
1111.1 Complex Numbers 

= Introduction You have undoubtedly encountered complex numbers in your earlier 

courses in mathematics. When you first learned to solve a quadratic equation ax2 + b x + c = 0 
by the quadratic formula, you saw that the roots of the equation are not real; that is, complex, 

whenever the discriminant b2 - 4ac is negative. So, for example, simple equations such as 

x2 + 5 = 0 and x2 + x + 1 = 0 have no real solutions. For example, the roots of the last equation 

1 V-3 1 V-3 
� I-::: � r.:: � � are -2 + -

2
- and -2 + -

2
- . If it is assumed that v -3 = v 3 v -1, then the roots 

are written _ _!_ + v'3 v'=1 and _ _!_ - v'3 v'=1 
2 2 2 2 . 

D A Definition Two hundred years ago, around the time that complex numbers were gain­

ing some respectability in the mathematical community, the symbol i was originally used as a 

disguise for the embarrassing symbol v'=l. We now simply say that i is the imaginary unit 

and define it by the property i2 = -1. Using the imaginary unit, we build a general complex 

number out of two real numbers. 

Definition 17.1.1 Complex Number 

A complex number is any number of the form z = a + ib where a and b are real numbers 

and i is the imaginary unit. 

D Terminology The number i in Definition 17.1.1 is called the imaginary unit. The real 

number x in z = x + iy is called the real part of z; the real number y is called the imaginary 

part of z. The real and imaginary parts of a complex number z are abbreviated Re(z) and lm(z), 

respectively. For example, if z = 4 - 9i, then Re(z) = 4 and lm(z) = - 9. A real constant multiple <111111 
of the imaginary unit is called a pure imaginary number. For example, z = 6i is a pure imaginary 

number. Two complex numbers are equal if their real and imaginary parts are equal. Since this 

simple concept is sometimes useful, we formalize the last statement in the next definition. 

Definition 17.1.2 Equality 

Complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal, z1 = z2, if 

A complex number x + iy = 0 if x = 0 and y = 0. 

D Arithmetic Operations Complex numbers can be added, subtracted, multiplied, and 

divided. If z1 = x1 + iy1 and z2 = x2 + iy2, these operations are defined as follows. 

Addition: Z1 + Z2 = (x1 + iy1) + (x2 + iy2) = (x1 + X2) + i(Y1 + Y2) 

Subtraction: Z1 - Z2 = (x1 + iy1) - (x2 + iy2) = (x1 - x2) + i(Y1 - Y2) 

Multiplication: z1 .z2 = (x1 + iy1)(x2 + iyi) 

Division: 
Z1 X1 + iy1 
Z2 X2 + iy2 

X1X2 + Y1Y2 + i Y1X2 - X1Y2 
xi+ Y� xi+ Y� 

17.1 Complex Numbers 

Note: The imaginary part of 
z = 4 - 9i is -9 not -9i. 
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The familiar commutative, associative, and distributive laws hold for complex numbers. 

Commutative laws: 

Associative laws: 

Distributive law: 

{Z1 + Z2 = Z2 + Z1 
Z1Z2 = Z2Z1 

{ZJ + (z2 + Z3) = (z1 + Z2) + Z3 
Z1(Z2Z3) = (z1z2)z3 

In view of these laws, there is no need to memorize the definitions of addition, subtraction, 

and multiplication. To add (subtract) two complex numbers, we simply add (subtract) the cor­

responding real and imaginary parts. To multiply two complex numbers, we use the distributive 

law and the fact that i2 = -1. 

EXAMPLE 1 Addition and Multiplication 

If Z1 = 2 + 4i and Z2 = -3 + Si, find (a) Z1 + Z2 and (b) Z1Z2· 

SOLUTION (a) By adding the real and imaginary parts of the two numbers, we get 

(2 + 4i) + (-3 + 8z) = (2 - 3) + (4 + 8)i = -1 + 12i. 

(b) Using the distributive law, we have 

(2 + 4z)( -3 + 8z) = (2 + 4z)( -3) + (2 + 4z)(8i) 

= -6 - 12i + 16i + 32i2 

= (-6 - 32) + (16 - 12)i = -38 + 4i. = 

There is also no need to memorize the definition of division, but before discussing that we 

need to introduce another concept. 

D Conjugate If z is a complex number, then the number obtained by changing the sign of 

its imaginary part is called the complex conjugate or, simply, the conjugate of z . If z = x + iy, 
then its conjugate is 

z = x - iy. 

For example,ifz = 6 + 3i, thenz = 6 - 3i;ifz = -5 - i, thenz = -5 + i. If z is a real number, 

say z = 7, then z = 7. From the definition of addition it can be readily shown that the conjugate 

of a sum of two complex numbers is the sum of the conjugates: 

Z1 + Z2 = Z1 + Zz. 

Moreover, we have the additional three properties 

- - ( z

z 2
1 ) = 

z

z 2
1
. Z1 - Z2 = Z1 - Zz, Z1Z2 = Z1Zz, 

The definitions of addition and multiplication show that the sum and product of a complex 

number z and its conjugate z are also real numbers: 

z + z = (x + iy) + (x - iy) = 2x 

z z = (x + iy)(x - iy) = x2 - i1·y2 = x2 + y2. 

The difference between a complex number z and its conjugate z is a pure imaginary number: 

z - z = (x + iy) - (x - iy) = 2iy. 

Since x = Re(z) and y = lm(z), (1) and (3) yield two useful formulas: 

z+z 
Re(z) = -

2
- and 
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-
z - z 

lm(z) = ----:u-· 

(1) 

(2) 

(3) 



However, (2) is the important relationship that enables us to approach division in a more practical 
manner: To divide z1 by z2, we multiply both numerator and denominator of z1/z2 by the conjugate 
of z2• This procedure is illustrated in the next example. 

EXAMPLE2 Division 

If z1 = 2 - 3i and z2 = 4 + 6i, find (a) Zi 
and (b) l. 

Z2 Z1 

SOLUTION In both parts of this example we shall multiply both numerator and denominator 
by the conjugate of the denominator and then use (2). 

(a) 

(b) 

2 - 3i 2 - 3i 4 - 6i 8 - 12i - 12i + 18i2 
------

4 + 6i 4 + 6i 4 - 6i 1 6  + 36 

-10 - 24i 
52 

1 1 2 + 3i 2 + 3i 2 3 
--- = ------ = --- = - + -i 
2 - 3i 2 - 3i 2 + 3i 4 + 9 13 13 

. = 

D Geometric Interpretation A complex numberz = x + iy is uniquely determined by an 
ordered pair of real numbers (x, y ). The first and second entries of the ordered pairs correspond, 
in turn, with the real and imaginary parts of the complex number. For example, the ordered pair 
(2, -3) corresponds to the complex number z = 2 - 3i. Conversely, z = 2 - 3i determines the 
ordered pair (2, -3). In this manner we are able to associate a complex number z = x + iy with 
a point (x, y) in a coordinate plane. But, as we saw in Section 7 .1 , an ordered pair of real numbers 
can be interpreted as the components of a vector. Thus, a complex number z = x + iy can also 
be viewed as a vector whose initial point is the origin and whose terminal point is (x, y). The 
coordinate plane illustrated in FIGURE 17 .1.1 is called the complex plane or simply the z-plane. The 
horizontal or x-axis is called the real axis and the vertical or y-axis is called the imaginary axis. 

The length of a vector z ,  or the distance from the origin to the point (x, y ), is clearly v' x 2 + y2• 
This real number is given a special name. 

Definition 17.1.3 Modulus or Absolute Value 

The modulus or absolute value of z = x + iy, denoted by lzl , is the real number 

lzl = v'x2 + Y
2 

= %. (4) 

EXAMPLE3 Modulus of a Complex Number 

lfz = 2 - 3i, then lzl = v'22 + (-3)2 
= v'i3. 

As FIGURE 17.1.2 shows, the sum of the vectors z1 and z2 is the vector z1 + z2• For the triangle 
given in the figure, we know that the length of the side of the triangle corresponding to the vector 
z1 + z2 cannot be longer than the sum of the remaining two sides. In symbols this is 

The result in (5) is known as the triangle inequality and extends to any finite sum: 

Using (5) on z1 + z2 + (-zi), we obtain another important inequality: 

(5) 

(6) 

(7) 

17.1 Complex Numbers 

y 
z=x+iy 

FIGURE 17.1.1 z as a position vector 

FIGURE 17.1.2 Sum of vectors 
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Remarks 

Many of the properties of the real system hold in the complex number system, but there are 
some remarkable differences as well. For example, we cannot compare two complex numbers 
z1 = x1 + iyi. y1 i= 0, and z2 = x2 + iy2, y2 i= 0, by means of inequalities. In other words, state­
ments such as z1 < z2 and z2 � z1 have no meaning except in the case when the two numbers 
z1 and z2 are real. We can, however, compare the absolute values of two complex numbers. 

Thus, if z1 = 3 + 4i and z2 = S - i, then lz11 = S and lz21 = v'26, and consequently lz11 < lz21. 
This last inequality means that the point (3, 4) is closer to the origin than is the point (S, -1). 

Exe re is es Answers to selected odd-numbered problems begin on page ANS-38. 

In Problems 1-26, write the given number in the form a + ib. In Problems 27-32, let z = x + iy. Find the indicated expression. 

1. 

2. 

3. 

5. 

7. 

9. 

11. 

13. 

15. 

17. 

19. 

21. 

23. 

24. 

25. 

2i3 - 3i2 +Si 

3i5 - i4 + 7i3 - 10i2 - 9 

is 4. 

(S - 9i) + (2 - 4i) 6. 

i (S + 71) 8. 

(2 - 3i)(4 + i) 10. 

(2 + 31)2 12. 

2 
14. 

2 - 4i 

3 +Si 
16. 

(3 - i) (2 + 3i) 
18. 

1 + i 

(S - 4i) - (3 + 7i) 
20. 

(4 + 2i) + (2 - 3i) 

i (1 - i)(2 - i)(2 + 6i) 22. 

ill 

3(4 - i) - 3(S + 2i) 

i (4 - 1) + 4i(l + 21) 

<! - !od + io 
(1 - 1)3 

1 + i 

10 - Si 

6 + 2i 

(1 + 1) (1 - 2i) 

(2 + 1) (4 - 3i) 

(4 + S1) + 2i3 

(2 + 1)2 

(1 + i )2(1 - i)3 

27. Re(l/z) 28. Re(z2) 

29. hn(2z + 4z - 4i) 30. Im( z2 + z2
) 

31. lz - 1 - 3il 32. l z + Szl 

In Problems 33-3S, use Definition 17 .1.2 to find a complex 
number z satisfying the given equation. 

33. 2z = i(2 + 9i) 34. z - 2.z + 7 - 6i = o 
35. z2 = i 36. z2 = 4z 

- 2 - i � = 3 + 4i 37. z + 2z = 
1 + 3i 

38. 
1 + z 

In Problems 39 and 40, determine which complex number is 
closer to the origin. 

39. 10 + Si, 11 - 6i 40. ! - ! i, � + 1 i 
41. Prove that lz1 - z21 is the distance between the points z1 and 

z2 in the complex plane. 
42. Show for all complex numbers z on the circle x2 + y2 = 4 that 

l z + 6 + Sil :::; 12. 

= For Discussion 

1 
(3 + 61) + (4 - i)(3 + Si ) + --. 

2 - I 

43. For n a nonnegative integer, in can be one of four values: i, -1, 
-i, and 1. In each of the following four cases express the integer 
exponent n in terms of the symbol k, where k = 0, 1, 2, .... 

( 2 ·y 
(2 + 3i) 

1 : �i 

(3 � J (2 � 3i) 
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26. 
1 

(1 + 1) (1 - 2i) (1 + 3i) 

(a) in= i (b) in= -1 (c) in= -i (d) in= 1 
44. (a) Without doing any significant work such as multiplying 

out or using the binomial theorem, think of an easy way 
of evaluating (1 + i)8• 

(b) Use your method in part (a) to evaluate (1 + i)64. 

1111.2 Powers and Roots 

= Introduction Recall from calculus that a point (x, y) in rectangular coordinates can also 
be expressed in terms of polar coordinates (r, 8). We shall see in this section that the ability to 
express a complex number z in terms of r and 8 greatly facilitates finding powers and roots of z. 

