
113.1 Separable Partial Differential Equations 

= Introduction Partial differential equations (PDEs), like ordinary differential equations 
(OD Es), are classified as linear or nonlinear. Analogous to a linear ODE (see (6) of Section 1.1 ), 

the dependent variable and its partial derivatives appear only to the first power in a linear PDE. In 
this and the chapters that follow, we are concerned only with linear partial differential equations. 

D Linear Partial Differential Equation If we let u denote the dependent variable 
and x and y the independent variables, then the general form of a linear second-order partial 
differential equation is given by 

a2u a2u a2u au au 
A-+ B - + C-+ D- + E- + Fu= G, (1) 

ax2 axay ay 2 ax ay 

where the coefficients A, B, C, ... , Gare constants or functions of x and y. When G(x, y) = 0, 

equation (1) is said to be homogeneous; otherwise, it is nonhomogeneous. 

EXAMPLE 1 Linear Second-Order PDEs 

The equations 

and 
a2u au 

- - - =xy 
ax 2 ay 

are examples of linear second-order PD Es. The first equation is homogeneous and the second 
is nonhomogeneous. _ 

D Solution of a PDE A solution of a linear partial differential equation (1) is a function 
u(x , y) of two independent variables that possesses all partial derivatives occurring in the equa
tion and that satisfies the equation in some region of the xy-plane. 

It is not our intention to examine procedures for finding general solutions of linear partial 
differential equations. Not only is it often difficult to obtain a general solution of a linear second
order PDE, but a general solution is usually not all that useful in applications. Thus our focus 
throughout will be on finding particular solutions of some of the important linear PD Es, that is, 
equations that appear in many applications. 

D Separation of Variables Although there are several methods that can be tried to find 
particular solutions of a linear PDE, in the method of separation of variables we seek to find a 
particular solution of the form of a product of a function of x and a function of y, 

u(x, y) = X(x)Y(y). 

With this assumption, it is sometimes possible to reduce a linear PDE in two variables to two 
ODEs. To this end we observe that 

au 
-=X'Y 
ax 

' 

au 
, -=XY 

ay 
, 

a2u 
- =X"Y 
ax 2 ' 

where the primes denote ordinary differentiation. 

EXAMPLE2 Using Separation of Variables 

. . a2u au 
Fmd product solutions of -2 = 4 -. 

ax ay 

SOLUTION Substituting u(x, y) = X(x)Y( y) into the partial differential equation yields 

X"Y= 4XY'. 

After dividing both sides by 4XY, we have separated the variables: 

X" Y' 

4X Y 
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See Example 2, Section 3.9 � 
and Example 1, Section 12.5. 

Since the left-hand side of the last equation is independent ofy and is equal to the right-hand 

side, which is independent of x, we conclude that both sides of the equation are independent 

of x and y. In other words, each side of the equation must be a constant. As a practical matter 

it is convenient to write this real separation constant as -,.\. From the two equalities, 

X" Y' 

4X 
= 

Y 
= -,.\ 

we obtain the two linear ordinary differential equations 

X" + 4,.\X = 0 and Y' + ,.\Y = 0. (2) 

For the three cases for,.\: zero, negative, or positive; that is, ,.\ = 0, ,.\ = -a2 < 0, and 

,.\ = a2 > 0, where a > 0, the ODEs in (2) are, in turn, 

X" = 0 and Y' = 0, 

X" - 4a2X= 0 and Y' - a2Y= 0, 

X" + 4a2X= 0 and Y' + a2Y= 0. 

(3) 

(4) 

(5) 

Case I(,.\ = 0): The DEs in (3) can be solved by integration. The solutions are 

X = c1 + c
2

x and Y = c3. Thus a particular product solution of the 

given PDE is 

u = XY = (c1 + CiX)c3 = A1 + B1x, (6) 

where we have replaced c1c3 and c2c3 by A1 and Bi. respectively. 

Case II(,.\= -a2): The general solutions of the DEs in (4) are 

X = c4 cosh 2ax + c5 sinh 2ax and Y = c6ea2y, 

respectively. Thus, another particular product solution of the PDE is 

u = XY = (c4 cosh 2ax + c5 sinh 2ax)c6ea2y 

or u = A2ea2y cosh 2ax + B2ea2y sinh 2ax, 

Case III(,.\= a2): Finally, the general solutions of the DEs in (5) are 

X = c7 cos 2ax + c8 sin 2ax and Y = c9e-a'y, 

respectively. These results give yet another particular solution 

u = A3e -a2y cos 2ax + B3e -a2y sin 2ax, 

where A3 = c7c9 and B3 = c8c9. 

(7) 

(8) 
= 

It is left as an exercise to verify that (6), (7), and (8) satisfy the given partial differential equa

tion uxx = 414y. See Problem 29 in Exercises 13.1. 

Separation of variables is not a general method for finding particular solutions; some linear 

partial differential equations are simply not separable. You should verify that the assumption 

u = XY does not lead to a solution for <Pu!ax2 - au/ay = x. 

D Superposition Principle The following theorem is analogous to Theorem 3.1.2 and 

is known as the superposition principle. 

Theorem 13.1.1 Superposition Principle 

If u1, u
2
, • • •  , uk are solutions of a homogeneous linear partial differential equation, then the 

linear combination 

u = C1U1 + C2U2 
+ ... + ckub 

where the c;, i = 1, 2, ... , k are constants, is also a solution. 
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Throughout the remainder of the chapter we shall assume that whenever we have an infinite 

set u1, u
2
, u3, • • •  of solutions of a homogeneous linear equation, we can construct yet another 

solution u by forming the infinite series 

00 

u = �c,µk 
k=l 

where the cb k = 1, 2, ... , are constants. 

D Classification of Equations A linear second-order partial differential equation in 

two independent variables with constant coefficients can be classified as one of three types. This 

classification depends only on the coefficients of the second-order derivatives. Of course, we 

assume that at least one of the coefficients A, B, and C is not zero. 

Definition 13.1.1 Classification of Equations 

The linear second-order partial differential equation 

a2u a2u a2u au au 
A- + B -- + C- + D- + E- + Fu = G 

ax2 axay ay2 ax ay ' 

where A, B, C, D, E, F, and Gare real constants, is said to be 

EXAMPLE3 

hyperbolic if B2 - 4AC > 0, 

parabolic if B2 - 4AC = 0, 

elliptic if B2 - 4AC < 0. 

Classifying Linear Second-Order PD Es 

Classify the following equations: 

a2u a2u 
(c) - + - = 0 

ax2 ay2 
• 

SOLUTION (a) By rewriting the given equation as 

we can make the identifications A = 3, B = 0, and C = 0. Since B2 - 4AC = 0, the equa

tion is parabolic. 

