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Chapter 3: Homogeneous Differential Equations

1 Homogeneous linear equations with constant coefficients;
For a linear differential equation, an nth-order initial-value problem is

4" A= 1 dv
Solve: a,(x) dr{ + a,_,(x) d,r"':j + .- + al(x){i::? + aglx)y = g(x) 0

Subject to:  y(xg) = Yo, ¥'(%) = ¥ppeery ¥ g = Yooro

with g(x) not identically zero, is said to be honhomogeneous and it will be homogeneous,
when g(x)=0

a=1_

d™ 3
a,(x) E"} + a,_4(x) [irn_:llr + - + ay(x) % + agx)y =0

] Auxiliary Equation We begin by considering the special case of a second-order equation

ay" + by’ +cy=0. 2

If we try a solution of the form y = ™, then after substituting y' = me™ and y' = m*¢™ equa-
tion (2) becomes

ame™ + bme™ +ce™ =0 or €"(am*+ bm+c)=0.

Since ™ is never zero for real values of x, it is apparent that the only way that this exponential
function can satisfy the differential equation (2) is to choose m as a root of the quadratic
equation

am* + bm +¢ = 0. (3)

This last equation is called the auxiliary equation of the differential equation (2). Since the two
roots of (3) are m; = (—b + %'b* — 4ac)f2a and m, = (—b —\'b* — 4ac)/2a, there will be
three forms of the general solution of (1) corresponding to the three cases:

* m, and m, are real and distinct (b* — 4ac > 0),

* m, and m, are real and equal (b* — 4ac = 0), and

* m, and m, are conjugate complex numbers (b* — 4ac < 0).
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Case I: Distinct Real Roots Under the assumption that the auxiliary equation (3)
has two unequal real roots m; and m,, we find two solutions, y, = ™ and
¥, = ™ respectively. We see that these functions are linearly independent
on ( —oo, oo) and bhence form a fundamental set. It follows that the general
solution of (2) on this interval is

¥ =c¢;e"™ + ¢ e, (4)
CaselIl: Repeated Real Rools Whenm, = m, we necessarily obtain only one expo-
nential solution, y, = ¢™. From thequadratic formula we find thatm, = —b/f2a

since the only way to have m; = m, is t have #* — 4ac = 0. It follows from
the discussion in Section 3.2 that a second solution of the equation is

— LM Ezﬂlx — Lmx — e 5
Y, =g Emgdr—e dx = xe™*, (5)

In (5) we have used the fact that —b/a = 2m,. The general solutionis then

¥ = ¢, ™ + cxe™. (6)

Case IIl : Conjugate Complex Roots If m; and m, are complex, then we can write
m;, = a + ifand m;, = @ — iB, where @ and B > 0 are real and i* = —1.
Formally, there is no difference between this case and Case I, hence
}r _— {;’le'[u"‘i.ﬂ]: + Czetﬂ-fﬂ].th

However, in practice we prefer to work withreal functions instead of complex
exponentials. To this end we use Euler’s formula:

&% = cos B + isiné,
where # is any real number.* It follows from this formula that
eP*=cos Bx + isinBx and e = cos Bx—isinBx, (7)
where we have used cos(—Sx) = cos Bx and sin(— Bx) = —sin Bx. Note

that by first adding and then subtracting the two equations in (7), we obtain,
respectively,
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eP*+ e =2cos Bx and P — e =2isinpx

Since y = Cpe™" % + C,e™ ¥)% 5 a solution of (2) for any choeice of the
constants C, and C;, the choices C; = C;= 1and C; = 1, C; = —1 give, in
turn, two solutions:

y= e[u+l'|ﬂjx+ e[n—iﬂjx and ¥y = e[n-i-i.ﬂ_]x — e[u—i,ﬂ_]xt
But ¥, = (e + ¢ ) = 2™ cos Bx
and ¥, = (e — ¢~B%) = 2j¢™ sin Px.

Hence from Corollary (a) of Theorem 3.1.2 the last two results show that ¢™ cos Bx and
€™ sin Bx are real solutions of (2). Moreover, these solutions form a fundamental set on
(—oq, 0o). Consequently, the general solution is

¥ = ¢;™ cos Bx + ¢,¢™ sin Bx = ¢™(c;cos Bx + ¢, sin Sx). (8)

BT T3] Second-Order DEs

Solve the following differential equations.
(@ 2y"—5'—-3y 0 (M yY-100y+25% 0 () Y+4'+Ty 0

SOLUTION We give the auxiliary equations, the roots, and thecorrespondinggeneral solutions.
(@) 2 -5 -3 2 +1X -3, , -i 5 3. From(4),

y e+ 0™,
) 2-10 +25 ( —-95% , 5 5. From (6),
¥ r.:les‘+ czms".

© %+4 +7 0, ; -2+ V3, , —-2-V3iFom(8)witha -2,
B V3, we have

y e (c;cos V3x + ¢;sinV3x).
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Solve the initial value problem
YAy 025y =0, ¥0) =30 y(0)=-35

Solution. The characteristic equation is B4+ a+025= (A + 0.5)2 = 0. It has the double root A = —0.5.
This gives the general solution

—0.5z
¥ =l + cax)e .
We need its derivative

¥ = c0e” 05 — 0.5(c) + eax)e” 05T
From this and the initial conditions we obtain
Wl = ¢ =30, ¥'(0) = gg — 0.5¢; = 3.5, hence cp = — 2

The particular solution of the initial value problem is y = (3 — 2x)e ~"5%, See Fig. 31. |

Solve the initial value problem
¥+ 04y + 0.0dy = 0, W =0, y'(0) = 3.

Solution. Step 1. General solution. The characteristic equation is A% + 044 + 9.04 = 0. It has the roats
—0.2 * 3. Hence @ = 3, and a general solution (9) is

y = e "®(4 cos 3 + B sin 3x).

Step 2. Particular solution. The first initial condition gives w(0) = A = 0. The remaining expression is
y = Be % 5in 3x. We need the derivative (chain rule!)

¥ = B(—0.2:7"2% gin 3x + 32702 cos 3x).

From this and the second initial condition we obtain y'(0) = 3B = 3. Hence B = 1. Our solution is

y = & %% gin 3x.

Figure 32 shows y and the curves of e and —e~02% (dashed), between which the curve of v oscillates.
Such “damped vibrations™ (with x = # being time) have important mechanical and electrical applications, as we
shall soon see (in Sec. 2.4).
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