D Polar Form Rectangular coordinates (x, y) and polar coordinates (r, 8) are related by 
the equations x = r cos 8 and y = r sin 8 (see Section 14.1). Thus a nonzero complex number 
z = x + iy can be written as z = (r cos 8) + i(r sin 8) or 

z = r (cos 8 + i sin 8). (1) 

CHAPTER 17 Functions of a Complex Variable 



We say that (1) is the polar form of the complex number z. We see from FIGURE 17.2.1 that the 
polar coordinate 7 can be interpreted as the distance from the origin to the point (x, y). In other 
words, we adopt the convention that 7 is never negative so that we can take 7 to be the modulus 
of z; that is, 7 = lzl. The angle() of inclination of the vector z measured in radians from the positive 
real axis is positive when measured counterclockwise and negative when measured clockwise.  
The angle () is called an argument of z and is written () = arg z .  From Figure 17 .2.1 we see that 
an argument of a complex number must satisfy the equation tan () = ylx. The solutions of this 
equation are not unique, since if 80 is an argument of z, then necessarily the angles 80 ± 27T, 
()0 ± 41T, ... , are also arguments. The argument of a complex number in the interval -'TT<() ::5 1T 
is called the principal argument of z and is denoted by Arg z. For example, Arg(i) = 1Tl2. 

EXAMPLE 1 A Complex Number in Polar Form 
Express 1 - \/3 i in polar form. 

SOLUTION With x= l andy = -\/3, we obtain 7= lzl = V(1)2 
+ (-\/3)2 = 2.Now since 

the point (l, -V3) liesinthefourthquadrant, wecantakethe solution oftan(J = -\/311 = -\/3 
to be() = arg z = 57r/3. It follows from (1) that a polar form of the number is 

z = 2 (cos s; + i sin s;) . 

As we see in FIGURE 17.2.2, the argument of 1 - \/3i that lies in the interval (-'TT, 'TT], the prin­
cipal argument of z, is Arg z = -7T/3. Thus, an alternative polar form of the complex number is 

= 

D Multiplication and Division The polar form of a complex number is especially con­
venient to use when multiplying or dividing two complex numbers. Suppose 

z1 = 71(cos 81 + i sin 81) and z2 = 72(cos 82 + i sin 80, 

where 81 and 82 are any arguments of z1 and z2, respectively. Then 

z1z2 = 7172[(cos 81 cos 82 - sin 81 sin 82) + i(sin 81 cos 82 + cos 81 sin 82)] (2) 

and for z2 i= 0, 
z1 

= 
71 

[(cos 81 cos 82 + sin 81 sin 80 + i(sin 81 cos 82 - cos 81 sin 82)]. (3) 
Z2 72 

From the addition formulas from trigonometry, (2) and (3) can be rewritten, in turn, as 

z1z2 = 7172[cos(81 + 80 + i sin(81 + 82)] 

and 
z1 

= 
71 

[cos(81 - 80 + i sin(81 - 82)]. 
Z2 72 

Inspection of (4) and (5) shows that 

and 

EXAMPLE2 

I Z
1

1 = �. Z2 lz2I 

arg(z1z0 = arg z1 + arg z2, arg(�:) = arg z1 - arg z2. 

Argument of a Product and of a Quotient 

(4) 

(5) 

(6) 

(7) 

We have seen that Arg z1 = 1Tl2 for z1 = i. In Example 1 we saw that Arg z2 = -7T/3 for 
z2 = 1 - \/3 i. Thus, for 

Z1Z2 = i(l - \/3i )  = V3 + i and 
1 - \/3i 

V3 1 
--- + -i 

4 4 

17.2 Powers and Roots 

y 

rcos 8 

FIGURE 17.2.1 Polar coordinates 

y 

FIGURE 17.2.2 Two arguments of 

z = 1 - \13i in Example 1 
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it follows from (7) that 

7T' 7T' 7T' 

arg(z1z2) = 2 - 3 6 
and = 

In Example 2 we used the principal arguments of z1 and z2 and obtained arg(z1zz) = Arg(z1z2) and 
arg(z1/z2) = Arg(z1/zz). It should be observed, however, that this was a coincidence. Although (7) 
is true for any arguments of z1 and z2, it is not true, in general, that Arg(z1zz) = Arg z1 + Arg z2 
and Arg(zi/z2) = Arg z1 - Arg z2. See Problem 39 in Exercises 17 .2. 

D Powers of z We can find integer powers of the complex number zfrom the results in (4) 
and (5). For example, if z = r(cos 8 + i sin 8), then with z1 = z and z2 = z, (4) gives 

z2 = r2[cos (8 + 8) + i sin (8 + 8)] = r2(cos 28 + i sin 28). 

Since z3 = z2z, it follows that 

z3 = r3(cos 38 + i sin 38). 

Moreover, since arg( l )  = 0, it follows from (5) that 

1 
2 = z-2 = r-2[cos(-28) + i sin(-28)]. 
z 

Continuing in this manner, we obtain a formula for the nth power of z for any integer n: 

zn = rn(cos n8 + i sin n8). 

EXAMPLE3 Power of a Complex Number 

Compute z3 for z = 1 - \13 i. 
SOLUTION In Example 1 we saw that 

Hence from (8) with r = 2, 8 = -7r/3, and n = 3, we get 

= 8[cos(-7r) + i sin(-7r)] = -8. 

(8) 

D DeMoivre's Formula When z =cos 8 + i sin 8, we have lzl = r = 1 and so (8) yields 

(cos 8 + i sin 8t = cos n8 + i sin n8. (9) 

This last result is known as DeMoivre's formula and is useful in deriving certain trigonometric 
identities. See Problems 37 and 38 in Exercises 17 .2. 

D Roots A number w is said to be an nth root of a nonzero complex number z if wn = z. If 
we let w = p( cos <P + i sin <P) and z = r (cos 8 + i sin 8) be the polar forms of w and z ,  then in 
view of (8)' wn = z becomes 

pn(cosn<P + i sin n</J) = r(cos 8 + isin 8). 

From this we conclude that pn = r or p = r11n and 

cos n<P + i sin n<P = cos 8 + i sin 8. 

By equating the real and imaginary parts, we get from this equation 

cos n<P = cos 8 and sin n<P = sin 8. 

CHAPTER 17 Functions of a Complex Variable 



These equalities imply that ncp = () + 2k7r, where k is an integer. Thus, 

cp=
8+2k'TT'

. 
n 

As k takes on the successive integer values k = 0, 1, 2, ... , n - 1, we obtain n distinct roots with 
the same modulus but different arguments. But for k ;::::: n we obtain the same roots because the 
sine and cosine are 2'TT'-periodic. To see this, suppose k = n + m, where m = 0, 1, 2, .... Then 

and so 

() + 2( n + m)'TT' () + 2m'TT' 
cp = = + 2'TT' 

n n 

. . (() + 2m'TT') 
smcp = sm 

n 
, 

(() + 2m'TT') 
coscp = cos n . 

We summarize this result. The n nth roots of a nonzero complex number z = r (cos () + i sin 8) 
are given by 

[ (() + 2k'TT') (() + 2k'TT')] wk = r11n cos 
n 

+ i sin 
n 

, 

where k = 0, 1, 2, ... , n - 1 .  

EXAMPLE4 Roots of a Complex Number 

Find the three cube roots of z = i. 

(10) 

SOLUTION With r = 1, () = arg z = 'TT'/2, the polar form of the given number is 
z = cos('TT'/2) + i sin('TT'/2) . From (10) with n = 3 we obtain 

wk= (1)113 [cos
('TT'/2 ; 2k'TT') 

+ isin
('TT'/2 ; 2k'TT')]

. k = 0, 1, 2. 

Hence, the three roots are 

'TT' .. 'TT' V3 1. 
k = 0, w0 = cos -+ z sm -= --+ - z 

6 6 2 2 

5'TT' . 5'TT' V3 1 
k = 1, w1 = cos 6 + ism 6 = -2 + 2 i 

3'TT' . 3'TT' 
k = 2, w2 = cos 2 + i sm 2 = -i. 

The root w of a complex number z obtained by using the principal argument of z with 
k = 0 is sometimes called the principal nth root of z. In Example 4, since Arg(i) = 'TT'/2, 

Wo = \!312 + (1/2)i is the principal third root of i. 
Since the roots given by (8) have the same modulus, the n roots of a nonzero complex 

number z lie on a circle of radius r11n centered at the origin in the complex plane . Moreover, 
since the difference between the arguments of any two successive roots is 2'TT'ln, the nth roots 
of z are equally spaced on this circle. FIGURE 17.2.3 shows the three cube roots of i equally spaced 
on a unit circle; the angle between roots (vectors) wk and wk+ 1 is 2'TT'/3. 

As the next example will show, the roots of a complex number do not have to be "nice" 
numbers as in Example 3 .  

EXAMPLES Roots of a Complex Number 

Find the four fourth roots of z = 1 + i. 

SOLUTION In this case, r = v'2 and() = arg z = 'TT'l4 . From (10) with n = 4, we obtain 

� r,:: [ ('TT'/ 4 + 2k'TT') ('TT'/ 4 + 2k'TT')] wk = ( v :L.)1/4 cos 
4 

+ i sin 
4 

, k = 0, 1, 2, 3 .  

17.2 Powers and Roots 

y 

Wz 

FIGURE 17.2.3 Three cube roots of i 
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The roots, rounded to four decimal places, are 

k = 0, Wo = (Vl)114[ cos � + i sin�] = 1.0696 + 0.2127i 

k = 1, W1 = (Vl)1/4[ COS �: + i sin�:] = -0.2127 + l.0696i 

k = 2, W2 = (Vl)1/4[ COS 1;; + i sin 1;;] = -1.0696 - 0.2127i 

� r:: I [ 257T . 257T] k = 3, w3 = ( v L.)1 4 cos 16 + i sm 16 = 0.2127 - 1.0696i . 

... ......i,. Exe re is es Answers to selected odd-numbered problems begin on page ANS-38. 

In Problems 1-10, write the given complex number in polar form. 

1. 2 2. -10 
3. -3i 4. 6i 
5. 1 + i 6. 5 - 5i 

7. -\13 +i 8. -2 - 2V3i 
3 12 

9. -1 + i 10. 
V3 + i 

In Problems 11-14, write the number given in polar form in the 
forma + ib. 

11. z = 5(cos 1: + isin 1;) 
12. z = 8 V2( cos l�7T + i sin l�7T) 
13. z = 6 (cos ; + i sin ; ) 
14. z = 10(cos � + isin �) 
In Problems 15 and 16, find z1z2 and z/z2• Write the number in 
the form a + ib. 

( 7T . 7T) ( 37T . 37T) 15. z1 = 2 cos 8 + i sm 8 , z2 = 4 cos 8 + i sm 8 

16. Z1 = V2( COS : + i sin:). 

z2 = \13 (cos � + i sin �) 
In Problems 17-20, write each complex number in polar form. 
Then use either (4 ) or (5 ) to obtain a polar form of the given 
number. Write the polar form in the form a + ib. 
17. (3 - 3i)(5 + 5\13i) 18. (4 + 4i)(-1 + i) 

-i 
19. 2 - 2i 

V2 + v6i 
20. � r:: -1 + v3i 

In Problems 21-26, use (8) to compute the indicated power. 

21. <1 + \!309 22. <2 - 205 

23. <! + !010 24. < -V2 + v6o4 

25. (cos ; + i sin ; ) 12 

26. 
[ V3 (cos 2; + i sin 2;) r 

In Problems 27-32, use (10 ) to compute all roots. Sketch these 
roots on an appropriate circle centered at the origin. 
27. (8)113 28. (1 )118 

29. (i)l/2 
30. ( -1 + i)l/3 

31. <-1 + \!30112 32. <-1 - V301'4 

In Problems 33 and 34, find all solutions of the given equation. 
33. z4 + 1 = 0 34. z8 - 2z4 + 1 = 0 

In Problems 35 and 36, express the given complex number first 
in polar form and then in the form a + ib. 

35. (cos;+ isin ;)12[2(cos: + isin :)J5 
[8(cos� + isin�)J3 

3&. 
[ 2 (cos � + i sin �) J 1° 

37. Use the result (cos () + i sin 8)2 
= cos 2() + i sin 2() to find 

trigonometric identities for cos 2fJ and sin W. 

