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Chapter 4. Modeling of Free Oscillations of a Mass—
Spring System

1 Modeling of Free Oscillations of a Mass—Spring System

We take an ordinary coil spring that resists extension as well as compression. We suspend it
vertically from a fixed support and attach a body at its lower end, for instance, an iron ball, as
shown in Fig. 33. We let y=0 denote the position of the ball when the system is at rest (Fig. 33b).
Furthermore, we choose the downward direction as positive, thus regarding downward forces as

positive and upward forces as negative.

-

r— =

= = =
_F = g

Unstretched Iﬂ ?

i o e
spring 40 _fy=03j———€
¥

Syatem at ———-5

rest
System in
mation
a) b ()

We now let the ball move, as follows. We pull it down by an amount v = 0 (Fig. 33c).

This causes a spring force

(1) Fir = —ky (Hooke’s law®)
The motion of our mass—spring system is determined by Newton’s second law

(2) Mass X Acceleration = my" = Force

where y" = dzﬁ-fd.rz and “Force” is the resultant of all the forces acting on the ball.
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ODE of the Undamped System

Every system has damping. Otherwise it would keep moving forever. But if the damping
is small and the motion of the system is considered over a relatively short time, we
may disregard damping. Then Newton's law with F = —F; gives the model
my" = —F; = —ky, thus

3) =

This i1s a homogeneous linear ODE with constant coefficients. A general solution is
obtained as in Sec. 2.2, namely (see Example 6 in Sec. 2.2)

[k
4 v(t) = A cos wyt + B sin wgt g = \fl prnd

This motion is called a harmonic oscillation (Fig. 34). Its frequency is f = wo/27 Hertz*
(= cycles/sec) because cos and sin in (4) have the period 277 /@y. The frequency fis called
the natural frequency of the system. (We write wy to reserve @ for Sec. 2.8.)

¥

(D Positive
(2) zero Initial velocity
(3) Negative

Fig. 34. Typical harmonic oscillations (4) and (4*) with the same y(0) = A and
different initial velocities y'(0) = wqB, positive (1), zero @ negative@

An alternative representation of (4), which shows the physical characteristics of amplitude
and phase shift of (4), is

(4%) ¥(f) = C cos (wpt — )

with € = V4% + B? and phase angle &, where tan 8 = B/A. This follows from the
addition formula (6) in App. 3.1.
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Example

Harmonic Oscillation of an Undamped Mass—5Spring System

If a mass—spring system with an iron ball of weight W = 98 nt (about 22 1b) can be regarded as undamped, and
the spring is such that the ball stretches it 1.09 m {about 43 in.), how many cycles per minute will the system
execute? What will its motion be if we pull the ball down from rest by 16 cm {about 6 in.) and let it start with
zero initial velocity?

Solution. Hooke's law (1) with W as the force and 1.09 meter as the stretch gives W = 1.09k; thus
k= W/1.09 = 98/1.09 = 90 [kg/sec”] = 90 [nt/meter]. The mass is m = W/g = 98/9.8 = 10 [kg]. This
gives the frequency wy,/(27) = "-.-"rkfmf{ifr}l = 3/(2m) = 0.48 [Hz] = 29 [cycles/min].

From (4) and the initial conditions, w(0) = A = 0.16 [meter] and y'km = wgh = 0. Hence the motion is

wir) = 0.16 cos 3t [meter] or 0.52 cos 3¢ [ft] (Fig. 35).

ODE of the Damped System

To our model my” = —ky we now add a damping force
FE = _Cyfs
obtaining my"” = —ky — ¢y'; thus the ODE of the damped mass—spring system is

(5) my" + ¢y +ky = 0. (Fig. 36)

Physically this can be done by connecting the ball to a dashpot; see Fig. 36. We assume
Fig. 36. this damping force to be proportional to the velocity y' = dy/dr. This is generally a good
Damped system approximation for small velocities.
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The constant ¢ is called the damping constant. Let us show that ¢ is positive. Indeed,
the damping force Fs = —cv' acts against the motion; hence for a downward motion we
have y' = 0 which for positive ¢ makes F negative (an upward force), as it should be.
Similarly, for an upward motion we have y' < 0 which, for ¢ = 0 makes F5 positive (a
downward force).