(b) By rewriting the equation as 

we see that A = 1, B = 0, C = -1, and B2 - 4AC = -4(1)(-1) > 0. The equation is 

hyperbolic. 

(c) With A = 1, B = 0, C = 1, and B2 - 4AC = -4(1)(1) < 0, the equation is elliptic. 

A detailed explanation of why we would want to classify a second-order partial differential 

equation is beyond the scope of this text. But the answer lies in the fact that we wish to solve 

partial differential equations subject to certain side conditions known as boundary and initial 

conditions. The kinds of side conditions appropriate for a given equation depend on whether the 

equation is hyperbolic, parabolic, or elliptic. 
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Exe re is es Answers to selected odd-numbered problems begin on page ANS-30. 

In Problems 1-1 6, use separation of variables to find, if possible, 

product solutions for the given partial differential equation. 

1. 
au au 

2. 
au 

+ 3 au 
= 0 

3. 

5. 

7. 

9. 

11. 

ax ay ax ay 
ux+uy=u 

au au 
x-=y-

ax ay 
a2u a2u a2u 

-+--+-=O 
ax2 axay ay2 

a2u au 
k--u = - k>O 

ax2 at' 
a2u a2u 

a2_ 
at2 ax2 

4. 

6. 

8. 

10. 

ux=uy+u 
au au 

y-+x-=O 
ax ay 
a2u 

y--+u=O 
axay 
2 

k i!!_ = 
au 

k > O 
ax2 at' 

12. 
a2u a2u au 

a2 -= -+ 2k- k > 0 
ax2 at2 at' 

13. 

14. 

16. 

a2u a2u au 
-+-+2k- k>O 
ax2 ay2 at' 

a2u a2u 
x2-+-=0 15. 

ax2 ay2 
a2uxx -g = Utt, g a constant 

U:xx + Uyy = U 

In Problems 17 -2 6, classify the given partial differential 

equation as hyperbolic, parabolic, or elliptic. 

a2u a2u a2u 
17. -2 + --+ -2 = 0 

ax axay ay 
a2u a2u a2u 

18. 3 -2 + 5 -+ -2 = 0 
ax axay ay 

a2u a2u a2u 
19. -2 + 6 -+ 9 -2 = 0 

ax axay ay 
a2u a2u a2u 

20. 
ax2 - axay 

- 3 
ay2 = 

o 

a2u a2u 
21· ax2 = 9 axay 

a2u a2u au 
22. ---+2-=0 

axay ay2 ax 

26. k a1u 
= 

au 
k > O 

ax2 at' 

In Problems 2 7  and 2 8, show that the given partial differential 

equation possesses the indicated product solution. 

27. k( a2u 
+ _!_au ) 

= 
au

; ar2 r ar at 
u = e-ka2t(c110(ar) + c2Y0(ar)) 

a2u 1 au 1 a2u 
28' ar2 + 

-;. ar + 
r2 afP = O; 

u = (c1 cos a() + c2 sin a8)(c3ra + c4r-a) 
29. Verify that each of the products u = X(x)Y(y) in (6), (7), and 

(8) satisfies the second-order PDE in Example 2. 

30. Definition 13.1.1 generalizes to linear PDEs with coefficients 

that are functions of x and y. Determine the regions in the 

xy-plane for which the equation 

a2u a2u a2u 
(xy + 1)-2 + (x + 2y)--+ -2 + xy2u = 0 

ax axay ay 

is hyperbolic, parabolic, or elliptic. 

= Discussion Problems 

In Problems 31and 32, discuss whether product solutions 

u = X(x)Y(y) can be found for the given partial differential 

equation. [Hint: Use the superposition principle.] 

31. 
a2
� -u = 

o 
32. 

a1u 
+ 

au 
= 

o 
ax axay ax 

113.2 Classical PDEs and Boundary-Value Problems 
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= Introduction For the remainder of this and the next chapter we shall be concerned with 

finding product solutions of the second-order partial differential equations 

2 
k i!!_ = 

au 
k > O 

ax2 at' 
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or slight variations of these equations. These classical equations of mathematical physics are 
known, respectively, as the one-dimensional heat equation, the one-dimensional wave equation, 
and Laplace's equation in two dimensions. "One-dimensional" refers to the fact that x denotes 
a spatial dimension whereas t represents time; "two dimensional" in (3) means that x and y are 
both spatial dimensions. Laplace's equation is abbreviated V2u = 0, where 

a2u a2u 
V2u=-+-

ax2 ay2 

is called the two-dimensional Laplacian of the function u. In three dimensions the Laplacian 
ofu is 

a2u a2u a2u 
V2u=-+-+-. 

ax2 ay2 az2 

By comparing equations (1 ) - (3) with the linear second-order PDE given in Definition 13 .1.1, 
with t playing the part of y, we see that the heat equation (1) is parabolic, the wave equation (2) 
is hyperbolic, and Laplace's equation (3) is elliptic. This classification is important in 
Chapter 16. 

D Heat Equation Equation (1) occurs in the theory of heat flow-that is, heat transferred 
by conduction in a rod or thin wire. The function u(x, t) is temperature. Problems in mechanical 

vibrations often lead to the wave equation (2). For purposes of discussion, a solution u(x, t) of 
(2) will represent the displacement of an idealized string. Finally, a solution u(x, y) of Laplace's 
equation (3) can be interpreted as the steady-state (that is, time-independent) temperature distri
bution throughout a thin, two-dimensional plate. 

Even though we have to make many simplifying assumptions, it is worthwhile to see how 
equations such as (1) and (2) arise. 

Suppose a thin circular rod of length L has a cross-sectional area A and coincides with the 
x-axis on the interval [0, L]. See FIGURE 13.2.1. Let us suppose: 

• The flow of heat within the rod takes place only in the x-direction. 
• The lateral, or curved, surface of the rod is insulated; that is, no heat escapes from this 

surface. 
• No heat is being generated within the rod. 
• The rod is homogeneous; that is, its mass per unit volume p is a constant. 
• The specific heat 'Y and thermal conductivity K of the material of the rod are constants. 

To derive the partial differential equation satisfied by the temperature u(x, t), we need two 
empirical laws of heat conduction: 

(z) The quantity of heat Q in an element of mass m is 

Q = ymu, (4) 

where u is the temperature of the element. 