38. Use the result (cos () + i sin 8)3 = cos 3() + i sin 3() to find 
trigonometric identities for cos 3() and sin 38. 
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39. (a) If z1 = -1 and z2 = Si, verify that 40. For the complex numbers given in Problem 39, verify in both 
parts (a) and (b) that 

arg(z1z:z) = arg(z1) + arg(z:z) 

arg(;:) = arg(z1) - arg(zi). 

(b) If z1 = -1 and z2 = -Si, verify that 

Arg(zi/z-.J -:/: Arg(z1) - Arg(z-.J. 
and 

1117.3 Sets in the Complex Plane 

= Introduction In the preceding sections we examined some rudiments of the algebra and 
geometry of complex numbers. But we have barely scratched the surface of the subject known as 
complex analysis; the main thru.st of our study lies ahead. Our goal in the sections and chapters 
that follow is to examine functions of a single complex variable z = x + j;y and the calculus of 
these functions. 

Before introducing the notion of a function of a complex variable, we need to state some 
essential definitions and ttlminology about sets in the complex plane . 

0 Terminology Before discussing the concept of functions of a complex variable, we need 
to inttoduce some essential terminology about sets in the complex plane . 

Suppose Zo = Xo + iYo· Since lz - Zol = V (x - Xo)2 + (y - y�2 is the distance between the 
points z = x + iy and Zo = Xo + iy0, the points z = x + iy that satisfy the equation 

lz-z:ol =p, 

rv� ""--->) 
1%-Zol =P 

p > 0, lie on a drcle of radius p centered at the point Zo· See FIGURE 11.3.1. FIGURE 17.3.1 Circle of radius p 

M #!!j ,4, IQ Ii I Circles 

(a) I z I = 1 is the equation of a unit circle centered at the origin. 
(b) j z -1 - 2i I = 5 is the equation of a circle of radius 5 centered at 1 + 2i. 

The points z satisfying the inequality IZ - Zol < p, p > 0, lie within, but not on, a circle of 
radius p centered at the point Zo· This set is called a neighborhood of Zo or an open disk. A 
point Zo is said to be an interior point of a set S of the complex plane if there exists some neigh­
borhood of Zo that lies entirely within S. If every point z of a set S is an interior point, then S is 
said to be an open set. See FIGURE 11.3.2. For example, the inequality Re(z) > 1 defines a right 
half-plane, which is an open set All complex numbers z = x + j;y for which x > 1 are in this 
set. If we choose, for example, Zo = 1.1 + 2i, then a neighborhood of Zo lying entirely in the set 
is defined by lz - (1.1 + 2i)I < 0.05. See FIGURE 17.3.3. On the other hand, the set S of points in 
the complex plane defined by Re(z) C!: 1 is not open, since every neighborhood of a point on the 
line x = 1 must contain points in Sand points not in S. See FIGURE 17.3.4. 

lz- (1.1 + 2i)I < 0.05 , 
I � 
I , I 

rl •. ,/'{ ! c . . 
� .. _ .. , \ .. I ·-·\ ,,. I -� 

'\ 
I t2i 
I 

x= 1 

FIGURE17.3.3 Open set magnified view 
ofa point near x = 1 

.:f = 1 

FIGURE 17.3.4 Set S is not open 

17.3 Sets in the Complex Plane 

FIGURE17.3.Z Openset 
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FIGURE17.3.& Connected set 
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EXAMPLE2 Open Sets 
RGURE 17.3.5 illustrates some additional open sets. 

y 

------------- ------------ x 

Im(z)<O 
lower half-plane 

(a) 

y 

lzl > 1 
exb:rior of unit circle 

(c) 

FIGURE 17.3.S Pour examples of open sets 

The set of numbers satisfying the inequality 

Pt < lz - Zol < P2t 

l<Rc(%)<1 
infinilc •trip 

(b) 

y 

/�- ---, 
/ ' 

I ,,- -.... \ 
I ( \ \ 
\ \ J J \ '-, _./ I 

\ I 
", .,/ 

, ___ _ ,,,,,, 

l<ld<2 
circular ring 

(d) 

such as illustrated in Figure 17 .3.5{ d), is called an open annulus. 
If every neighborhood of a point Zo contains at least one point that is in a set S and at least 

one point that is not in S, then Zo is said to be a boundary point of S. The boundary of a set S 
is the set of all boundary points of S. For the set of points defined by Re(z) � 1, the points on 
the line x = 1 are boundary points. The points on the circle lz - ii = 2 are boundary points for 
the disk: lz - ii s 2. 

If any pair of points z1 and z2 in an open set S can be connected by a polygonal line that lies 
entirely in the set, then the open sets is said to be connected. See RGURE17.3.&. An open connected 
set is called a domain. All the open sets in Figure 17 .3.5 are connected and so are domains. The 
set of numbers satisfying Re(z) =I 4 is an open set but is not connected, since it is not possible 
to join points on either side of the vertical line x = 4 by a polygonal line without leaving the set 
(bear in mind that the points on x = 4 are not in the set). 

A region is a domain in the complex plane with all, some, or none of its boundary points. 
Since an open connected set does not contain any boundary points, it is automatically a region. 
A region containing all its boundary points is said to be closed. The disk defined by lz - ii s 2 
is an example of a closed region and is referred to� a closed disk. A region may be neither open 
nor closed; the annular region defined by 1 s IZ - 51 < 3 contains only some of its boundary 
points and so is neither open nor closed. 

Remarks 

Often in mathematics the same word is used in entirely different contexts. Do not confuse the 
concept of "domain" defined in this section with the concept of the "domain of a function." 
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.... liiliolilll. Exe re is es Answers to selected odd-numbered problems begin on page ANS-39. 

In Problems 1-8, sketch the graph of the given equation. 

1. Re(z) = 5 2. Im(z) = -2 
3. Im(z + 3i) = 6 
4. Im(z - i) = Re(z + 4 - 3i) 

15. Re(z2) > 0 

17. 0 ::5 arg (z) ::5 27r/3 
19. lz - ii> 1 

21. 2 < lz - ii< 3 

16. Im(l/z) < ! 
18. I arg (z) I < 7r/4 
20. lz - ii> 0 

22. 1 ::5 lz - 1 - ii < 2 
5. lz - 3il = 2 6. 12z + 11 = 4 
7. lz - 4 + 3il = 5 8. lz + 2 + 2i l = 2 

23. Describe the set of points in the complex plane that satisfies 
lz + 11 = lz - ii. 

In Problems 9-22, sketch the set of points in the complex plane 
satisfying the given inequality. Determine whether the set is a 
domain. 

24. Describe the set of points in the complex plane that satisfies 
IRe(z)I ::5 lzl. 

9. Re(z) < -1 
11. Im(z) > 3 

10. IRe(z)I > 2 
25. Describe the set of points in the complex plane that satisfies 

z2 + .z2 = 2. 

13. 2 < Re(z - 1) < 4 
12. Im(z - i) < 5 

14. -l:51m(z)<4 

26. Describe the set of points in the complex plane that satisfies 
lz - ii + lz + ii = 1. 

1117.4 Functions of a Complex Variable 

= Introduction One of the most important concepts in mathematics is that of a function. You 
may recall from previous courses that a function is a certain kind of correspondence between two 
sets; more specifically: Afu.nction f from a set A to a set B is a rule of correspondence that assigns 
to each element in A one and only one element in B. If b is the element in the set B assigned to the 
element a in the set A by f, we say that b is the image of a and write b = f(a ). The set A is called 
the domain of the functionf (but is not necessarily a domain in the sense defined in Section 17.3). 
The set of all images in B is called the range of the function. For example, suppose the set A is a set 
of real numbers defined by 3 ::5 x < oo and the function is given byf(x) = vx=-3; thenf(3) = 0, 
f(4) = 1,f(8) = VS, and so on. In other words, the range off is the set given by 0 ::5 y < oo. Since 
A is a set of real numbers, we say f is a function of a real variable x. 

D Functions of a Complex Variable When the domain A in the foregoing definition 
of a function is a set of complex numbers z, we naturally say that f is a function of a complex 
variable z or a complex function for short. The image w of a complex number z will be some 
complex number u + iv; that is, 

w = f(z) = u(x, y) + iv(x, y), (1) 

where u and v are the real and imaginary parts of w and are real-valued functions. Inherent in the 
mathematical statement (1) is the fact that we cannot draw a graph of a complex function w = f (z) 
since a graph would require four axes in a four-dimensional coordinate system. 

Some examples of functions of a complex variable are 

f (z) = z2 - 4z, z any complex number 

z 
f(z) = 

z2 + 1• z * iand z * -i 

f(z) = z + Re(z), z any complex number. 

Each of these functions can be expressed in form (1). For example, 

f(z) = z2 - 4z = (x + iy)2 - 4(x + iy) = (x2 - y2 - 4x) + i(2xy - 4y). 

Thus, u(x, y) = x2 - y2 - 4x, and v(x, y) = 2xy - 4y. 
Although we cannot draw a graph, a complex function w = f(z) can be interpreted as a mapping 

or transformation from the z-plane to thew-plane. See FIGURE 17.4.1. 

17.4 Functions of a Complex Variable 

y w=f(z) 
v 

(a) z-plane (b) w-plane 

FIGURE 17.4.1 Mapping from z-plane to 
w-plane 
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y v 

--+--+---+---+- x 

x=l 

(a) z-plane (b) w-plane 

FIGURE 17.4.2 Image of x = 1 is a 
parabola 

y 

FIGURE 17.4.3 fi(z) = z (normalized) 

y 

FIGURE 17.4.4 f2(z) = z2 (normalized) 
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EXAMPLE 1 Image of a Vertical Line 

Find the image of the line Re(z) = 1 under the mappingf(z) = z2• 

SOLUTION For the functionf(z) = z2 we have u(x, y) = x2 - y2 and v(x, y) = 2xy. Now, 
Re(z) = x and so by substituting x = 1 into the functions u and v, we obtain u = 1 - y2 and 
v = 2y. These are parametric equations of a curve in the w-plane. Substituting y = v/2 into 
the first equation eliminates the parameter y to give u = 1 - v2/4. In other words, the image 
of the line in FIGURE 17.4.2(a) is the parabola shown in Figure 17.4.2(b). _ 

We shall pursue the idea of/(z) as a mapping in greater detail in Chapter 20. 
It should be noted that a complex function is completely determined by the real-valued 

functions u and v. This means a complex function w = f(z) can be defined by arbitrarily specifying 
u(x, y) and v(x, y ), even though u + iv may not be obtainable through the familiar operations on the 
symbol z alone. For example, if u(x,y) = xy2 and v(x, y) = x2 - 4y3, thenf(z) = xy2 + i(x2 - 4y3) 
is a function of a complex variable. To compute, say ,f(3 + 2i), we substitute x = 3 and y = 2 
into u and v to obtain/(3 + 2i) = 12 - 23i. 

D Complex Functions as Flows We also may interpret a complex function w = f(z) 
as a two-dimensional fluid flow by considering the complex number f (z) as a vector based 
at the point z. The vector f(z) specifies the speed and direction of the flow at a given point z. 
FIGURES 17.4.3 and 17.4.4 show the flows corresponding to the complex functionsf1(z) = z and 

f
2
(z) = z2, respectively. 

If x(t) + iy(t) is a parametric representation for the path of a particle in the flow, the tangent 
vector T = x'(t) + iy'(t) must coincide withf(x(t) + iy(t)). Whenf(z) = u(x, y) + iv(x, y), it 
follows that the path of the particle must satisfy the system of differential equations 

dx 

dt 
= u(x, y) 

dy 

dt 
= v(x,y). 

We call the family of solutions of this system the stream lines of the flow associated 
withf(z). 

EXAMPLE2 Streamlines 

Find the streamlines of the flows associated with the complex functions (a) /1 (z) = z and 
(b)f

2
(z) = z2. 

