{k}{M}x_1 + \frac{1}{M}u$

Where x_1 and x_2 are called state variables while x_1 and x_2 called state phase variables.

(d). State equation represented with matrix form

$$\begin{array}{c} \stackrel{\bullet}{x_{1} = x_{2}} \\ \stackrel{\bullet}{x_{2} = -\frac{B}{M} x_{2} - \frac{k}{M} x_{1} + \frac{1}{M} u} \end{array} \right\} \Rightarrow \begin{array}{c} \stackrel{\bullet}{x_{1} = 1} x_{1} + 0 x_{2} + 0 u \\ \Rightarrow \stackrel{\bullet}{x_{2} = -\frac{k}{M} x_{1} - \frac{B}{M} x_{2} + \frac{1}{M} u} \end{aligned} \Rightarrow \begin{array}{c} \stackrel{\bullet}{x_{2} = -\frac{k}{M} x_{1} - \frac{B}{M} x_{2} + \frac{1}{M} u} \end{aligned} \Rightarrow \begin{array}{c} \stackrel{\bullet}{x_{2} = -\frac{k}{M} x_{1} - \frac{B}{M} x_{2} + \frac{1}{M} u} \end{aligned}$$
$$\begin{array}{c} \stackrel{\bullet}{x_{1}} \\ \stackrel{\bullet}{x_{2}} \\ \stackrel{\bullet}{=} \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & -\frac{B}{M} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u \end{aligned}$$
$$\begin{array}{c} \stackrel{\bullet}{y = x_{1}} \\ \stackrel{\bullet}{x_{2}} \\ \stackrel{\bullet}{=} \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & -\frac{B}{M} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u \end{aligned}$$
$$\begin{array}{c} \stackrel{\bullet}{y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}} \\ y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \end{aligned}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 is defined as the state variable vector, and

$$\mathbf{X} = \begin{bmatrix} x_1 \\ \cdot \\ x_2 \end{bmatrix}$$
 is defined as the state phase variable vector

Another form is

(e). Block diagram representation of the state equation

Step 1: a block diagram element for
$$\dot{x}_1 = x_2$$

 $\dot{x}_1 = x_2 \implies x_1 = \int \dot{x}_1 dt = \int x_2 dt \implies x_1 = \int x_2 dt$
 $x_2 \longrightarrow \int x_1$

Step 2: A block element for x_2

$$x_2 \rightarrow f \rightarrow x_2$$

Step 3: Combination of these blocks above

Step 4: A block element for the second equation

Step 5: Complete block diagram