(iz) The rate of heat flow Q, through the cross section indicated in Figure 13.2.1 is propor

tional to the area A of the cross section and the partial derivative with respect to x of the 

temperature: 

(5) 

Since heat flows in the direction of decreasing temperature, the minus sign in (5) is used to 
ensure that Q, is positive for ux < 0 (heat flow to the right) and negative for ux > 0 (heat flow 
to the left). If the circular slice of the rod shown in Figure 13.2.1 between x and x + ax is very 
thin, then u(x, t) can be taken as the approximate temperature at each point in the interval. Now 
the mass of the slice is m= p(A ax), and so it follows from (4) that the quantity of heat in it is 

Q = ypA ax u. (6) 

Furthermore, when heat flows in the positive x-direction, we see from (5) that heat builds up in 
the slice at the net rate 

-K Aux(x, t) - [ -K Aux(x + ax, t)] = K A[ux(x + ax, t) - ux(x, t)]. (7) 

13.2 Classical PDEs and Boundary-Value Problems 
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0 

x x+Ax 

(a) Segment of string 

x x+ax 

(b) Enlargement of segment 

L x 

Tz 

x 

FIGURE 13.2.2 Taut string anchored at 
two points on the x-axis 

temperature as a 
function of position 
on the hot plate 

thermometer 

FIGURE 13.2.3 Steady-state temperatures 
in a rectangular plate 
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By differentiating (6) with respect to t we see that this net rate is also given by 

Q1 = ypA Ax u1• 

Equating (7) and (8) gives 

K ux(x + .ix, t) - ux(x, t) 

'YP .ix 
= u,. 

Talcing the limit of (9) as Ax� 0 finally yields (1) in the form* 

K 
-uxx = u,. 
'YP 

It is customary to let k = Klyp and call this positive constant the thermal diffusivity. 

(8) 

(9) 

D Wave Equation Consider a string of length L, such as a guitar string, stretched taut be
tween two points on the x-axis-say, x = 0 and x = L. When the string starts to vibrate, assume 
that the motion takes place in the xy-plane in such a manner that each point on the string moves 
in a direction perpendicular to the x-axis (transverse vibrations). As shown in FIGURE 13.2.2(a), let 
u(x, t) denote the vertical displacement of any point on the string measured from the x-axis for 
t > 0. We further assume: 

• The string is perfectly flexible. 
• The string is homogeneous; that is, its mass per unit length p is a constant. 
• The displacements u are small compared to the length of the string. 
• The slope of the curve is small at all points. 
• The tension T acts tangent to the string, and its magnitude Tis the same at all points. 
• The tension is large compared with the force of gravity. 
• No other external forces act on the string. 

Now in Figure 13 .2.2(b) the tensions T 1 and T 2 are tangent to the ends of the curve on the 
interval [x, x + Ax]. For small values of 01 and 02 the net vertical force acting on the correspond
ing element as of the string is then 

Tsin02 - Tsin01 = Ttan02 - Ttan01 

= T[ux{x +.ix, t) - ux{x, t)],t 

where T= IT11 = IT21. Now p.is = p.ix is the mass of the string on [x,x +.ix], and so Newton's 
second law gives 

or 

T[ux{x + .ix, t) - ux{x, t)] = p .ix u11 

Ux(X + .ix, t) - Ux{X, t) p 

.ix 
= y.u11. 

If the limit is taken as Ax � 0, the last equation becomes uxx = (p/T)u11. This of course is (2) 
with a

2 
=Tip. 

D Laplace's Equation Although we shall not present its derivation, Laplace's equation 
in two and three dimensions occurs in time-independent problems involving potentials such as 
electrostatic, gravitational, and velocity in fluid mechanics. Moreover, a solution of Laplace's 
equation can also be interpreted as a steady-state temperature distribution. As illustrated in FIGURE 

13.2.3, a solution u(x, y) of (3) could represent the temperature that varies from point to point-but 
not with time-of a rectangular plate. 

We often wish to find solutions of equations (1), (2), and (3) that satisfy certain side 
conditions. 

ux(x + ax, t) - ux(x, t) 
*Recall from calculus that Uxx = lim 

a 
. 

'1>:-->0 x 

ttan 82 = ux(x + ax, t) and tan 81 = ux(x, t) are equivalent expressions for slope. 
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D Initial Conditions Since solutions of (1) and (2) depend on time t, we can prescribe 

what happens at t = O; that is, we can give initial conditions (IC). Iff(x) denotes the initial 

temperature distribution throughout the rod in Figure 13.2.1, then a solution u(x, t) of (1) must 

satisfy the single initial condition u(x, 0) = f(x), 0 < x < L. On the other hand, for a vibrating 

string, we can specify its initial displacement (or shape)f(x) as well as its initial velocity g(x). 

In mathematical terms we seek a function u(x, t) satisfying (2) and the two initial conditions: 

u(x, 0) = f(x), �� lt=O = g(x), 0 < x < L. (10) 

For example, the string could be plucked, as shown in FIGURE 13.2.4, and released from rest 

u 

(g(x) = 0). FIGURE 13.2.4 Plucked string 

D Boundary Conditions The string in Figure 13.2.4 is secured to the x-axis at x = 0 and 

x = L for all time. We interpret this by the two boundary conditions (BC): 

u(O, t) = 0, u(L, t) = 0, t> 0. 

Note that in this context the function! in (10) is continuous, and consequently f(O) = 0 and 

f(L) = 0. In general, there are three types of boundary conditions associated with equations (1), 

(2), and (3). On a boundary we can specify the values of one of the following: 

(i) u, 
au 

(ii)-, 
an 

or 
au 

(iii) - + hu, ha constant. 
an 

Here au/an denotes the normal derivative of u (the directional derivative of u in the direction 

perpendicular to the boundary). A boundary condition of the first type (i) is called a Dirichlet 
condition; a boundary condition of the second type (ii) is called a Neumann condition; and a 

boundary condition of the third type (iii) is known as a Robin condition. For example, for t > 0 

a typical condition at the right-hand end of the rod in Figure 13.2.1 can be 

(i)' u(L, t) = u0, u0 a constant, 

(ii)' 
au I = 0 or 
ax x=L ' 

(iii)' 
au I = -h(u(L, t) - um), h > 0 and um constants. 
ax x=L 

Condition (i)' simply states that the boundary x =Lis held by some means at a constant tempera

ture u0 for all time t > 0. Condition (ii)' indicates that the boundary x =Lis insulated. From the 

empirical law of heat transfer, the flux of heat across a boundary (that is, the amount of heat per 

unit area per unit time conducted across the boundary) is proportional to the value of the normal 

derivative au/an of the temperature u. Thus when the boundary x = Lis thermally insulated, no 

heat flows into or out of the rod and so 

- =O 
au I 
ax x=L • 

We can interpret (iii)' to mean that heat is lost from the right-hand end of the rod by being in 

contact with a medium, such as air or water, that is held at a constant temperature. From Newton's 

law of cooling, the outward flux of heat from the rod is proportional to the difference between 

the temperature u(L, t) at the boundary and the temperature um of the surrounding medium. We 

note that if heat is lost from the left-hand end of the rod, the boundary condition is 

- = h(u(O, t) - Um). 
au I ax x=O 

The change in algebraic sign is consistent with the assumption that the rod is at a higher tem

perature than the medium surrounding the ends so that u(O, t) > um and u(L, t) > um. At x = 0 

and x = L, the slopes ux(O, t) and ux(L, t) must be positive and negative, respectively. 