SOLUTION (a) The streamlines corresponding tof1(z) = x - iy satisfy the system 

dx 
-=x 
dt 

dy 
-= -y 
dt 

and so x(t) = c1e1 and y(t) = c2e-1• By multiplying these two parametric equations, we see 
that the point x(t) + iy(t) lies on the hyperbola xy = c1c2• 

(b) To find the streamlines corresponding tofi(z) = (x2 - y2) + i2xy, note that dxldt = x2 - y2, 
dyldt = 2xy, and so 

dy 2xy 

dx x 2  - y2· 

This homogeneous differential equation has the solution x2 + y2 = c
2

y, which represents a 
family of circles that have centers on the y-axis and pass through the origin. = 

D Limits and Continuity The definition of a limit of a complex functionf(z) as z � Zo 

has the same outward appearance as the limit in real variables. 
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Definition 17.4.1 Limit of a Function 

Suppose the function/ is defined in some neighborhood of ZQ, except possibly at z0 itself. Then 
f is said to possess a limit at z0, written 

limf(z) = L 
Z--i-Zo 

if, for each e > 0, there exists a 8 > 0 such that lf(z) - LI< e whenever 0 < l z - zol < 8. 

In words, limz--+zo f (z) = L means that the points f (z) can be made arbitrarily close to the 
point L if we choose the point z sufficiently close to, but not equal to, the point Zo· As shown in 
FIGURE 17.4.5, for each e-neighborhood of L (defined by lf(z) - LI < e) there is a 8-neighborhood 
of Zo (defined by I z - z0 I < 8) so that the images of all points z * Zo in this neighborhood lie in 
thee-neighborhood of L. 

The fundamental difference between this definition and the limit concept in real variables 
lies in the understanding of z � z0. For a function/ of a single real variable x, limHXof (x) = L 
means f (x) approaches L as x approaches x0 either from the right of x0 or from the left of 
x0 on the real number line. But since z and z0 are points in the complex plane, when we say 
that limz--+zo f (z) exists, we mean that f (z) approaches L as the point z approaches z0 from 
any direction. 

The following theorem summarizes some properties of limits: 

Theorem 17.4.1 Limit of Sum, Product, Quotient 

Suppose limz--+z.f(z) = L1 and limz--+zo g(z) = £.i. Then 

(i) lim [f(z) + g(z)] = L1 +Li 
z-no 

(iz) limf(z)g(z) = L1Li 
z-no 

( ... ) li 
f(z) L 1 

m m-=-, 
z--+zo g(z) L2 

Li* 0. 

Definition 17.4.2 Continuity at a Point 

A function f is continuous at a point Zo if 

lim f(z) = f(zo). 
z-no 

As a consequence of Theorem 17.4.1, it follows that if two functions f and g are continuous 
at a point z0, then their sum and product are continuous at z0• The quotient of the two functions 
is continuous at Zo provided g(z0) * 0. 

A function/ defined by 

(2) 

where n is a nonnegative integer and the coefficients a;, i = 0, 1, ... , n, are complex constants, 
is called a polynomial of degree n. Although we shall not prove it, the limit result lim z = z0 

Z�Zo 
indicates that the simple polynomial function/ (z) = z is continuous everywhere-that is, on 
the entire z-plane. With this result in mind and with repeated applications of Theorem 17.4.1 (i) 
and (ii), it follows that a polynomial function (2) is continuous everywhere. A rational 
function 

g(z) 
f(z) = 

h(z)' 

where g and hare polynomial functions, is continuous except at those points at which h(z) is zero. 

17.4 Functions of a Complex Variable 

y v 

(a) o-neighborhood (b) e-neighborhood 

FIGURE 17 .4.5 Geometric meaning of a 

complex limit 
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D Derivative The derivative of a complex function is defined in terms of a limit. The symbol .:iz; 
used in the following definition is the complex number Ax+ ill.y. 

Definition 17.4.3 Derivative 

Suppose the complex function/ is defined in a neighborhood of a point z0• The derivative of 
fat z0is 

provided this limit exists. 

f'(zo) = lim f(zo + ll.z) - f(zo) 
.1z--->O ll.z 

(3) 

If the limit in (3) exists, the function/ is said to be differentiable at z0• The derivative of a 
function w = f (z) is also written dw/dz. 

As in real variables, differentiability implies continuity: 

lffis differentiable at z0, thenf is continuo us at z0• 

Moreover, the rules of differentiation are the same as in the calculus of real variables. If/ and g 
are differentiable at a point z, and c is a complex constant, then 

Constant Rules: 
d 

dz 
c = 0, 

d 
-cf(z) = cf'(z) 
dz 

Sum Rule: 
d 
dz 

[f(z) + g(z)] = J'(z) + g'(z) 

Product Rule: 
d 

dz [f(z)g(z)] = f(z)g'(z) + g(z)f'(z) 

Quotient Rule: 
!!-__ [f(z) J = 

g(z)J'(z) - f(z)g'(z) 
dz g(z) [ g(z)]2 

Chain Rule: 
d 

dzf(g(z)) = f'(g(z))g'(z). 

The usual Power Rule for differentiation of powers of z is also valid: 

� Zn= nzn-l, nan integer. 

EXAMPLE3 Using the Rules of Differentiation 

2 Differentiate (a)f(z) = 3z4 - 5z3 + 2z and (b)f(z) = _z_ . 
4z + 1 

SOLUTION (a) Using the Power Rule (9) along with the Sum Rule (5), we obtain 

f'(z) = 3 · 4z3 - 5 · 3z2 + 2 = 12z3 - 15z2 + 2. 

(b) From the Quotient Rule (7), 

(4z + 1) · 2z - z2 • 4 
J'(z) = 

(4z + 1)2 
4z2 + 2z 
(4z + 1)2· 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

= 

I d " 1 f · f b d"ffi · bl · li f (zo + ll.z) - f (zo) n or er ior a comp ex unction to e 1 erentia e at a pomt ZQ, m 
A b.z--->0 u.z 

must approach the same complex number from any direction. Thus in the study of complex 
variables, to require the differentiability of a function is a greater demand than in real variables. 
If a complex function is made up, such asf(z) = x + 4i y, there is a good chance that it is not 
differentiable. 
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EXAMPLE4 A Function That Is Nowhere Differentiable 

Show that the functionf(z) = x + 4iy is nowhere differentiable. 

SOLUTION With az = Ax + iay, we have 

and so 

f(z + az) - f(z) = (x +Ax)+ 4i( y + ay) - x - 4iy =Ax+ 4iay 

. f(z + az) - f(z) . ax+ 4iay 
lim = lrm . 

4H0 az .1z--->0 ax + iay 
(10) 

Now, if we let az � 0 along a line parallel to the x-axis, then ay = 0 and the value of (10) is 1. 
On the other hand, if we let az � 0 along a line parallel to the y-axis, then Ax = 0 and the value 
of (10) is seen to be 4. Therefore,f(z) = x + 4iy is not differentiable at any point z. _ 

D Analytic Functions While the requirement of differentiability is a stringent demand, 
there is a class of functions that is of great importance whose members satisfy even more severe 
requirements. These functions are called analytic functions. 

Definition 17.4.4 Analyticity at a Point 

A complex function w = f(z) is said to be analytic at a point z0 ifjis differentiable at Zo and 
at every point in some neighborhood of Zo· 

A function! is analytic in a domain D if it is analytic at every point in D. 

The student should read Definition 17.4.4 carefully. Analyticity at a point is a neighborhood 
property. Analyticity at a point is, therefore, not the same as differentiability at a point. It is left 
as an exercise to show that the functionf(z) = I z 12 is differentiable at z = 0 but is differentiable 
nowhere else. Hence,f(z) = lzl2 is nowhere analytic. In contrast, the simple polynomialf(z) = z2 
is differentiable at every point z in the complex plane. Hence,f(z) = z2 is analytic everywhere. 
A function that is analytic at every point z is said to be an entire function. Polynomial functions 
are differentiable at every point z and so are entire functions. 

Remarks 

Recall from algebra that a number c is a zero of a polynomial function if and only if 
x - c is a factor of f(x). The same result holds in complex analysis. For example, since 
f(z) = z4 + 5z2 + 4 = (z2 + l) (z2 + 4), the zeros off are - i, i, - 2i, and 2i. Hence, 
f(z) = (z + i)(z - i)(z + 2i)(z - 2i). Moreover, the quadratic formula is also valid. For 
example, using this formula, we can write 

f(z) = z2 - 2z + 2 = (z - (1 + i))(z - (1 - i)) 

= (z - 1 - i)(z - 1 + i). 

See Problems 21 and 22 in Exercises 17.4 . 

........ Exe re i se s Answers to selected odd-numbered problems begin on page ANS-39. 

In Problems 1--6, find the image of the given line under the 
mappingf(z) = z2• 

1. y = 2 

3. x = 0 
5. y =x 

2. x = -3 
4.  y = 0 
6. y = -x 

In Problems 7-14, express the given function in the form 
f(z) = u +iv. 

7. f(z) = 6z - 5 + 9i 

B. f(z) = 7z - 9iz - 3 + 2i 

9. f(z) = z2 - 3z + 4i 

11. f(z) = z3 - 4z 

13. f(z) = z + llz 

17.4 Functions of a Complex Variable 

10. f(z) = 3z2 + 2z 

12. f(z) = z4 
z 

14. f(z) = 
z + 1 
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In Problems 15-18, evaluate the given function at the indicated 
points. 

15. f(z) = 2x -y2 + i(xy3 - 2i2-+ 1) 
(a) 2i (b) 2 -i (c) 5 + 3i 

16. f(z) = (x + 1 + l/x) + i(4x2 - 2y2 - 4) 
(a) 1 + i (b) 2 - i (c) 1 + 4i 

17. f(z) = 4z + i z + Re(z) 
(a) 4 - 6i (b) -5 + 12i (c) 2 -?i 

18. f(z) = ex cosy + iffX sin y 
(a) 7Ti/4 (b) -1 - 7Ti (c) 3 + 7Ti/3 

In Problems 19-22, the given limit exists. Find its value. 

19. lim(4z3 -5z2 + 4z + 1 - 5z) 
z-+i 

2 
lim 

5z -2z + 2 
20. 

z-+1-i Z + 1 
z 4  - 1 

21. lim -­
z-+i Z - i 

22. lim 
z2 -2z + 2 

z-+l+i z2 -2i 

In Problems 23 and 24, show that the given limit does not exist. 
x+y-l 

23. lim � 24. lim ----
z-+0 Z z-+I z - 1 

In Problems 25 and 26, use (3) to obtain the indicated derivative 
of the given function. 

25. f(z) = z2 ,  f'(z) = 2z 

26. f(z) = l/z, f'(z) = -l/z2 

In Problems 27-34, use (4)-(8) to fmd the derivativef'(z) for 
the given function. 

27. f(z) = 4z3 - (3 + i)z2 -5z + 4 

28. f(z) = 5z4 -iz3 + (8 - i)z2 -6i 

29. f(z) = (2z + l)(z2 -4z + 81) 

30. f(z) = (z5 + 3iz3)(z4 + iz3 + 2z2 - 6iz) 

31. f(z) = (z2 - 41)3 32. f(z) = (2z -llz)6 
3z - 4 + Si 5z2 -z 

33. f (z) = . 34. f (z) = 
3 2z+z z +l 

In Problems 35-38, give the points at which the given function 
will not be analytic. 

z u 
35. f(z) = --3. 36. f(z) = 

2 2 + 5. z- z  z - z lZ 

z 3  + z z - 4 + 3i 
37. f(z) = 

z2 + 4 38. f(z) = 

z2 -6z + 25 

39. Show that the functionf(z) = z is nowhere differentiable. 
40. The functionf(z) = lzl2 is continuous throughout the entire 

complex plane. Show, however, thatfis differentiable only at 
the point z = 0. [Hint: Use (3) and consider two cases: z = 0 
and z * 0. In the second case let dz approach zero along a 
line parallel to the x-axis and then let dz approach zero along 
a line parallel to the y-axis.] 

In Problems 41-44, find the streamlines of the flow associated 
with the given complex function. 

41. f(z) = 2z 
43. f(z) = llz 

42. f(z) = iz 
44. f(z) = x2 - iy2 

In Problems 45 and 46, use a graphics calculator or computer 
to obtain the image of the given parabola under the mapping 

f(z) = z2. 

45. y = ! x2 46. y = (x -1)2 

1117.5 Cauchy-Riemann Equations 
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= Introduction In the preceding section we saw that a function! of a complex variable z is 
analytic at a point z whenf is differentiable at z and differentiable at every point in some neigh­
borhood of z. This requirement is more stringent than simply differentiability at a point because 
a complex function can be differentiable at a point z but yet be differentiable nowhere else. A 

function f is analytic in a domain D if f is differentiable at all points in D. We shall now develop 
a test for analyticity of a complex functionf(z) = u(x, y) + iv(x, y). 

