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Chapter 8: State space representation 
 

 
1.1 State space equations 
 

Transfer function of a 3rd order system whose numerator is a 1st order polynomial, 
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Introducing an intermediate variable R(s) into the above equation leaves 
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Introducing state variables (note that the state space representation using this 

definition is called the observability form of the state space representation) 
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State space equations 
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A block diagram of state space equations 
 

    
 

 

   b 

-a1 

-a2 

-a3 

x3(r) 

•

x r)(3
 

x2 (
•

r ) 
u x1(r) 



University of Anbar 
Mechanical Engineering Department                           Engineering Control and 
Measurements 

 

Prepared by: Dr. Khaldoon F. Brethee    3 

 

1.3  Dealing with 
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Applying L-1 to the above equation gives  
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Block diagram is  

 

 

1.4  Combination of two block diagrams  

 
 

 

1.5 State space equations with matrixes  
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The obtained representation is called the observability form of 

the state space representation 

 

1.6 Controller form of the state space representation  

The transfer function of a closed-loop system is  
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   to obtain the controller form of a state 

space representation. 

 

Solution: 
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(a) State space equations 

)24(
6116

1

6116

24

)(

)(
2323

−
+++

=
+++

−
= s

ssssss

s

sU

sY
   

 

Let  

)()24()(and)(
6116

1
)(

23
sRssYsU

sss
sR −=

+++
=  

 

Applying Inverse Laplace transform to the above expressions gives 
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In order to obtain the controller form of a state space representation, we 

need to define  
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2    Relationship between the state space equation and the 

transfer function of a control system 
 

2.1  Establishment of relationship  

 

The general form of state space equations is given by   
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Assuming the initial conditions zero and applying the Laplace transform to 

the above equations gives 

 

)()(

),()()(

sCXsY

sBUsAXssX

=

+=
 

 

Moving AX(s) to the left hand side of the equation yields, 

 

)()(

),()()(

sCXsY

sBUsAXssX

=

=−
 

 

)()(

),()()(

sCXsY

sBUsXAsI

=

=−
 

 

 

)()(

),()(

sCXsY

sBUsXAsI

=

=−
 (3.2.2) 

Then 

  )()(
1

sBUAsIsX
−

−=   (3.2.3) 

 

  1
)(

−
−= AsIs is called the characteristic matrix of A. 

 

and substituting (3.2.3) into )()( sCXsY = gives 
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)()()( sBUsCsY =   (3.2.4) 

 

It follows that transfer function of the system is 
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Where  AsI −det is called  the determinant of  AsI − , and 
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and  

                                            ]det[)( AsIsa −=  (3.2.7a) 

 

We know that a(s) is the characteristics polynomial of the transfer 

function of a control system.  This has proven that the denominator of the 

closed loop transfer function is the determinant of  the matrix ][ AsI −  of 

the state space equation. (stop here in week 9) 

 

2.2 Explanation of some terms 
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(a)   1
)(

−
−= AsIs is called the characteristic matrix of A.  

 

(b)   )(det saAsI =− is called the characteristic polynomial of A .  

 

(c) Eigenvalues.  Since )())(()( 21 nssssa  −−−=  , the roots 

n 21,  are called the eigenvalues of the matrix A. 

 

It is evident that the eigenvalues of the matrix A are also the poles of the 

system transfer functions because a(s) is the characteristics polynomial of 

the transfer function of the system.  

 

2.3 Worked example 

The transfer function of a closed-loop system is 
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   to obtain the state space equations (a controller form). 

(b) Find its determinant. 

(c) Given one of the eigenvalues is -1, evaluate the other  eigenvalues.  

 

Solution: 

 

(a) State equation 

 

We use the results obtained in 1.6 
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(b) Find the determinant  
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(c) Evaluate the eigenvalues 

Given  s = -1, we can use s+1 to factorize the determinant   
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The roots of the quadratic equation are obtained with the formula below  
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So the eigenvalues  are (–1, -2, -3). 
 

 



University of Anbar 
Mechanical Engineering Department                           Engineering Control and 
Measurements 

 

Prepared by: Dr. Khaldoon F. Brethee    10 

 

3    Analytical solution to the state space equation 
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3.1 Derivation of the solutions of the system 

 

(a)  Derivation of the solutions of state space equations X(t) 

Assuming that the initial condition are zero.  
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(b) Derivation of the solution of the system (y(t)) 
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(a) Find the state transition matrix Φ(t).   
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(b) Suppose a unit step input to the system, evaluate the state equation 

solutions, and  

(c) The solution of the system. 

 

Solution: 

 

(a) Find the state transition matrix Φ(t) 
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(b) Solutions to the state space equation 

 

Since the input is a unit step, we have U(s)=1/s,  
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Now we can write down the solution to the state space equations subject to 

the unit step input, 
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(c) Solution of the system y(t) 
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You should be aware that if the initial conditions are not zero, then you 

need to seek the formulas for the solutions of the control systems in the 

relevant reference books.  

 