13.2 Classical PD Es and Boundary-Value Problems 
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Of course, at the ends of the rod we can specify different conditions at the same time. For 

example, we could have 

au 

I 
- - o 
ax x=O 

and u(L, t) = u0, t > 0. 

We note that the boundary condition in (i)' is homogeneous if u0 = O; if u0 * 0, the boundary 

condition is nonhomogeneous. The boundary condition (ii)' is homogeneous; (iii)' is homoge

neous if um = 0 and nonhomogeneous if um * 0. 

D Boundary-Value Problems Problems such as 

and 

Solve: 
a2u 

-
2

, 0 < x < L, t > 0 
at 

Subject to: (BC) u(O, t) = 0, u(L, t) = 0, t > 0 

Solve: 

Subject to: 

(IC) u(x, 0) = f(x), 
au 

I = g(x), 0 < x < L 
at t=O 

a2u a2u 
-

2 
+ -

2 
= 0, 0 < x < a, 0 < y < b 

ax ay {au 

I = O, 

(BC) 
ax x=O _ 
u(x, 0) - 0, 

- = 0, 0 < y < b 
au 

I ax x=a 

u(x, b) = f(x), 0 < x <a 

(11) 

(12) 

are called boundary-value problems. The problems in (11) and (12) are classified as homogeneous 
BVPs since the partial differential equation and the boundary conditions are homogeneous. 

D Variations The partial differential equations (1), (2), and (3) must be modified to take 

into consideration internal or external influences acting on the physical system. More general 

forms of the one-dimensional heat and wave equations are, respectively, 

and 

a2u au 
k-

2 
+ F(x, t, u, Ux) = -

ax at 

a2u a2u 
a2-

2 
+ F(x, t, u, u1) = -

2
• 

ax at 

(13) 

(14) 

For example, if there is heat transfer from the lateral surface of a rod into a surrounding medium 

that is held at a constant temperature um, then the heat equation (13) is 

a2u au 
k - - h(u - u ) = -

ax2 
m 

at' 

where his a constant. In (14) the function F could represent the various forces acting on the 

string. For example, when external, damping, and elastic restoring forces are taken into account, 

(14) assumes the form 

Remarks 

external force damping restoring force 

.i .i .i 
a2u au a2u 

a2 - + f(x t) - c - - ku = -. 
ax2 

' 
at at 2 

(15) 

The analysis of a wide variety of diverse phenomena yields the mathematical models (1), (2), 
or (3) or their generalizations involving a greater number of spatial variables. For example, 

(1) is sometimes called the diffusion equation since the diffusion of dissolved substances in 
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solution is analogous to the flow of heat in a solid. The function c(x, t) satisfying the partial 
differential equation in this case represents the concentration of the dissolved substance. 
Similarly, equation (2) and its generalization ( 15) arise in the analysis of the flow of electricity 
in a long cable or transmission line. In this setting (2) is known as the telegraph equation. 
It can be shown that under certain assumptions the current i(x, t) and the voltage v(x, t) in the 
line satisfy two partial differential equations identical to (2) (or (15)). The wave equation (2) 
also appears in fluid mechanics, acoustics, and elasticity. Laplace's equation (3) is encountered 
in determining the static displacement of membranes. 

Exe re is es Answers to selected odd-numbered problems begin on page ANS-31. 

In Problems 1-6, a rod of length L coincides with the interval 
[O, L] on the x-axis. Set up the boundary-value problem for the 
temperature u(x, t). 

1. The left end is held at temperature zero, and the right end is 
insulated. The initial temperature isf(x) throughout. 

2. The left end is held at temperature u0, and the right end is held 
at temperature u1• The initial temperature is zero throughout. 

3. The left end is held at temperature 100°, and there is 
heat transfer from the right end into the surrounding 
medium at temperature zero. The initial temperature is 

f(x) throughout. 
4. There is heat transfer from the left end into a surrounding 

medium at temperature 20°, and the right end is insulated. 
The initial temperature isf(x) throughout. 

5. The left end is at temperature sin(7Tt/L), the right end is held 
at zero, and there is heat transfer from the lateral surface of 
the rod into the surrounding medium held at temperature zero. 
The initial temperature isf(x) throughout. 

6. The ends are insulated, and there is heat transfer from the 
lateral surface of the rod into the surrounding medium held 
at temperature 50°. The initial temperature is 100° throughout. 

In Problems 7-10, a string of length L coincides with the 
interval [O, L] on the x-axis. Set up the boundary-value problem 
for the displacement u(x, t). 

1113.3 Heat Equation 

7. The ends are secured to the x-axis. The string is released from 
rest from the initial displacement x(L - x). 

8. The ends are secured to the x-axis. Initially the string is 
undisplaced but has the initial velocity sin( 7TXIL). 

9. The left end is secured to the x-axis, but the right end moves in 
a transverse manner according to sin 7Tt. The string is released 
from rest from the initial displacementf(x). For t > 0 the 
transverse vibrations are damped with a force proportional 
to the instantaneous velocity. 

10. The ends are secured to the x-axis, and the string is initially at 
rest on that axis. An external vertical force proportional to the 
horizontal distance from the left end acts on the string fort > 0. 

In Problems 11 and 12, set up the boundary-value problem for 
the steady-state temperature u(x, y). 

11. A thin rectangular plate coincides with the region in the 
xy-plane defined by 0 :5 x :5 4, 0 :5 y :5 2. The left end and 
the bottom of the plate are insulated. The top of the plate is 
held at temperature zero, and the right end of the plate is held 
at temperaturef(y). 

12. A semi-infinite plate coincides with the region defined by 
0 :5 x :5 7T, y � 0. The left end is held at temperature e-y, and 
the right end is held at temperature 100° for 0 < y :5 1 and 
temperature zero for y > 1. The bottom of the plate is held at 
temperaturef(x). 

= Introduction Consider a thin rod of length L with an initial temperaturef(x) throughout 
and whose ends are held at temperature zero for all time t > 0. If the rod shown in FIGURE 13.3.1 

satisfies the assumptions given on page 693, then the temperature u(x, t) in the rod is determined 
from the boundary-value problem 

u=O 
� 
a 
0 L x 

k a2u = au 0 < x < L, t > 0 
a x2 at' 

u(O, t) 
= 0, u(L, t) 

= 0, t > 0 
u(x, 0) = 

f(x), 0 < x < L. 

(1) 

(2) 
(3) 

In the discussion that follows next we show how to solve this BVP using the method of separa
tion of variables introduced in Section 13 .1. 