D A Necessary Condition for Analyticity In the next theorem we see that if a function 
f(z) = u(x, y) + iv(x, y) is differentiable at a point z, then the functions u and v must satisfy a pair 
of equations that relate their first-order partial derivatives. This result is a necessary condition 
for analyticity. 

Theorem 17.5.1 Cauchy-Riemann Equations 

Supposef(z) = u(x, y) + iv(x, y) is differentiable at a point z = x + iy. Then at z the first-order 
partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations 

au 

ax 

av 

ay 
and 
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av 
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PROOF: Sincef'(z) exists, we know that 

f'(z) = lim 
f(z + Liz) - f(z)

. 
4z--+O Liz 

By writingf(z) = u(x, y) + iv(x, y) and Liz= Lix + iLiy, we get from (2) 

(2) 

. u(x + Lix, y + Liy) + iv(x + Lix, y + Liy) - u(x, y) - iv(x, y) (3) f'(z) = hm . . 
4z--+O Lix + zLi y 

Since this limit exists, Liz can approach zero from any convenient direction. In particular, if 
Liz� 0 horizontally, then Liz = Lix and so (3) becomes 

, _ . u(x + Lix, y) - u(x, y) . . v(x + Lix, y) - v(x, y) 
14) f (z) - lim 

A 
+ z lrm 

A 
• 

4x--+0 .u.X 4x--+0 .u.X 

Sincef'(z) exists, the two limits in (4) exist. But by definition the limits in (4) are the first partial 
derivatives of u and v with respect to x. Thus, we have shown that 

!'() _ au . av 
z - - + z -. 

ax ax 
(5) 

Now if we let Liz� 0 vertically, then Liz = iLiy and (3) becomes 

. u(x, y + Liy) - u(x, y) . . v(x, y + Liy) - v(x, y) 
(S) f'(z) = Inn . + zlrm . , 

4y--+O zLiy 4y--+O zLiy 

which is the same as 

, . au av 
f (z) = -z - + -. (7) 

ay ay 

Equating the real and imaginary parts of (5) and (7) yields the pair of equations in (1). = 

lf a complex functionf(z) = u(x, y) + iv(x,y) is analytic throughout a domainD, then the real 
functions u and v must satisfy the Cauchy-Riemann equations (1) at every point in D. 

EXAMPLE 1 Using the Cauchy-Riemann Equations 

The polynomialf(z) = z2 + z is analytic for all z andf(z) = x2 - y2 + x + i(2xy + y). Thus, 
u(x, y) = x2 - y2 + x and v(x, y) = 2xy + y. For any point (x, y), we see that the Cauchy­
Riemann equations are satisfied: 

EXAMPLE2 

au 
= 2x + 1 = 

av 
ax ay 

and 
au av 
- = -2y = - -. 
ay ax 

Using the Cauchy-Riemann Equations 

Show that the functionf(z) = (2x2 + y) + i(y2 - x) is not analytic at any point. 

SOLUTION We identify u(x, y) = 2x2 + y and v(x, y) = y2 - x. Now from 

au 
-= 4 x 
ax 

au 
-= 1 
ay 

and 

and 

av
= 2Y ay 

av 
-= -1 
ax 

we see that au/ay = -av/ax but that the equality au/ax = avlay is satisfied only on the line 
y = 2x. However, for any point z on the line, there is no neighborhood or open disk about z 
in whichfis differentiable. We conclude thatfis nowhere analytic. = 
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Important. � By themselves, the Cauchy-Riemann equations are not sufficient to ensure analyticity. 
However, when we add the condition of continuity to u and v and the four partial derivatives, 
the Cauchy-Riemann equations can be shown to imply analyticity. The proof is long and com­
plicated and so we state only the result. 

Theorem 17.5.2 Criterion for Analyticity 
Suppose the real-valued functions u(x, y) and v(x, y) are continuous and have continuous 
first-order partial derivatives in a domain D. If u and v satisfy the Cauchy-Riemann equations 
at all points of D, then the complex functionf(z) = u(x, y) + iv(x, y) is analytic in D. 

EXAMPLE3 Using Theorem 17.5.2 

For the functionf(z) = 
2 

x 

2 
- i 

2 

y 

2 
we have 

x +y x +y 

au y2 - x2 av 

ax (x2 + y2)2 ay 
and 

au 

ay 

2xy av 

ax" 

In other words, the Cauchy-Riemann equations are satisfied except at the point where 
x2 + y2 = O; that is, at z = 0. We conclude from Theorem 17.5.2 that/ is analytic in any 
domain not containing the point z = 0. _ 

The results in (5) and (7) were obtained under the basic assumption that/was differentiable 
at the point z. In other words, (5) and (7) give us a formula for computingf'(z): 

f'(z) = 
au 

+ i 
av 

= 
av _ 

i 
au

. (B) 
ax ax ay ay 

For example, we know thatf(z) = z2 is differentiable for all z. With u(x, y) = x2 - y2, au/ax = 
2x, 

v(x, y) = 2xy, and av/ax = 2y , we see that 

f'(z) = 
2x 

+ i2y = 2(x + iy) = 2z. 

Recall that analyticity implies differentiability but not vice versa. Theorem 17.5.2 has an analogue 
that gives sufficient conditions for differentiability: 

If the real-valued functions u(x, y) and v(x, y) are continuous and have continuous first-order 
partial derivatives in a neighborhood of z ,  and if u and v satisfy the Cauchy-Riemann 
equations at the point z ,  then the complexfunctionf(z) = u(x, y) + iv(x, y) is differentiable 
at z andf'(z) is given by (8). 

The functionf(z) = x2 - y2i is nowhere analytic. With the identifications u(x, y) = x2 and 
v(x, y) = -y2, we see from 

au 
= 

2x, av 
= -2y 

ax ay 
and 

au
= 0 av

= 0 
ay ' ax 

that the Cauchy-Riemann equations are satisfied only when y = -x. But since the functions u, 
au/ax, au/iJy , v, av/ax, and av/iJy are continuous at every point, it follows that/is differentiable on 
the line y = -x and on that line (8) gives the derivativef'(z) = 

2x 
= -2y. 

D Harmonic Functions We saw in Chapter 13 that Laplace's equationa2u/ax2 + a2u/iJy2 = 0 
occurs in certain problems involving steady-state temperatures. This partial differential equation 
also plays an important role in many areas of applied mathematics. Indeed, as we now see, the 
real and imaginary parts of an analytic function cannot be chosen arbitrarily, since both u and v 
must satisfy Laplace's equation. It is this link between analytic functions and Laplace's equation 
that makes complex variables so essential in the serious study of applied mathematics. 

Definition 17.5.1 Harmonic Functions 
A real-valued function </J(x, y) that has continuous second-order partial derivatives in a domain D 

and satisfies Laplace's equation is said to be harmonic in D. 
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Theorem 17.5.3 A Source of Harmonic Functions 
Supposef(z) = u(x, y) + iv(x, y) is analytic in a domain D. Then the functions u(x, y) and 
v(x, y) are harmonic functions. 

PROOF: In this proof we shall assume that u and v have continuous second-order partial <111111 
derivatives. Since/is analytic, the Cauchy-Riemann equations are satisfied. Differentiating both 
sides of au/ax = avlay with respect to x and differentiating both sides of au/ay = -av/ax with respect 
to y then give 

and 

With the assumption of continuity, the mixed partials are equal. Hence, adding these two equa­
tions gives 

This shows that u(x, y) is harmonic. 
Now differentiating both sides of au/ax = avlay with respect toy and differentiating both sides 

of au/ay = -av/ax with respect to x and subtracting yield 

a2v a2v 
- +-=O 
ax2 ay2 

• 

D Harmonic Conjugate Functions Iff(z) = u(x,y) + iv(x,y) is analytic in a domainD, 
then u and v are harmonic in D. Now suppose u(x, y) is a given function that is harmonic in D. 
It is then sometimes possible to find another function v(x, y) that is harmonic in D so that 
u(x, y) + iv(x, y) is an analytic function in D. The function v is called a harmonic conjugate 
function of u. 

EXAMPLE4 Harmonic Function/ Harmonic Conjugate Function 
(a) Verify that the function u(x, y) = x3 -3.xy2 - Sy is harmonic in the entire complex plane. 
(b) Find the harmonic conjugate function of u. 

SOLUTION (a) From the partial derivatives 

au 
-

= 3x2 - 3y2 
ax 

' 
a2u 
-

2 
= 6.x, ax 

we see that u satisfies Laplace's equation: 

au 

ay 
= -6.xy - s

, 

a2u a2u 
- + - = 6x - 6x = 0. 
ax2 ay2 

-6x 

(b) Since the harmonic conjugate function v must satisfy the Cauchy-Riemann equations, 
we must have 

av au 
-

= 
-

= 3x2 - 3y2 
ay ax 

and 
av au 

- = -
-

= 6xy + s. 
ax ay 

(9) 

Partial integration of the first equation in (9) with respect to y gives v(x, y) = 3.x2y - y3 + h(x). 
From this we get 

av 
- = 6xy + h'(x). 
ax 

Substituting this result into the second equation in (9) gives h'(x) = S ,  and so h(x) = Sx + C. 
Therefore, the harmonic conjugate function of u is v(x, y) = 3x2y -y3 + Sx + C. The analytic 
function isf(z) = x3 - 3xy2 - Sy+ i(3x2y - y3 + Sx + C). _ 

17.5 Cauchy-Riemann Equations 

We will see in Chapter 18 that 

an analytic function possesses 
derivatives of all orders. 
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Remarks 
Suppose u and v are the harmonic functions that comprise the real and imaginary parts of an 
analytic functionf(z). The level curves u(x,y ) = c1 and v(x,y ) = c2 defined by these functions 
form two orthogonal families of curves. See Problem 32 in Exercises 17 . 5 . For example, the 
level curves generated by the simple analytic functionf(z ) = z = x + iy are x = c1 and y = c2

• 
The family of vertical lines defined by x = c1 is clearly orthogonal to the family of horizontal 
lines defined by y = c2• In electrostatics, if u(x, y )  = c1 defines the equipotential curves, then 
the other, and orthogonal, family v (x, y )  = c

2 
defines the lines of force . 

......... Ill Exe re is es Answers to selected odd-numbered problems begin on page ANS-39. 

In Problems 1 and2 ,  the given function is analytic for all z .  
Show that the Cauchy-Riemann equations are satisfied at every 
point. 

1. f(z ) = z 3  2. f(z ) = 3z2 + 5z - 6i 

In Problems 3-8, show that the given function is not analytic at 
any point. 

3. f(z ) = Re(z ) 
5. f(z ) = 4z - 6z + 3 
7. f(z ) = x2 + y2 

4. f(z ) = y + ix 

6. f(z ) = z2 

x . y 
8. f(x) = 

2 2 
+ 1 2 2 x + y x + y 

In Problems 9- 14 , use Theorem 17 . 5 .2 to show that the given 
function is analytic in an appropriate domain. 

9. f(z ) = e" cosy + ie" sin y 
10. f(z ) = x + sin x cosh y + i(y + cos x sinh y )  

11. f(z ) = er-I cos 2xy + ieK--1sin2xy 
12. f(z ) = 4x2 + 5x - 4y 2 + 9 + i(8xy + 5y - 1) 

x - 1 y 
13. f(z ) = 

(x _ l)2 + y2 - i 
(x _ l)2 + y2 

x3 + xy z + x . x2y + y 3  _ y 
14. f(x) = 

2 2 
+ z 2 2 x +y x +y 

In Problems 15 and 16, fmd real constants a, b ,  c, and d so that 
the given function is analytic. 
15. f(z ) = 3x - y + 5 + i(ax +by - 3 )  
16. f(z ) = x2 + axy + by2 + i(cx2 + dxy + y2) 

In Problems 17-20, show that the given function is not analytic 
at any point, but is differentiable along the indicated curve( s). 
17. f(z ) = x2 + y2 + 2xyi; x-axis 
18. f(z ) = 3x2y2 - 6x2y2i; coordinate axes 
19. f(z ) = x3 + 3xy2 - x + i(y3 + 3x2y - y ); coordinate axes 
20. f(z ) = x2 - x + y + i(y2 - 5y - x); y = x + 2 
21. Use (8) to find the derivative of the function in Problem 9 .  
22. Use (8) to find the derivative of the function in Problem 11. 