The ODE (5) is homogeneous linear and has constant coefficients. Hence we can solve
it by the method in Sec. 2.2. The characteristic equation is (divide (5) by m)

2, €, k_
B+ —d+—=0

By the usual formula for the roots of a quadratic equation we obtain, as in Sec. 2.2,

6) Ay=—a+B, Ag=—a—B, where a= Qi and B = ﬁ\f’cz — dmk.

i

It is now interesting that depending on the amount of damping present—whether a lot of
damping, a medium amount of damping or little damping—three types of motions occur,
respectively:

Case L c® = 4mk. Distinct real roots A1, As. (Overdamping)
Case I. ¢ = 4mk. A real double root. (Critical damping)
Case III. 2 < 4mk. Complex conjugate roots. (Underdamping)

Case |. Overdamping

If the damping constant ¢ is so large that c2 = 4mk, then Aj and Ag are distinct real roots.
In this case the corresponding general solution of (5) is

(T wit) = cre @R g @B

We see that in this case, damping takes out energy so quickly that the body does not
oscillate. For t+ = 0 both exponents in (7) are negative because ¢ = 0,8 = 0, and
Bz =a® — kim < o”. Hence both terms in (7) approach zero as f — . Practically
speaking, after a sufficiently long time the mass will be at rest at the static equilibrium
position (y = 0). Figure 37 shows (7) for some typical initial conditions.
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Case Il. Critical Damping

Critical damping is the border case between nonoscillatory motions (Case [) and oscillations
(Case III). It occurs if the characteristic equation has a double root, that is, if 2

= 4mk,

so that 8 = 0, Ay = As = —a. Then the corresponding general solution of (5) is
(8)

W) = (c; + cot)e ™.
Case Ill. Underdamping

This is the most interesting case. It occurs if the damping constant ¢ is so small that
¢ < 4mk. Then B in (6) is no longer real but pure imaginary, say,

(9) B = iw* where w* = L A,

s c?
- dmk — &% =

.\III ; - m— {}D}.

(We now write w* to reserve w for driving and electromotive forces in Secs. 2.8 and 2.9.)
The roots of the characteristic equation are now complex conjugates,

Al = —a + iw*, As = —a — iw¥*

with & = ¢/(2m), as given in (6). Hence the corresponding general solution is
(10

wit) = e_“t(A cos w¥t + B sin @*f) = Ce ™ cos (w*t — &)

where C? = A% + B®and tan & = B/A, as in (4%).

This represents damped oscillations. Their curve lies between the dashed curves
vy = Ce " andy = —Ce " in Fig. 39, touching them when w*t — & is an integer multiple
of 7 because these are the points at which cos (w*t — &) equals 1 or —1.

The frequency is w*/(27) Hz (hertz, cycles/sec). From (9) we see that the smaller
¢ (=0) is, the larger is @* and the more rapid the oscillations become. If ¢ approaches 0,
then w* approaches wy = \ffiq’_m, giving the harmonic oscillation (4), whose frequency
wo/(277) is the natural frequency of the system.

Fig. 39. Damped oscillation in Case Il [see (10]]
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Example

How does the motion in Example 1 change if we change the damping constant ¢ from one to another of the
following three values, with W0) = 0.16 and ¥"(0) = 0 as before?

(I} c = 100 kg/sec, (I} ¢ = 60 kg/sec, (Il ¢ = 10 kg/sec.
Solution. 1t is interesting to see how the behavior of the system changes due to the effect of the damping,

which takes energy from the system, so that the oscillations decrease in amplitude (Case III) or even disappear
(Cases IT and I).