13.3 Heat Equation 

FIGURE 13.3.1 Find the temperature u in 
a finite rod 
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D Solution of the BVP Using the product u(x, t) = X(x)T(t), and -A as the separation 

constant, leads to 

and 

X" T' 
-=-= -A 
X kT 

X"+AX=O 

T' + kAT= 0. 

(4) 

(5) 

(6) 

Now the boundary conditions in (2) become u(O, t) = X(O)T(t) = 0 and u(L, t) = X(L)T(t) = 0. 
Since the last equalities must hold for all time t, we must have X(O) = 0 and X(L) = 0. These 

homogeneous boundary conditions together with the homogeneous ODE (5) constitute a regular 

Sturm-Liouville problem: 

X" + AX = 0, X(O) = 0, X(L) = 0. (7) 

The solution of this BVP was discussed in detail in Example 2 of Section 3.9 and on page 675 

of Section 12.5. In that example, we considered three possible cases for the parameter A: zero, 

negative, and positive. The corresponding general solutions of the DEs are 

X(x) = CJ + c2x, A = 0 

X(x) =CJ coshax + c2 sinhax, A= -a
2 

< 0 

X(x) = CJ cos ax+ c2 sinax, A = a
2 

> 0. 

(8) 

(9) 

(10) 

Recall, when the boundary conditions X(O) = 0 and X(L) = 0 are applied to (8) and (9) these 

solutions yield only X(x) = 0 and so we are left with the unusable result u = 0. Applying the first 

boundary condition X(O) = 0 to the solution in (10) gives CJ = 0. Therefore X(x) = c2 sin ax. 

The second boundary condition X(L) = 0 now implies 

X(L) = c2 sin aL = 0. (11) 

If c2 = 0, then X = 0 so that u = 0. But (11) can be satisfied for c2 * 0 when sin aL = 0. This 

last equation implies that aL = mr or a = mr/L, where n = 1, 2, 3, .... Hence (7) possesses 

nontrivial solutions when An= a; = n
2
7T

2
/L

2
, n = 1, 2, 3, .... The values An and the correspond

ing solutions 

• n7T 
X(x) = c2 sm 

L 
x, n = 1, 2, 3, ... (12) 

are the eigenvalues and eigenfunctions, respectively, of the problem in (7). 
The general solution of (6) is T(t) = c3e-k<

n2
1r'/L2l1, and so 

k( 2 2/L2) • n7T 
Un = X(x)T(t) = Ane -

n 
77 1 Slil 

L 
X, (13) 

where we have replaced the constant c2c3 by An. The products unCx, t) given in (13) satisfy the 

partial differential equation (1) as well as the boundary conditions (2) for each value of the posi

tive integer n. However, in order for the functions in (13) to satisfy the initial condition (3), we 

would have to choose the coefficient An in such a manner that 

unCx, 0) = f(x) = An sin 7 x. (14) 

In general, we would not expect condition (14) to be satisfied for an arbitrary, but reasonable, 

choice off. Therefore we are forced to admit that un<x, t) is not a solution of the problem given 
in ( 1 )-(3 ). Now by the superposition principle the function 

(15) 
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must also, although formally, satisfy equation (1) and the conditions in (2). If we substitute t = 0 

into (15), then 

oo n7T 
u(x, 0) = f(x) = :LAn sin -x. 

n=I L 

This last expression is recognized as the half-range expansion off in a sine series. If we make 
the identification An= bm n = 1, 2, 3, ... , it follows from ( 5) of Section 12.3 that 

2iL 
. n7T An= - f(x) sm-x dx. 

Lo L 
(16) 

We conclude that a solution of the boundary-value problem described in (1), (2), and ( 3) is given 

by the infinite series 

u(x, t) = � f (iL

f(x) sin 
n7T 

x dx)e-k<n2-rr2/L2)1 sin 
n7T 

x. Ln=I o L L 
(17) 

In the special case when the initial temperature is u(x, 0) = 100, L = 7T, and k = 1, you should 

verify that the coefficients (16) are given by 

and that the series (17) is 

= 200 [1 - (-lt] An ' 7T n 

200 00 [1 - (-l )n] 
u(x, t) = -:L e -n21 sin nx. 

7T n=I n 
(18) 

u 

(a) u(x, t) graphed as a 
function of x for 
various fixed times 

x=O 
D Use of Computers The solution u in (18) is a function of two variables and as such its 

graph is a surface in 3-space. We could use the 3D-plot application of a computer algebra system 
to approximate this surface by graphing partial sums Sn(x, t) over a rectangular region defined 

by 0 ::5 x ::5 7T, 0 ::5 t ::5 T. Alternatively, with the aid of the 2D-plot application of a CAS we plot 
the solution u(x, t) on the x-interval [0, 7T] for increasing values of time t. See FIGURE 13.3.2(a). 
In Figure 13. 3.2( b) the solution u(x, t) is graphed on the t-interval [0, 6] for increasing values 
of x (x = 0 is the left end and x = 7T/2 is the midpoint of the rod of length L = 7r). Both sets of 

graphs verify that which is apparent in (18)-namely, u(x, t) � 0 as t � oo . 

0 2 3 4 5 6 

(b) u(x, t) graphed as a 
function of t for 
various fixed positions 

FIGURE 13.3.2 Graphs obtained using 
partial sums of (18) 

...,...,.111111 Exercises Answers to selected odd-numbered problems begin on page ANS-31. 

In Problems 1 and2, solve the heat equation (1) subject to the 
given conditions. Assume a rod of length L. 

1. u(O, t) = 0, u(L, t) = 0 {1, 
u(x, 0) = 

O, 

0 < x < L/2 

L/2 < x < L 

2. u(O, t) = 0, u(L, t) = 0 

u(x, 0) = x(L -x) 
3. Find the temperature u(x, t) in a rod of length L if the initial 

temperature isf(x) throughout and if the endsx = O andx = L 

are insulated. 
4. Solve Problem 3 if L = 2 and 

f(x) = {x, 

0, 

O<x<l 

1 < x < 2. 

5. Suppose heat is lost from the lateral surface of a thin rod of 

length L into a surrounding medium at temperature zero. If 
the linear law of heat transfer applies, then the heat equation 

takes on the form 

a2u au k - - hu = - 0 < x < L, t > 0, ax2 at' 
h a constant. Find the temperature u(x, t) if the initial tem

perature is f(x) throughout and the ends x = 0 and x = L are 
insulated. See FIGURE 13.3.3. 
insulated 0° insulated \4 t f t f t f t f t f t i . 