In Problems 23-28, verify that the given function u is harmonic. 
Find v, the harmonic conjugate function of u. Form the corre­
sponding analytic functionf(z ) = u + iv. 
23. u(x, y )  = x 24. u(x, y )  = 2x - 2xy 
25. u(x, y) = x2 - y2 
26. u(x, y )  = 4xy3 - 4x3y + x 
27. u(x, y )  = log.(x2 + y2) 
28. u(x, y )  = e"(x cosy - y sin y )  

29. Sketch the level curves u(x, y )  = c 1  and v(x, y )  = c
2 

of the 
analytic functionf(z ) = z2. 

30. Consider the functionf(z ) = 1/z. Describe the level curves. 
31. Consider thefunctionf(z ) = z + 1/z. Describe the level curve 

v(x, y )  = 0. 
32. Suppose u and v are the harmonic functions forming the real 

and imaginary parts of an analytic function. Show that the 
level curves u(x,y ) = c1 and v(x,y ) = c

2
are orthogonal. [Hint: 

Consider the gradient of u and the gradient of v. Ignore the 
case where a gradient vector is the zero vector.] 

117.6 Exponential and Logarithmic Functions 
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= Introduction In this and the next section, we shall examine the exponential, logarithmic, 
trigonometric, and hyperbolic functions of a complex variable z .  Although the defmitions of 
these complex functions are motivated by their real variable analogues, the properties of these 
complex functions will yield some surprises. 

D Exponential Function Recall that in real variables the exponential functionf(x) = e" 
has the properties 

f'(x) = f(x) and f(x1 + Xz) = f(x1)f(xz). 

CHAPTER 17 Functions of a Complex Variable 
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We certainly want the definition of the complex function/(z) = e', where z = x + iy, to reduce 
e for y = 0 and to possess the same properties as in (1). 

We have already used an exponential function with a pure imaginary exponent. Euler's 
formula, 

e
iy =cosy+ i siny, y a real number, (2) 

played an important role in Section 3.3. We can formally establish the result in (2) by using the 
Maclaurin series for e and replacing x by iy and rearranging terms: 

oo(" )k ( " )2 (")3 ( " )4 

e
iy = L _!1_ = 1 + iy + _!1_ + _!1_ + _!1_ + · · · 

k=O k! 2! 3! 4! 

= (1 - y2 

+ 
y4 

-
y6 

+ · · ·) + i (y -
y3 

+ 
y5 

-
y7 

+ · · ·) 2! 4! 6! 3! 5! 7! 
= cosy + i sin y. 

For z = x + iy, it is natural to expect that 

and so by (2), e
x+iy = e(cosy + i siny). 

Inspired by this formal result, we make the following definition. 

Definition 17.6.1 Exponential Function 
e' = e

x+iy = e(cos y + i sin y). (3) 

The exponential function e' is also denoted by the symbol exp z. Note that (3) reduces toe when 
y = 0. 

EXAMPLE 1 Complex Value of the Exponential Function 
Evaluate e1.7+4.2i

. 

SOLUTION With the identifications x = 1.7 andy = 4.2 and the aid of a calculator, we have, 
to four rounded decimal places, 

e
l

.
7 cos 4.2 = -2.6837 and e

l
.
7 sin 4.2 = -4.7710. 

It follows from (3) that e1.7+4.2i = -2.6837 - 4.7710i. = 

The real and imaginary parts of e'
, u(x, y) = ex cos y and v(x, y) = ex sin y, are continuous 

and have continuous first partial derivatives at every point z of the complex plane. Moreover, the 
Cauchy-Riemann equations are satisfied at all points of the complex plane: 

au av 
- =e

x cosy= -
a x  ay 

and 
au 

x . av 
-= -e smy = 
ay a x· 

It follows from Theorem 17.5.2 that/(z) = e' is analytic for all z; in other words,f is an entire 
function. 

D Properties We shall now demonstrate that e' possesses the two desired properties given 
in (1). First, the derivative of/ is given by (5) of Section 17.5: 

J'(z) = e
x cosy+ i(ex sin y) = e

x( cosy+ i sin y) = f(z). 

As desired, we have established that 

17.6 Exponential and Logarithmic Functions 
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Second, if z1 = x1 + iy1 and z2 = x2 + iy2, then by multiplication of complex numbers and the 
addition formulas of trigonometry, we obtain 

In other words, (4) 

It is left as an exercise to prove that 

D Periodicity Unlike the real function c!, the complex functionf(z) = e' is periodic with the 
complex period 27ri. Since e2"i = cos 27r + i sin 27r = 1 and, in view of (4), e'+2"i = e'e2"i = e' 
for all z, it follows that f(z + 27ri) = f(z). Because of this complex periodicity, all possible 
functional values of f (z) = e' are assumed in any infinite horizontal strip of width 27r. Thus, 
if we divide the complex plane into horizontal strips defined by (2n - 1)7r < y :5 (2n + 1)7r, 
n = 0, ± 1, ±2, ... , then, as shown in FIGURE 17.6.1, for any point z in the strip -'TT'< y :5 'TT', the 
valuesf(z),f(z + 27T'Z),f(z - 27ri),f(z + 47ri), and so on, are the same. The strip -'TT' < y :5 7T' 

is called the fundamental region for the exponential functionf(z) = e'. The corresponding flow 
over the fundamental region is shown in FIGURE 17.6.2. 

D Polar Form of a Complex Number In Section 17.2, we saw that the complex number z 
could be written in polar form as z = r(cos () + i sin 8). Since ei6 =cos()+ i sin 8, we can now 
write the polar form of a complex number as 

For example, in polar form z = 1 + i is z = v'ie"i/4• 

D Circuits In applying mathematics, mathematicians and engineers often approach the same 
problem in completely different ways. Consider, for example, the solution of Example 10 in 
Section 3.8. In this example we used strictly real analysis to find the steady-state current ip(t) in 
an LRC-series circuit described by the differential equation 

d2q dq 1 . 
L - + R - + -q = E sm yt. 

dt2 dt c 
0 

Electrical engineers often solve circuit problems such as this using complex analysis. To 
illustrate, let us first denote the imaginary unit V=T by the symbolj to avoid confusion with 
the current i. Since current i is related to charge q by i = dqldt, the differential equation is 
the same as 

di 1 
L - + Ri + - q = E0 sin yt. 

dt c 

Moreover, the impressed voltage E0 sin yt can be replaced by hn(E0eiY1), where Im means the 
"imaginary part of." Because of this last form, the method of undetermined coefficients suggests 
that we assume a solution in the form of a constant multiple of complex exponential-that is, 
ip(t) = hn(AeiY1). We substitute this expression into the last differential equation, use the fact 
that q is an antiderivative of i, and equate coefficients of �'Y1: 

(jLy + R + -.
1

- ) A = E0 gives 
JC'Y 
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The quantity Z = R + j(Ly - l!Cy) is called the complex impedance of the circuit. Note that the 

modulus of the complex impedance, IZI = VR2 +(Ly - l/Cy)2, was denoted in Example 10 
of Section 3.8 by the letter Zand called the impedance. 

Now, in polar form the complex impedance is 

where 

1 
Ly- -

Cy 
tan()= ----

R 

Hence, A = E0/Z = £0/(I Zlei6), and so the steady-state current can be written as 

The reader is encouraged to verify that this last expression is the same as (35) in Section 3.8. 

D Logarithmic Function The logarithm of a complex number z = x + iy, z * 0, is defined 
as the inverse of the exponential function-that is, 

w = ln z if z = ew. (5) 

In (5) we note that ln z is not defined for z = 0, since there is no value of w for which ew = 0. To 
find the real and imaginary parts of ln z ,  we write w = u + iv and use (3) and (5): 

x + iy = eu+iv = e"(cos v + i sin v) = e
" cos v + ie" sin v. 

The last equality implies x = e" cos v and y = e" sin v. We can solve these two equations for u 
and v. First, by squaring and adding the equations, we find 

e2" = x2 + y2 = r2 = lz l2 and so u = log.lzl, 

where log.lzl denotes the real natural logarithm of the modulus of z. Second, to solve for v, we 
divide the two equations to obtain 

tanv = �. 
x 

This last equation means that v is an argument of z; that is, v = () = arg z. But since there is 
no unique argument of a given complex number z = x + iy , if() is an argument of z, then so is 
() + 2mr, n = 0, ±1, ±2, .... 

Definition 17.6.2 Logarithm of a Complex Number 

For z * 0, and () = arg z, 

In z = log.lzl + i(O + 2mr), n = 0, ± 1, ±2, .... (6) 

As is clearly indicated in (6), there are infinitely many values of the logarithm of a 
complex number z. This should not be any great surprise since the exponential function 
is periodic. 

In real calculus, logarithms of negative numbers are not defined. As the next example will 
show, this is not the case in complex calculus. 

EXAMPLE2 Complex Values of the Logarithmic Function 
Find the values of (a) ln(-2), (b) ln i, and (c) ln(-1 - i). 

SOLUTION (a) With() = arg(-2) = 7T and log.1-21 = 0.6932, we have from (6) 

ln(-2) = 0.6932 + i(7T + 2n7T). 
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(b) With() = arg(i) = 7T/2 and log.Iii = log. 1 = 0, we have from (6) 

Ini = i (� + 2n7T) . 

In other words, In i = 7Ti/2, -37Ti/2, 57Ti/2, -77Ti/2, and so on. 

(c) With()= arg(-1 - i) = 57T/4 and log.1-1 - ii= log. V2 = 0.3466, we have from (6) 

In( -1 - i) = 0.3466 + i (5: + 2n7T) . = 

EXAMPLE3 Solving an Exponential Equation 

Find all values of z such that e' = v'3 + i. 

SOLUTION From (5), with the symbol w replaced by z, we have z = ln(v'3 + i). Now 
I v'3 + i I = 2 and tan() = llv'3 imply that arg( v'3 + i) = 7T/6, and so (6) gives 

z = log.2 + i (� + 2n7T) or z = 0.6931 + i (� + 2n7T) . 

D Principal Value It is interesting to note that as a consequence of (6), the logarithm 
of a positive real number has many values. For example, in real calculus, log.5 has only one 
value: log. 5 = 1.6094, whereas in complex calculus, In 5 = 1.6094 + 2n7Ti. The value of In 5 
corresponding to n = 0 is the same as the real logarithm log. 5 and is called the principal value 
of ln 5. Recall that in Section 17 .2 we stipulated that the principal argument of a complex number, 
written Arg z, lies in the interval (-7T, 7T]. In general, we define the principal value of In z as 
that complex logarithm corresponding to n = 0 and () = Arg z. To emphasize the principal value 
of the logarithm, we shall adopt the notation Ln z. In other words, 

Ln z = log.lzl + i Arg z. (7) 
Since Arg z is unique, there is only one value of Ln z for each z * 0. 

EXAMPLE4 Principal Values 

The principal values of the logarithms in Example 2 are as follows: 
(a) Since Arg(-2) = 7T, we need only set n = 0 in the result given in part (a) of Example 2: 

Ln(-2) = 0.6932 + 7Ti. 

(b) Similarly, since Arg(i) = 7T/2, we set n = 0 in the result in part (b) of Example 2 to 
obtain 

7T 
Ln i = 2,i. 

(c) In part (c) of Example 2, arg(-1 - i) = 57T/4 is not the principal argument of z = -1 - i. 
The argument of z that lies in the interval (-7T, 7T] is Arg(-1 - i) = -37T/4. Hence, it follows 
from (7) that 

. 37T . 
Ln(-1 - z) = 0.3466 - 41. = 

Up to this point we have avoided the use of the word function for the obvious reason that 
In z defined in (6) is not a function in the strictest interpretation of that word. Nonetheless, it is 
customary to write f (z) = In z and to refer to f(z) = In z by the seemingly contradictory phrase 
multiple-valued function. Although we shall not pursue the details, (6) can be interpreted as an 
infinite collection of logarithmic functions (standard meaning of the word). Each function in the 
collection is called a branch of ln z. The functionf(z) = Ln z is then called the principal branch 
of In z, or the principal logarithmic function. To minimize the confusion, we shall hereafter 
simply use the words logarithmic function when referring to eitherf(z) = In z orf(z) = Ln z. 
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Some familiar properties of the logarithmic function hold in the complex case: 

and 1nG:) = In Z1 - In Z2· (8) 

Equations (8) and (9) are to be interpreted in the sense that if values are assigned to two of the 
terms, then a correct value is assigned to the third term. 