(1) With m = 10 and & = 90, as in Example 1, the model is the initial value problem

10y" + 100y’ + 90y =0,  y(0) = 0.16 [meter],  y'(0) = 0.

The characteristic equation is 1042 + 1004 + 90 = 1O{A + 9)(A + 1) = 0. It has the roots —9 and —1. This
gives the general solution

¥ = E‘J_f_m + gt We also need ¥ = —';"C‘]_E'_m — rpet

The initial conditions give ¢p + c2 = 0L16, =% — oz = 0. The solution is ¢ = —0.02, c2 = 0.18. Hence in
the overdamped case the solution is

y=—002"" + 0,187

It approaches 0 as { — =2, The approach is rapid; after a few seconds the solution is practically 0, that is, the
iron ball is at rest.

(II) The model is as before, with ¢ = 60 instead of 100. The characteristic equation now has the form
104% + 604 + 90 = 10{A + 3}2 = 0. It has the double root —3. Hence the corresponding general solution is

y=1(c + E‘gl'::lf_m. We also need ¥ =icg — 3 — 31:'3:].?_53.

The initial conditions give p(0) = ¢; = 0.16, ¥'(0) = cg — 31 = 0, cg = 0.48. Hence in the critical case the
solution is

y = (0.16 + 0.480)e 3,
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It is always positive and decreases to ) in a monotone fashion.

(IIT) The model now is 100" + 10y" + 90; = 0. Since ¢ = 10 is smaller than the critical ¢, we shall get
oscillations. The characteristic equation is 104 + 10A + 90 = 10[(A + $)% + 9 — 3] = 0. It has the complex
roots [see (4) in Sec. 2.2 with @ = 1 and b = 9]

A=-05* 052 - 9= —05 * 29i
This gives the general solution
v = e~ "5 A cos 2.06¢ + B sin 2.961).
Thus w0y = A = 0.16. We also need the derivative
y' = e~ %54 —0.54 cos 2.96¢ — 0.5B sin 2.96¢ — 2.964 sin 2.961 + 2.968 cos 2.96¢).
Hence y'(0) = —0.54 + 2.96F =0, B = 0.54/2.96 = 0.027. This gives the solution
v = e 50,16 cos 2.96¢ + 0.027 sin 2.961) = 016225 cos (206 — 0.17).

We see that these damped oscillations have a smaller frequency than the harmonic oscillations in Example 1 by

about 1% (since 2.96 is smaller than 3.00 by about 1%). Their amplitude goes to zero. See Fig. 40. |
¥
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Fig. 40. The three solutions in Example 2

2 Modeling: Forced Oscillations. Resonance
my" + ey’ + ky = 0.

We now extend our model by including an additional force, that is, the external force

r(t), on the right. Then we have

(2%) my" + cy' + ky = 1)

Fig.53. Mass on a spring
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Mechanically this means that at each instant ¢ the resultant of the internal forces is in
equilibrium with ). The resulting motion is called a forced motion with forcing function
K1), which is also known as input or driving force, and the solution y(f) to be obtained
is called the output or the response of the system to the driving force.

Of special interest are periodic external forces, and we shall consider a driving force
of the form

i) = Fg cos wt (Fop =0, = 0).
Then we have the nonhomogeneous ODE
(2) my” + ¢y’ + ky = Fy cos wt.

Solving the Nonhomogeneous ODE (2)

From Sec. 2.7 we know that a general solution of (2) is the sum of a general solution vy,
of the homogeneous ODE (1) plus any solution y, of k?.}. To find yp, we use the method
of undetermined coefficients (Sec. 2.7), starting from

(3 ¥p(t) = a cos wt + bsin wt.

By differentiating this function (chain rule!) we obtain

}af:, = —ua sin wt + wb cos wf,

}?; = —w’a cos wt — w’b sin wt.
Substituting yp, y{,, and }?; into (2) and collecting the cosine and the sine terms, we get
[tk — mw )a + webh] cos wt + [—wea + (k — mwgflb] sin wt = Fy cos wt.