0 L x 
oo 

heat transfer from 
lateral surface of 

the rod 

FIGURE 13.3.3 Rod in Problem 5 
6. Solve Problem 5 if the ends x = 0 and x = L are held at tem

perature zero. 
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7. A thin wire coinciding with the x-axis on the interval [ -L, L] 
is bent into the shape of a circle so that the ends x = -L 
and x = L are joined. Under certain conditions the 

temperature u(x, t) in the wire satisfies the boundary-value 

problem 

= Computer Lab Assignments 
9. (a) Solve the heat equation (1) subject to 

u(O, t) = 0, u(lOO, t) = 0, t > 0 

0 
{0.8x, 0 :5 x :5 50 

50 < x :5 100. 

k 
a2u 

= 
au 

-L < x < L, t > 0, 
ax2 at' 

u(-L, t) = u(L, t), t > 0 

au I = 
au I t> O 

ax 
x= -L ax 

x=L

' 

u(x, 0) = f(x), -L < x < L, 

u(x, ) = 
0.8(100 - x), 

(b) Use the 3D-plot application of your CAS to graph the 

partial sum S5(x, t) consisting of the first five nonzero 

terms of the solution in part (a) for 0 :5 x :5 100, 

0 :5 t :5 200. Assume that k = 1.6352. Experiment with 

various three-dimensional viewing perspectives of the 

surface (called the ViewPoint option in Mathematica). 

= Discussion Problems 

Find the temperature u(x, t). 
10. In Figure 13 .3 .2(b) we have the graphs of u(x, t) on the interval 

[O, 6] for x = 0, x = ?T/12, x = ?T/6, x = 1Tl4, and x = 1Tl2. 
Describe or sketch the graphs of u(x, t) on the same time inter

val but for the fixed values x = 31Tl4, x = 5?T/6, x = 11 ?T/12, 

and x = 1T. 

8. Find the temperature u(x, t) for the boundary-value 

problem (1) -(3) when L = 1 andf(x) = 100 sin 61Tx. [Hint: 
Look closely at (13) and (14).] 
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1113.4 Wave Equation 

= Introduction We are now in a position to solve the boundary-value problem (11) dis

cussed in Section 13.2. The vertical displacement u(x, t) of a string of length L that is freely 

vibrating in the vertical plane shown in Figure 13.2.2(a) is determined from 

a2u 
O < x < L, t >O 

at2' 

u(O, t) = 0, u(L, t) = 0, t > 0 

u(x, 0) = f(x), - = g(x), 0 < x < L. 
au I at t=O 

(1) 

(2) 

(3) 

D Solution of the BVP With the usual assumption that u(x, t) = X(x)T(t), separating 

variables in (1) gives 

so that 

X" T' 
-= - = -,\ 
X a2T 

X" +AX= 0 

T" + a2,\T = 0. 

(4) 

(5) 

As in Section 13.3, the boundary conditions (2) translate into X(O) = 0 and X(L) = 0. The ODE 

in (4) along with these boundary-conditions is the regular Sturm-Liouville problem 

X" + AX = 0, X(O) = 0, X(L) = 0. (6) 

Of the usual three possibilities for the parameter ,\: ,\ = 0, ,\ = -a2 < 0, and ,\ = a2 > 0, only 

the last choice leads to nontrivial solutions. Corresponding to ,\ = a2, a > 0, the general solution 

of (4) is 

X(x) = c1 cos ax + c
2 

sin ax. 
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X(O) = 0 and X(L) = 0 indicate that c1 = 0 and c2 sin aL = 0. The last equation again implies 

that aL = mr or a = mr/L. The eigenvalues and corresponding eigenfunctions of (6) are 

An = n
2
7T

2
/L

2 
and X(x) = c2 sin 

n'TT x, n = 1, 2, 3, ... . The general solution of the second-order 

equation (5) is then 
L 

n'TTa . n'TTa 
T(t) = c3 cos Lt + c4 sm Lt. 

By rewriting c2c3 as An and c2c4 as Bm solutions that satisfy both the wave equation (1) and 

boundary conditions (2) are 

and 

( n'TTa . n'TTa ) . n'TT 
Un= An cos Lt +  BnsmLt smLx 

00 ( n'TTa . n'TTa ) . n'TT u(x, t) = L An cos --t + Bn sm --t sm -x. 
n=l L L L 

Setting t = 0 in (8) and using the initial condition u(x, 0) = f(x) gives 

oo n'TT u(x, 0) = f(x) = LAn sin -x. 
n=1 L 

Since the last series is a half-range expansion for fin a sine series, we can write An = bn: 

2iL . n'TT 
An= - f(x)sm-xdx. 

L0 L 

To determine Bn we differentiate (8) with respect to t and then set t = 0: 

au 
at 

00 ( n'TTa . n'TTa n'TTa n'TTa ) . n'TT 
L -A --sm--t + B  --cos--t sm-x 
n=l 

n 
L L 

n 
L L L 

- = g(x) = L Bn- sm-x. au I 
00 ( n'TTa) . n'TT 

at t=O n=l L L 

(7) 

(8) 

(9) 

In order for this last series to be the half-range sine expansion of the initial velocity g on the 

interval, the total coefficient Bnn'TTalL must be given by the form bn in (5) of Section 12.3-

that is, 

from which we obtain 

n'TTa 2 iL . n'TT 
BnL = L 0 

g(x)smLxdx 

2 iL . n'TT 
Bn = -- g(x) sm -x dx. 

n'TTa 0 L 
(10) 

The solution of the boundary-value problem (1 )-(3) consists of the series (8) with coefficients 

An and Bn defined by (9) and (10), respectively. 

We note that when the string is released from rest, then g(x) = 0 for every x in the interval [0, L] 
and consequently Bn = 0. 

D Plucked String A special case of the boundary-value problem in (1)-(3) when g(x) = 0 
is a model of a plucked string. We can see the motion of the string by plotting the solution or 

displacement u(x, t) for increasing values of time t and using the animation feature of a CAS. 

Some frames of a movie generated in this manner are given in FIGURE 13.4.1. You are asked to 

emulate the results given in the figure by plotting a sequence of partial sums of (8). See Problems 

7, 8, and 27 in Exercises 13.4. 
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(a) First standing wave 

node 

� ( --------
��#,,::- -- -- - --.. ;:!, 

O��LX --- ------ t �, 
(b) Second standing wave 

3 3 

(c) Third standing wave 

FIGURE 13.4.2 First three standing waves 
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u u 

-+3�-1" -�Ff�---
��-

��
- -�+ 

2 3 2 3 

(a) t = 0 initial shape (b) t = 0.2 
u u 

1 . . .  : . . . . . .. . : 1 . . : . . . . . . .. . : 

. 'l��,�.,I 0 ______________________________________ :[______ -- x 0 -------------------------------------------- - x 