EXAMPLES Properties of Logarithms 

Suppose z1 = 1 and z2 = -1. Then if we take In z1 = 27Ti and In z
2 

= 7Ti, we get 

ln(z1zi) = ln(-1) = In z1 + In z
2 

= 27Ti + 7Ti = 37Ti 

lnG:) = ln(-1) =In z1 - In z2 = 27Ti - 7Ti = 7Ti. 

Just as (7) of Section 17 .2 was not valid when arg z was replaced with Arg z ,  so too (8) is 
not true, in general, when In z is replaced by Ln z. See Problems 45 and 46 in Exercises 17 .6. 

D Analyticity The logarithmic functionf(z) = Ln z is not continuous at z = 0 sincef(O) is 
not defined. Moreover, f(z) = Ln z is discontinuous at all points of the negative real axis. This 
is because the imaginary part of the function, v = Arg z, is discontinuous only at these points. 
To see this, suppose x0 is a point on the negative real axis. As z � x0 from the upper half-plane, 
Arg z � 7T, whereas if z � x0 from the lower half-plane, then Arg z � -7T. This means that 
f(z) = Ln z is not analytic on the nonpositive real axis. However,f(z) = Ln z is analytic throughout 
the domain D consisting of all the points in the complex plane except those on the nonpositive 
real axis. It is convenient to think of D as the complex plane from which the nonpositive real 
axis has been cut out. Since f(z) = Ln z is the principal branch of In z, the nonpositive real axis 
is referred to as a branch cut for the function. See FIGURE 17.6.3. It is left as exercises to show 
that the Cauchy-Riemann equations are satisfied throughout this cut plane and that the deriva­
tive of Ln z is given by 

for all z in D. 

d 1 
-Lnz = -
dz z (9) 

FIGURE 17.6.4 shows w = Ln z as a flow. Note that the vector field is not continuous along the 
branch cut. 

D Complex Powers Inspired by the identity xa 
= eainx in real variables, we can define com­

plex powers of a complex number. If a is a complex number and z = x + iy, then za is defined by 

� = e
"'lnz

, z * 0. (10) 

In general, za is multiple-valued since In z is multiple-valued. However, in the special case when 
a = n, n = 0, ± 1, ±2, ... , (10) is single-valued since there is only one value for z2, z3, z-

1
, and 

so on. To see that this is so, suppose a = 2 and z = re
i8

, where() is any argument of z. Then 

Ifwe use Ln z in place ofln z, then (10) gives the principal value of z"'. 

EXAMPLE& Complex Power 

Find the value of i2;. 

SOLUTION With z = i, arg z = 7T/2, and a = 2i , it follows from (10) that 

i2i = e2i[log,1 +i(1T/2+2mr)] = e-(1+4n)1T 

where n = 0, ± 1, ± 2, .... Inspection of the equation shows that j2i is real for every value of n. 

Since 7T/2 is the principal argument of z = i, we obtain the principal value of i2; for n = 0. To 
four rounded decimal places, this principal value is i2; = e-1T 

= 0.0432. = 

17.6 Exponential and Logarithmic Functions 
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FIGURE 17.6.3 Branch cut for Ln z 
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.... �,. Exe re is es Answers to selected odd-numbered problems begin on page ANS-40. 

In Problems 1-10, express e' in the form a + ib. 
7T 7T 

1. z = -i 6 2. z= --i 3 

3. 
7T • 4. 

7T • z=-1+-z z = 2 - -z 4 2 
37T 

5. z = 7T + 7Ti 6. z= -7T + -i 2 
7. z = 1.5 + 2i 8. z = -0.3 + 0.5i 
9. z = 5i 10. z = -0.23 - i 

In Problems 11 and 12, express the given number in the form 
a+ ib. 

e2+ 31Ti 
12. -3+1Ti/2 e 

In Problems 13-16, use Definition 17 .6.1 to express the given 
function in the form/ (z) = u + iv. 
13. f(z) = e-iz 14. f(z) = e'iZ 
15. f(z) = er 16. f(z) = e11' 

In Problems 17-20, verify the given result. 

17. le'I = e' 
e'' 

18. -= ez1-z2 
e'2 

19. ez+1Ti = e'-1Ti 20. (e')n = en', nan integer 

21. Show thatf(z) = e' is nowhere analytic. 

In Problems 35-38, find all values of z satisfying the given 
equation. 

35. e' = 4i 36. e11z = -1 
37. e'-1 = -ie2 38. e2z+e'+l=O 

In Problems 39-42, find all values of the given quantity. 

39. ( -i)4i 40. 3il1T 
41. <1 + o<l + i) 42. <1 + V3o3i 

In Problems 43 and 44, find the principal value of the given 
quantity. Express answers in the form a + ib. 
43. (-1)(-2i/1T) 44. (1 - i)2i 
45. If z1 = i and z2 = -1 + i, verify that 

Ln(z1z0 * Ln z1 + Ln z2• 
46. Find two complex numbers z1 and z2 such that 

Ln(zi/z0 * Ln z1 - Ln z2• 
47. Determine whether the given statement is true. 

(a) Ln( -1 + i)2 = 2 Ln( -1 + i) 
(b) Ln i3 = 3 Ln i 
(c) ln i3 = 3 ln i 

48. The laws of exponents hold for complex numbers a and {3: 

22. (a) Use the result in Problem 15 to show thatf(z) = e'2 is an 
entire function. 

zalJ = za+fJ, 
z; = za-fJ, (z�n = �a. nan integer. 
z 

(b) Verify that u(x, y) = Re( ez?-) is a harmonic function. 

In Problems 23-28, express ln z in the form a + ib. 
23. z = -5 24. z = -ei 
25. z = -2 + 2i 26. z = 1 + i 
27. z = \/2 + V6i 28. z = -V3 + i 

In Problems 29-34, express Ln z in the form a + ib. 
29. z = 6 - 6i 30. z = -e3 
31. z = -12 + 5i 32. z = 3 - 4i 
33. z = <1 + V3o5 34. z = <1 + i)4 

However, the last law is not valid if n is a complex number. 
Verify that (ii)2 = i2i, but (i2Y * i2;. 

49. For complex numbers z satisfying Re(z) > 0, show that (7) 
can be written as 

50. The function given in Problem 49 is analytic. 
(a) Verify that u(x, y) = log.(x2 + y2) is a harmonic function. 
(b) Verify that v(x, y) = tan-1(y/x) is a harmonic function. 

117.7 Trigonometric and Hyperbolic Functions 
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= Introduction In this section we define the complex trigonometric and hyperbolic func­
tions. Analogous to the complex functions ez and Ln z defined in the previous section, these 
functions will agree with their real counterparts for real values of z. In addition, we will show 
that the complex trigonometric and hyperbolic functions have the same derivatives and satisfy 
many of the same identities as the real trigonometric and hyperbolic functions. 

D Trigonometric Functions If xis a real variable, then Euler's formula gives 

eix = cos x + i sin x and e-ix = cos x - i sin x. 
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By subtracting and then adding these equations, we see that the real functions sin x and cos x can 
be expressed as a combination of exponential functions: 

eix - e-ix 
sinx = ----

2i 
cosx = ----

2 

Using (1) as a model, we now define the sine and cosine of a complex variable: 

Definition 17.7.1 Trigonometric Sine and Cosine 

For any complex number z = x + iy, 

eiz _ e-iz 
sinz = ----

2i 
and cosz = 

2 

(1) 

(2) 

As in trigonometry, we define four additional trigonometric functions in terms of sin z 
and cos z: 

sinz 
tanz = --, 

cos z 

1 
cotz = --, 

tanz 

1 
secz = --, 

cos z 

1 
cscz = -.-. 

smz 

When y = 0, each function in (2) and (3) reduces to its real counterpart. 

(3) 

D Analyticity Since the exponential functions eiz and e-iz are entire functions, it follows 
that sin z and cos z are entire functions. Now, as we shall see shortly, sin z = 0 only for the real 
numbers z = mr, n an integer, and cos z = 0 only for the real numbers z = (2n + l)?T/2, nan 
integer. Thus, tan z and sec z are analytic except at the points z = (2n + l)?T/2, and cot z and 
csc z are analytic except at the points z = n1T. 

D Derivatives Since (d/dz)e' = e', it follows from the Chain Rule that (d/dz)eiz = ieiz and 
(d/dz)e-iz = -ie-i'. Hence, 

d d eiz _ e-iz eiz + e-iz 
-sin z = - cos z. 
dz dz 2i 2 

In fact, it is readily shown that the forms of the derivatives of the complex trigonometric func­
tions are the same as the real functions. We summarize the results: 

d . 
-smz = cosz 
dz 

d 
-tanz = sec

2
z 

dz 

d 

dz 
secz = secz tanz 

d . 

dz 
cosz = -smz 

d 

dz 
csc z = -csc z cot z. 

(4) 

D Identities The familiar trigonometric identities are also the same in the complex case: 

sin(-z) = -sin z cos(-z) = cos z 

cos
2
z + sin

2
z = 1 

sin(z1 ± z2 ) = sin z1 cos z2 ± cos z1 sin z2 

cos(z1 ± z2 ) =cos z1 cos z2 + sin z1 sin z2 

sin 2z = 2 sin z cos z cos 2z = cos
2
z - sin

2
z. 

D Zeros To find the zeros of sin z and cos z we need to express both functions in the form 
u + iv. Before proceeding, recall from calculus that if y is real, then the hyperbolic sine and 
hyperbolic cosine are defined in terms of the real exponential functions eY and e-y: 

eY - e-y 
sinhy = ---

2 
and 

eY + e-y 
coshy = 

2 
(5) 
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Now from Definition 17. 7 .1 and Euler's formula we find, after simplifying, 

. e i(x+iy) _ e-i(x+iy) . (eY + e-y) . (eY _ e-y) 
smz= 

2i 
=smx 2 +zcosx 2 . 

Thus from (5) we have 

sinz = sinxcoshy + i cosxsinhy. 

It is left as an exercise to show that 

cos z =cos x coshy - i sinx sinhy. 

From (6), (7), and cosh2y = 1 + sinh2y, we find 

lsin zl2 = sin2x + sinh2y 

and lcos zl2 = cos2x + sinh2y. 

(6) 

(7) 

(8) 

(9) 

Now a complex number z is zero if and only if lzl2 = 0. Thus, if sin z = 0, then from (8) we must 
have sin2x + sinh2y = 0. This implies that sin x = 0 and sinh y = 0, and so x = mr and y = 0. 
Thus the only zeros of sin z are the real numbers z = mr + Oi = n7T, n = 0, ± 1, ± 2, .... Similarly, 
it follows from (9) that cos z = 0 only when z = (2n + 1 )7T/2, n = 0, ± 1, ± 2, ... . 

EXAMPLE 1 Complex Value of the Sine Function 
From (6) we have, with the aid of a calculator, 

sin(2 + i) = sin 2 cosh 1 + i cos 2 sinh 1 = 1.4031 - 0.4 8 9 1i. = 

In ordinary trigonometry we are accustomed to the fact that I sin xi :5 1 and lcos xi :5 1. Inspection 
of (8) and (9) shows that these inequalities do not hold for the complex sine and cosine, since 
sinh y can range from -oo to oo. In other words, it is perfectly feasible to have solutions for 
equations such as cos z = 10. 

EXAMPLE2 Solving a Trigonometric Equation 
Solve the equation cos z = 10. 

SOLUTION From (2), cos z = 10 is equivalent to (eiz + e-iZ)/2 = 10. Multiplying the last 
equation by eiz then gives the quadratic equation in eiz: 

e2iz - 20eiz + 1 = 0. 