The cosine terms on both sides must be equal, and the coefficient of the sine term
on the left must be zero since there is no sine term on the right. This gives the two
equations

ik — mmz‘ja + wch =Fy
(4)
—wca + (k— mo®b =0
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for determining the unknown coefficients @ and b. This is a linear system. We can solve
it by elimination. To eliminate b, multiply the first equation by k — ma® and the second
by —wec and add the results, obtaining

ik — mwz}za + w?c’a = Folk — mwg}.
Similarly, to eliminate a, multiply (the first equation by we and the second by k — mew>
and add to get

w’ch + ik — me‘_lzb = Fgwe.

If the factor (k — mwz}z + w?c? is not zero, we can divide by this factor and solve for a
and b,

k— mo® e

5 b - F .
(k — mmz}z + w2 0 ik — mwzflz + wie?

G=F[|

If we set Vk/m = wy (= 0) as in Sec. 2.4, then k = mm% and we obtain

2 2
miwy — @”) wc
(5) a = F . b =F, .
0 mz{wﬁ = mz):a + w?c? 0 mz{wﬁ = cuz)z + w?c?

We thus obtain the general solution of the nonhomogeneous ODE (2) in the form
(6) w#) = yulr) + yplt).

Case 1. Undamped Forced Oscillations. Resonance

If the damping of the physical system is so small that its effect can be neglected over the
time interval considered, we can set ¢ = 0. Then (5) reduces to a = Fp/ [m{w% — 2}]
and & = 0. Hence (3) becomes (use m[,,2 = kfm)

K1 — (/wo)’]

Here we must assume that @® # muz; physically, the frequency @/(27) [cycles/sec] of
the driving force is different from the natural frequency wg/(27r) of the system, which is
the frequency of the free undamped motion [see (4) in Sec. 2.4]. From (7) and from (4%)
in Sec. 2.4 we have the general solution of the “undamped system”

Fy
(7} yplt) = ——5 g cos wt cos f.

miwy — ™)

Fo
(8) wit) = C cos (wgt — &) + m cOs ot
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Resonance. We discuss (7). We see that the maximum amplitude of yp, is (put cos wt = 1)

Fy 1
(9) g = — where =
P P = (0w

ay depends on w and wy. If @ — @y, then p and ag tend to infinity. This excitation of large

oscillations by matching input and natural frequencies (@ = wy) is called resonance. p is

called the resonance factor (Fig. 54), and from (9) we see that p/k = ag/Fy is the ratio

of the amplitudes of the particular solution yp an of the input Fjy cos wt. We shall see

later in this section that resonance is of basic importance in the study of vibrating systems.
In the case of resonance the nonhomogeneous ODE (2) becomes

(10) Y+ @Ry = % co8 g, Resonance factor plw)

Then (7) 1s no longer valid, and, from the Modification Rule in Sec. 2.7, we conclude that
a particular solution of (10) is of the form

yp(t) = fla cos wgt + b sin wyt).

P |

By substituting this into (10) we find @ = 0 and b = Fy/(2mayg). Hence (Fig. 55)

Fo t si 3
sin dgl.
2muwy =

(1 yplt) =

- u%"‘lvf

-

=

-
-

Fig. 55. Particular solution in the case of resonance

We see that, because of the factor t, the amplitude of the vibration becomes larger and larger.
Practically speaking, systems with very little damping may undergo large vibrations that can
destroy the system. We shall return to this practical aspect of resonance later in this section.
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Beats. Another interesting and highly important type of oscillation is obtained if @ is
close to wy. Take, for example, the particular solution [see| (8)]

F
(12) W) = —5—— (cos @ — cos wot) (@ # wo).
m(wp — w”)

Using (12) in App. 3.1, we may write this as

2Fy (gt | fw—w
j{t):m(a%_mz)sm( 5 r)sm( > .f).