-1 ' .... ... . . ' . -1 .. .. ' . ' . . ,. 
I 

u 

2 3 2 3 

(c)t=0.7 u 

2 3 

(e)t=l.6 

(d) t = 1.0 

2 

(t) t = 1.9 

3 

FIGURE 13.4.1 Frames of plucked-string movie 

D Standing Waves Recall from the derivation of the wave equation in Section 13.2 that 

the constant a appearing in the solution of the boundary-value problem in (1)-(3) is given by 

vT[P, where pis mass per unit length and Tis the magnitude of the tension in the string. When 

T is large enough, the vibrating string produces a musical sound. This sound is the result of 

standing waves. The solution (8) is a superposition of product solutions called standing waves 

or normal modes: 

u(x, t) = U1 (x, t) + Uz(X, t) + U3(X, t) + .... 
In view of (6) and (7) of Section 3.8, the product solutions (7) can be written as 

( ) 
. (n7T a .A. ) • n7T 

Un x, t = en sm 
L 

t + 'l'n sm 
L 

x, (11) 

where en = VA; + B; and <Pn is defined by sin <Pn =Ai en and cos <Pn =Bien. For n = 1, 2, 3, ... 

the standing waves are essentially the graphs of sin(n7Tx/L), with a time-varying amplitude given by 

. (n7Ta .A. ) 
en sm 

T t + ..,,n . 

Alternatively, we see from (11) that at a fixed value of x each product function un<x, t) represents 

simple harmonic motion with amplitude en I sin(n7Tx/L) I and frequency fn = na/2L. In other 

words, each point on a standing wave vibrates with a different amplitude but with the same 

frequency. When n = 1, 

u1(x, t) = e1 sin
( �at+ <Pi

) 
sin � x 

is called the first standing wave, the first normal mode, or the fundamental mode of vibra
tion. The first three standing waves, or normal modes, are shown in FIGURE 13.4.2. The dashed 

graphs represent the standing waves at various values of time. The points in the interval (0, L), 

for which sin(n7TIL)x = 0, correspond to points on a standing wave where there is no motion. 

These points are called nodes. For example, in Figures 13.4.2(b) and (c) we see that the second 

standing wave has one node at L/2 and the third standing wave has two nodes at L/3 and 2L/3. 
In general, the nth normal mode of vibration has n - 1 nodes. 
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The frequency 

a 1 fT 
Ji= 2L = 2L'.Jp 

of the first normal mode is called the fundamental frequency or first harmonic and is directly 
related to the pitch produced by a stringed instrument. It is apparent that the greater the tension 
on the string, the higher the pitch of the sound. The frequencies f,, of the other normal modes, 
which are integer multiples of the fundamental frequency, are called overtones. The second 
harmonic is the first overtone, and so on. 

D Superposition Principle The superposition principle, Theorem 13.1.1, is the key in 
making the method of separation of variables an effective means of solving certain kinds of 
boundary-value problems involving linear partial differential equations. Sometimes a problem 
can also be solved by using a superposition of solutions of two easier problems. If we can solve 
each of the problems, 

a1 2 
2 U1 a U1 

a - = -
ax2 at 2' 

U1(0, t) = 0, 

U1(X, 0) = fl.x), 

Problem 1 

0 < x < L, 

u1(L, t) = 0, 
au1 1 - = O 
at t=O 

' 

t > 0 

t > 0 

O<x<L 

a1 2 
2 u2 a u2 

a - = -
ax2 at 2' 

U2(0, t) = 0, 

U2(X, 0) = 0, 

Problem2 

O<x<L, t > 0 

u2(L, t) = 0, t > 0 
au2 1 
at t=O 

= g(x), O<x<L 

then a solution of (1)-(3) is given by u(x, t) = u1(x, t) + u2(x, t). To see this we know that 
u(x, t) = u1(x, t) + u2(x, t) is a solution of the homogeneous equation in (1) because of 
Theorem 13.1.1. Moreover, u(x, t) satisfies the boundary condition (2) and the initial condi
tions (3) because, in turn, 

and 

Bc{u(O, t) = U1(0, t) + U2(0, t) = 0 + 0 = 0 

u(L, t) = u1(L, t) + u2(L, t) = 0 + 0 = 0, {u(x, 0) = u1(x, 0) + u2(x, 0) = f(x) + 0 = f(x) 

IC au l = 
au1 I + 

au2 1 = 0 + g(x) = g(x). 
at i=o at i=o at i=o 

You are encouraged to try this method to obtain (8), (9), and (10). See Problems 5 and 14 in 
Exercises 13.4 . 

(12) 

...... 111111 Exe re is es Answers to selected odd-numbered problems begin on page ANS-31. 

4. u(O, t) = 0, u(1T, t) = 0, t > 0 In Problems 1-6, solve the wave equation (1) subject to the 
given conditions. 

1. u(O, t) = 0, u(L, t) = 0, t > 0 u(x, 0) = _!_x(1T2 - x 2), 
au l = 0, 0 < x < 1T 

6 at t=O 

u(x,O) = -
4

1
x(L - x), 

au l = 0, 0 < x < L 
at t=O 

2. u(O, t) = 0, u(L, t) = 0, t > 0 

u(x, 0) = 0, 

3. u(O, t) = 0, 

u(x, 0) = 0, 

au l 
- = x(L - x), 
at t=O 

u(1T, t) = 0, t > 0 

O<x<L 

au l . - = sm x, 0 < x < 1T 
at t=O 

5. u(O, t) = 0, u(l, t) = 0, t > 0 

u(x, 0) = x(l - x), 
au l = x(l - x), 0 < x < 1 
at t=O 

6. u(O, t) = 0, u(1T, t) = 0, t > 0 

u(x, 0) = 0.01 sin 31Tx, 
au l = 0, 0 < x < 1T 
at t=O 

In Problems 7-10, a string is tied to the x-axis at x = 0 and at 
x = L and its initial displacement u(x, 0) = ft.x), 0 < x < L, 
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is shown in the figure. Find u(x, t) if the Siring is released from 
rest. 

1. f("x:) 

U2 L 

FIGURE 13.4.3 Initial dispW:ement for Problem 7 
8. /(x) 

FIGURE 13.4.4 Initial dispW:ement for Problem 8 
9. f(x) 

h ---------�1----
1 
I 
I 
I 
I 
I 
I 
I 

L/'3 2Ll'3 L 

FIGURE 13.4.S Initial dispW:ement for Problem 9 
10. /(x) 

h ---------

-h -------------------

FIGURE 13.4.& Initial displacement for Problem 10 
11. The longitudinal displacement of a vibrating elastic bar 

shown in FIGURE 13.4.7 satisfies the wave equation (1) and 
the conditions 

0"1 = o � = o, t > o ax :c-0 ' �x-L 

u(x, 0) = x, au I = 0, 0 < x < L. 
iJt t=O 

The boundary conditions at x = 0 and x = Lare called free
end conditions. Find the displacement u(x, t). 