From the quadratic formula we find eiz = 10 ± 3\!IT. Thus, for n = 0, ±1, ±2, ... , we 
have iz = log.(10 ± 3\/IT) + 2n7Ti. Dividing by i and utilizing log.(10 - 3\/IT) = 

-log.(10 + 3 W), we can express the solutions of the given equation as z = 2n7T ± 
i log.(10 + 3 Vil). -

D Hyperbolic Functions We define the complex hyperbolic sine and cosine in a manner 
analogous to the real definitions given in (5). 

Definition 17.7.2 Hyperbolic Sine and Cosine 
For any complex number z = x + iy, 

and 
ez + e-z 

coshz = 2 (10) 

The hyperbolic tangent, cotangent, secant, and cosecant functions are defined in terms of 
sinh z and cosh z: 

anh sinhz 
t z= -­

coshz' 
1 1 1 

coth z = anh , sech z = --
h

-, csch z = --:---
nh 

. 
t Z COS Z Sl Z 
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The hyperbolic sine and cosine are entire functions, and the functions defined in (11) are 
analytic except at points where the denominators are zero. It is also easy to see from (10) that 

� sinh z = cosh z and � coshz = sinhz . 
dz 

(12) 
It is interesting to observe that, in contrast to real calculus, the trigonometric and hyperbolic 

functions are related in complex calculus. If we replace z by iz everywhere in (10) and compare 
the results with (2), we see that sinh(iz) = i sin z and cosh(iz) = cos z .  These equations enable 
us to express sin z and cos z in terms of sinh(iz) and cosh(iz), respectively. Similarly, by replac­
ing z by iz in (2) we can express, in turn, sinh z and cosh z in terms of sin(iz) and cos(iz). We 
summarize the results: 

sin z = -i sinh( iz), cos z = cosh( iz) 

sinh z = -i sin(iz), cosh z = cos(iz). 

(13) 
(14) 

D Zeros The relationships given in (14) enable us to derive identities for the hyperbolic func­
tions utilizing results for the trigonometric functions. For example, to express sinh z in the form 
u + iv we write sinh z = -i sin(iz) in the form sinh z = -i sin(-y + ix) and use (6): 

sinhz = -i[sin(-y) coshx + i cos(-y) sinhx]. 

Since sin( -y) = - sin y and cos( -y) = cos y ,  the foregoing expression simplifies to 

sinh z = sinh x cosy + i cosh x sin y . (15) 
Similarly, cosh z = cosh x cosy + i sinh x sin y . (16) 
It also follows directly from (14) that the zeros of sinh z and cosh z are pure imaginary and are, 
respectively, 

'TT'i 
z = n'TT'i and z = (2n + 1) 2' n = 0 ,  ± 1 ,  ±2 , .... 

D Periodicity Since sin x and cos x are 27r-periodic, we can easily demonstrate that sin z 
and cos z are also periodic with the same real period 27r. For example, from (6), note that 

sin(z + 27r) = sin(x + 27r + iy) 

= sin(x + 27r) coshy + i cos(x + 27r) sinhy 

= sin x cosh y + i cos x sinh y; 

that is, sin(z + 27r) = sin z. In exactly the same manner, it follows from (7) that cos(z + 27r) = cosz. 
In addition, the hyperbolic functions sinh z and cosh z have the imaginary period 27ri. This last 
result follows from either Definition 17.7.2 and the fact that ez is periodic with period 27T'i , or 
from (15) and (16) and replacing z by z + 2'1T'i . 

Exe re i se s Answers to selected odd-numbered problems begin on page ANS-40. 

In Problems 1-12 , express the given quantity in the form a+ ib. 

1. cos(3i) 2. sin(-2i) 

3. sin (: + i ) 4. cos(2 - 4i) 

5. tan(i) 6. cot(�+ 3i ) 

In Problems 13 and 14 , verify the given result. 

13. sin(�+ iln2 ) = � 

14. cos(�+ i ln2 ) = -�i 

7. sec(7r + i) 8. 

cosh(7ri) 

csc( l + i) 

sinh (3; i ) 
In Problems 15-20 , find all values of z satisfying the given 
equation. 

9. 10. 

11. sinh (1+ ;i ) 12. cosh(2 + 3i) 

15. sinz = 2 

17. sinhz= -i 

19. cos z = sin z 

17.7 Trigonometric and Hyperbolic Functions 

16. cos z = -3i 

18. sinhz = -1 

20. cos z = i sin z 
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fu Problems 21 and 22, use the definition of equality of complex 
numbers to find all values of z satisfying the given equation. 

28. Prove that cos2z + sin2z = 1. 

29. Prove that cosh2z - sinh2z = 1. 

21. cos z = cosh 2 22. sin z = i sinh 2 30. Show that tan z = u + iv, where 

23. Prove that cos z = cos x cosh y - i sin x sinh y. 

u = 
sin 2x 

and 
sinh 2y 

24. Prove that sinh z = sinh x cos y + i cosh x sin y. 
cos 2x + cosh 2y 

v= . 
cos 2x + cosh 2y 

25. Prove that cosh z = cosh x cos y + i sinh x sin y. 

26. Prove that lsinh zl2 = sin2y + sinh2x. 31. Prove that tanh z is periodic with period 7Ti. 

27. Prove that leash zl2 = cos2y + sinh2x. 32. Prove that (a) sinz = sin z and (b) cosz = cosz. 
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117.8 Inverse Trigonometric and Hyperbolic Functions 

= Introduction As functions of a complex variable z, we have seen that both the trigonomet­
ric and hyperbolic functions are periodic. Consequently, these functions do not possess inverses 
that are functions in the strictest interpretation of that word. The inverses of these analytic functions 
are multiple-valued functions. As we did in Section 17 .6, in the examination of the logarithmic 
function, we shall drop the adjective "multiple-valued" throughout the discussion that follows. 

D Inverse Sine The inverse sine function, written as sin-1z or arcsin z, is defined by 

w = sin-1z if z = sin w. (1) 

The inverse sine can be expressed in terms of the logarithmic function. To see this we use (1) 
and the definition of the sine function: 

2i =z or e2 iw - 2izeiw -1 = 0. 

From the last equation and the quadratic formula, we then obtain 

eiw = iz + (1 -z2)112 . (2) 

Note in (2) we did not use the customary symbolism ± Vi-=-?, since we know from Section 17 .2 
that (1 -z2)112 is two-valued. Solving (2) for w then gives 

Proceeding in a similar manner, we find the inverses of the cosine and tangent to be 

cos-1z = -i ln[z + i(l -z2)112] 

EXAMPLE 1 

i i + z 
tan-1z = - In -- . 

2 i-z 

Values of an Inverse Sine 

Find all values of sin -I Vs. 

SOLUTION From (3) we have 

sin-1 Vs = -iln [Vs i + (1 - ( Vs)2)112]. 

With (1 - ( Vs)2)112 = (-4)112 = ±2 i, the preceding expression becomes 

sin-1 Vs = -iln [(Vs ± 2) i] 

= -i [log.( Vs ± 2) + (� + 2n7T) i] . n = 0, ±1, ± 2 ,  .... 
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The foregoing result can be simplified a little by noting that log.( Vs - 2) = log.( 1/( Vs + 2)) = 
-log.( Vs + 2). Thusfor n = 0, ±1, ±2, ... , 

sin-1Vs = 7T 
+ 2n7T ± i log.(Vs + 2). 

2 
(6) = 

To obtain particular values of, say, sin-1z, we must choose a specific root of 1 - z2 and a 
specific branch of the logarithm. For example, if we choose (1 -(Vs)2)112 = (-4)112 = 2i and 
the principal branch of the logarithm, then (6) gives the single value 

sin-1Vs = � - i log.(Vs + 2). 

D Derivatives The derivatives of the three inverse trigonometric functions considered above 
can be found by implicit differentiation. To find the derivative of the inverse sine function 
w = sin-1z, we begin by differentiating z = sin w: 

d d . -z = -smw 
dz dz 

gives 
dw 1 
dz cos w 

Using the trigonometric identity cos2w + sin2w = 1 (see Problem 28 in Exercises 17.7) in the 
form cos w = (1 - sin2w)112 = (1 - z2)112, we obtain 

Similarly, we find that 

d . I 1 
-sin z= 
dz (1 - z2)1;2· 

d 1 
-cos-1z = ---­

dz (1 - z2)1;2 

d -I - 1 
dz 

tan z 
- 1 + z2

. 

(7) 

(8) 

(9) 

It should be noted that the square roots used in (7) and (8) must be consistent with the square 
roots used in (3) and (4). 

EXAMPLE2 Evaluating a Derivative 

Find the derivative of w = sin-1z at z = Vs. 

SOLUTION In Example 1,ifwe use( l -(Vs)2)112 = (-4)112 = 2i, then that same root must 
be used in (7). The value of the derivative consistent with this choice is given by 

dw l 1 1 1 1 
dz z=Vs 

= 
(1 - (Vs)2)1;2 

= 
(-4)1/2 

= 
2i 

= -2 i. = 

D Inverse Hyperbolic Functions The inverse hyperbolic functions can also be expressed 
in terms of the logarithm. We summarize these results for the inverse hyperbolic sine, cosine, 
and tangent along with their derivatives: 

cosh-1z = ln[z + (z2 - 1)112] 

anh-1 - 1 ln 1 + z 
t z -- --

2 1 - z 

(10) 

(11) 

(12) 
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EXAMPLE3 

d 1 
-sinh-1z = ----

dz (z2 + l)1;2 

d 1 
-cosh-1z = ---­

dz (z2 _ l)1;2 

d 
-1 -

1 
-

d 
tanh z - --2· 

z 1 - z 

Values of an Inverse Hyperbolic Cosine 

Find all values of cosh-1(-1). 

SOLUTION From (11) with z = -1, we get 

cosh-1(-1) = ln(-1) = log.1 +( 'IT+ 2n'IT)i. 

Since log.1 = 0 we have for n = 0, ± 1, ± 2, ... , 

cosh-1(-1) = (2n + l)'ITi . 

.,......,.. Exercises Answers to selected odd-numbered problems begin on page ANS-40. 

In Problems 1-14, find all values of the given quantity. 7. cos-1 ! 8. cos-1 i 
1. 

3. 

5. 

sin-1(-z) 2. sin-1 V2 9. tan-1 1 10. tan-1 3i 
sin-1 0 
cos-1 2 

4. sin-1 ¥ 11. sinh-1 � 12. cosh-1i 
6. cos-1 2i 13. tanh-1(1 + 2i) 14. tanh-1(-V3i) 

ch apter in Review Answers to selected odd-numbered problems begin on page ANS-40. 

(13) 

(14) 

(15) 

Answer Problems 1-16 without referring back to the text. Fill in 
the blank or answer true/false. 

13. ff the Cauchy-Riemann equations are satisfied at a point, then 

1. Re(l + i)10 = __ and Im(l + i)10 
= __ . 

2. If z is a point in the third quadrant, then ff. is in the __ 

quadrant. 

3. If z = 3 + 4i, then Re(f) = __ . 

4. i127 - 5i9 + 2r1 = 

4i 
5. Hz = 

3 4
., then lzl = __ . 

- - l 

6. Describe the region defined by 1 ::5 lz + 21 ::5 3. __ 

1. Arg(z + z) = o __ 

5 
8. ff z = 

� ;;: 
, then Arg z = __ . 

- v3+ i  
9. Hez = 2i, then z = __ . 

10. ff lcl = 1, then z is a pure imaginary number. __ 

11. The principal value of (1 + 0<2+i) is __ . 
12. If f (z) = x2 - 3xy - 5y3 + i (4x2y - 4x + 7y), then 

f(-1+2z) = __ . 

the function is necessarily analytic there. __ 

14. f(z) = ez is periodic with period __ . 
15. Ln(-ie3) = __ 

16. f(z) = sin(x - iy) is nowhere analytic. __ 

In Problems 17-20, write the given number in the form a + ib. 
3- i 2-2i 

17. i(2 - 3i)2 (4 + 2z) 18. 
2 + 3i 

+ 
l + Si 

(1 - z)10 
19. 3 (1 + i) 

In Problems 21-24, sketch the set of points in the complex plane 
satisfying the given inequality. 

21. Im(z2) ::5 2 22. Im(z + Sz) > 3 
1 

23. -::5 1 24. Im(z) < Re(z) 
lzl 

25. Look up the definitions of conic sections in a calculus text. 
Now describe the set of points in the complex plane that satisfy 
the equation lz -2il + lz + 2il = 5. 
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