Since @ is close to wy, the difference wy — @ is small. Hence the period of the last sine
function is large, and we obtain an oscillation of the type shown in Fig. 56, the dashed

curve resulting from the first sine factor. This is what musicians are listening to when
they tune their instruments.

sl | \J’ | \
\J .’ NVRVE

-

Fig. 6. Forced undamped oscillation when the difference of the input
and natural frequencies is small (“beats”)

Case 2. Damped Forced Oscillations

If the damping of the mass—spring system is not negligibly small, we have ¢ = 0 and
a damping term ¢y’ in (1) and (2). Then the general solution y;, of the homogeneous
ODE (1) approaches zero as ¢ goes to infinity, as we know from Sec. 2.4. Practically,
it is zero after a sufficiently long time. Hence the “transient solution™ (6) of (2),

given by ¥ = yp + ¥p. approaches the “steady-state solution™ y,. This proves the
following.
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TO-_Stud}? the amplitude of y, as a function of @, we write (3) in the form
(13) ¥pl#) = C* cos (wt — 7).

C#is called the amplitude of y, and 7 the phase angle or phase lag because it measures
the lag of the output behind the input. According to (5), these quantities are

/3 3 Fo
CHlw) = Va™ + b7 = .
Vm E{w% — 022 + o’

(14)
) =2 =— @
o a m@j— o)

Let us see whether C*(w) has a maximum and, if so, find its location and then 1ts size.
We denote the radicand in the second root in C* by R. Equating the derivative of C* to
zero, we obtain

‘ffﬁ = F{.(—%R‘W)[zmgmﬁ — @2)(—2w) + 2wc?).
L]

The expression in the brackets [. . .] is zero if
(15) & =2mP(ws — 0% (wh = k/m).
By reshuffling terms we have

2m2w® = 2m%wg® — & = 2mk — 2.

The right side of this equation becomes negative if 2= 2mik, so that then (15) has no
real solution and C¥ decreases monotone as & increases, as the lowest curve in Fig. 57
shows. If ¢ 1s smaller, < 2mk, then (15) has a real solution @ = @p 5. where

2
2 _ =9 ¢
{15*'} mmﬂx - t.!.lu zmz.

From (15%) we see that this solution increases as ¢ decreases and approaches wy as ¢
approaches zerp. See also Fig. 57.

The size of C¥(wpyay) is obtained from (14), with w? = w2, given by (15%). For this

@” we obtain in the second radicand in (14) from (15%)

4

3

2, 2 2 .2 c 2 2 2 c 2

m-(wp — Wmax) = and WmaxC = (mu — )c‘ )
4m? I 2
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The sum of the right sides of these two formulas is
(et + 4m2m%r‘2 — 2.-:4}f(4mz} = r2{4m2wﬁ - c‘E}I{'HmE].
Substitution into (14) gives

2mFy

C*@max) = :
- c"v4mzmﬁ -2

(16)

We see that CF{wp, ) 15 always finite when ¢ = 0. Furthermore, since the expression
czmzw% — = czlf4mk — czfl

m the denominator of ( 16) decreases monotone to zero as e (=<2mk) goes to ze*'o, the maximum
amplitude (16) increases monotone to infinity, in agreement with our result in Case 1. Figure 57
shows the amplification C*/Fy (ratio of the amplitudes of output and input) as a function of
wform = 1,k = 1, hence wy = 1, and various values of the damping constant c.

Figure 58 shows the phase angle (the lag of the output behind the input), which is less
than 77/2 when @ << wyp, and greater than 7/2 for @ = wy.

n
I =0
[ _e=12
I c=1
| c=2
II
x| If
Z
1 |
[
|
= |
0 | | | o [ |
0 1 2 o 0 1 2 w
Fig. 57. amplification C*/F; as a function of Fig. 58. Phase lag i as a function of w for
w form = 1,k = 1, and various values of the m =1,k =1, thus wy = 1, and various values
damping constant ¢ of the damping constant ¢
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