Hu<x.t> 

����ttii��J�r-x 
0 L 

FIGURE 1U.7 Elastic bar in Problem 11 

12. A model for the motion of a vibrating string whose ends are 
allowed to slide on frictionless sleeves attached to the vertical 
axes x = 0 and x = Lis given by the wave equation (1) and 
the conditions 

au l - = 0, t > 0 
Ox :c=L 

u(x, 0) = ft.x), au l 
= g(x), 0 < x < L. a t t�o 

See FIGURE 1U.8. The boundary conditions indicate that the 
motion is such that the slope of the curve is zero at its ends 
for t > 0. Find the displacement u(x, t). 

0 L 

RGURE 1U.8 String whose ends are attached to 
frictionless sleeves in Problem 12 

13. In Problem 10, determine the value of u(L/2, t) for t � 0. 
14. Rederive the results given in (8), (9), and (10), but this time 

use the superposition principle discussed on page 703. 
15. A suing is stretched and secured on the x--axis at x = 0 and 

x = 11' for t > 0 .  If the transverse vibrations take place in a 
medium that .imparts a :resistance proportional to the instan
taneous velocity, then the wave equation takes on the form 

a2u a2u au 
ax.2 = ar + 2/3 at' 0 < fJ < 1, t > 0. 

Find the displacement u(x, t) if the string starts from rest from 
the initial displacementj(x). 

US. Show that a solution of the boundaxy-value problem 

is 

a2u ;;.u 
ax2 = at2 + u. 0 < x < 11', t > 0 

u(O, t) = 0, u(1T, t) = 0, t > 0 

u(x, O) = {x, 0 < x < 'fr /2 

'fr - x, 11'/2 � x < 'fr 

au l - = 0, 0 <x< 'tr 
iit t=O 

4 00 (- 1y+ 1 . �--�-u(x, t) = '1T'�(2k _ l)2 sm(2k - l)x cosv'(2k - 1)2 + lt. 

17. Consider the boundary-value problem given in (1)-(3) of this 
section. If g(x) = 0 on 0 < x < L, show that the solution of 
the problem can be written as 

1 u(x, t) = 2 [/(x + at) + f(x - at)]. 

[Hint: Use the identity 
2 sin 81 cos 62 = sin(81 + 8-i) + sin(81 - 8i).] 
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18. The vertical displacement u(x, t) of an infinitely long string 
is determined from the initial-value problem 

-oo < x < oo, t > 0 

u(x, 0) = f(x), 
au I = g(x). 
at t=O 

(13) 

This problem can be solved without separating variables. 
(a) Show that the wave equation can be put into the form 

a2u!a71ag = 0 by means of the substitutions g = x + at 
and T/ = x - at. 

(b) Integrate the partial differential equation in part (a), first 
with respect to T/ and then with respect to g, to show 
that u(x, t) = F(x + at) + G(x - at), where F and G are 
arbitrary twice differentiable functions, is a solution of 
the wave equation. Use this solution and the given initial 
conditions to show that 

and 

1 1 f,x 

F(x) = 2J(x) + 2 g(s) ds + c 
a Xo 

1 1 f,x 

G(x) = -f(x) - - g(s) ds - c, 
2 2a xo 

where x0 is arbitrary and c is a constant of integration. 
(c) Use the results in part (b) to show that 

l l f,x+at 

u(x, t) = - [f(x +at)+ f(x - at)]+ - g(s) ds. (14) 
2 2a x-at 

Note that when the initial velocity g(x) = 0 we obtain 

1 
u(x, t) = 2 [f(x +at)+ f(x - at)], -oo < x < oo. 

The last solution can be interpreted as a superposition 
of two traveling waves, one moving to the right (that 
is, !J(x - at)) and one moving to the left (!J(x +at)). 
Both waves travel with speed a and have the same basic 
shape as the initial displacementf(x). The form of u(x, t) 
given in (14) is called d' Alembert's solution. 

In Problems 19-21, use d' Alembert's solution (14) to solve the 
initial-value problem in Problem 18 subject to the given initial 
conditions. 
19. f(x) = sin x, g(x) = 1 
20. f(x) = sin x, g(x) = cos x 
21. f(x) = 0, g(x) = sin 2x 

22. Supposef(x) = 1/(1 + x2), g (x) = 0, and a = 1 for the initial
value problem given in Problem 18. Graph d' Alembert's 
solution in this case at the time t = 0, t = 1, and t = 3. 

23. The transverse displacement u(x, t) of a vibrating beam of 
length L is determined from a fourth-order partial differential 
equation 

a4u a2u 
a2 -

4 
+ -2 

= 0, 0 < x < L, t > 0. 
ax at 

If the beam is simply supported, as shown in FIGURE 13.4.9, 
the boundary and initial conditions are 

u(O, t) = 0, 

a2u 

I -
2 =O, 

ax x=O 

u(L, t) = 0, t > 0 

a2u 

I -2 = 0, t > 0 
ax x=L 

u(x, 0) = f(x), 
au 

I = g(x), 0 < x < L. 
at t=O 

Solve for u(x, t). [Hint: For convenience use A = a4 when 
separating variables.] 

0 L 

FIGURE 13.4.9 Simply supported beam in Problem 23 

= Computer Lab Assignments 
24. If the ends of the beam in Problem 23 are embedded at x = 0 

and x = L, the boundary conditions become, for t > 0, 

u(O, t) = 0, 

au I = O 
ax x=O 

' 

u(L, t) = 0 

au 

I = O 
ax x=L 

. 

(a) Show that the eigenvalues of the problem are A = x�/L2 
where Xm n = 1, 2, 3, ... , are the positive roots of the 
equation cosh x cos x = 1. 

(b) Show graphically that the equation in part (a) has an 
infinite number of roots. 

(c) Use a CAS to find approximations to the first four 
eigenvalues. Use four decimal places. 

25. A model for an infinitely long string that is initially held at the 
three points (-1, 0), (1, 0), and (0, 1) and then simultaneously 
released at all three points at time t = 0 is given by (13) with 

f(x) = {1 - Ix!. 
0, 

lxl < 1 -
and g(x) = 0. 

lxl > 1 

(a) Plot the initial position of the string on the interval [ -6, 6]. 
(b) Use a CAS to plot d' Alembert's solution (14) on [ -6, 6] 

fort = 0.2k, k = 0, 1, 2, ... , 25. Assume that a = 1. 
(c) Use the animation feature of your computer algebra sys

tem to make a movie of the solution. Describe the motion 
of the string over time. 

26. An infinitely long string coinciding with the x-axis is 
struck at the origin with a hammer whose head is 0.2 inch 
in diameter. A model for the motion of the string is given 
by (13) with 

f(x) = 0 and g(x) = 

13.4 Wave Equation 

{1, 

0, 
lxl ::5 0.1 

lxl > 0.1. 
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