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The Electric Field

* An electric field is said to exist in the region of space around a charged object—
the source charge. When another charged object—the test charge—enters this
electric field, an electric force acts on it. As an example, consider Figure 23.11,
which shows a small positive test charge g0 placed near a second object carrying
a much greater positive charge Q. We define the electric field due to the source

charge at the location of the test charge to be the electric force ¢
+ +

on the test charge per unit charge, or to be more specific T L.+ o
+ + + ) m—r
the electric field vector E at a point in space is defined as Pt E
+ 4

the electric force F _ acting on a positive test charge g, placed
Figure 23.11 A small positive test

at that point divided by the test charge: charge go placed near an object
carrying a much larger positive
charge Q experiences an electric
field E directed as shown.
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- (23.7)
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F,=qE (23.8)
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* Notice the similarity between Equation 23.8 and the
corresponding equation for a particle with mass placed in a
gravitational field, F,=mg

* The vector E has the Sl units of newtons per coulomb (N/C).
* The direction of E, as shown in Figure 23.11

. For a positive point charge the lines of E
electric field are directed outward

. For a negative charge the lines of electric
field are directed inward

Figure (23.11)



* According to Coulomb’s law, the force exerted by g on the test charge

IS

F,= k110 ¢

,_

 where r” is a unit vector directed from gtoward g0. This force in
Figure 23.13a is directed away from the source charge g. Because the
electric field at P, the position of the test charge, is defined by
E=F_/q,, we find that at A, the electric field created by gis
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E=#k—L¢
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(23.9)

Active Figure 23.13 A test charge
y at point Pis a distance rfrom a
p-lll charge q. (a) If gis positive
then the force on the test charge is
directed away from q. (b) For Ih:-
positive source charge, the clectric
field at P points radially outward
from q. (c) If q is negative, then the
force on the test charge s directed
l\nl;le:xhn ALV
source charge, the electric fie Id at P
points radially inward toward ¢



.To calculate the electric field at a point Pdue to a group of point
charges, we first calculate the electric field vectors at Pindividually
using Equation 23.9 and then add them vectorially. In other words, at
any point P, the total electric field due to a group of source charges
equals the vector sum of the electric fields of all the charges.

P, I

r;"

where r;is the distance from the /th source charge g;to the point Pand
r”;is a unit vector directed from g;toward P.



Example 23.5 Electric Field Due to Two Charges

A charge ¢, = 7.0 uC is located at the origin, and a second
charge go = — 5.0 pnC is located on the x axis, 0.30 m from
the origin (Fig. 23.14). Find the electric field at the point P,
which has coordinates (0, 0.40) m.
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Figure 23.14 (Example 23.5) The total electric field E at P
equals the vector sum E; + Es, where E, is the field due to the

positive charge ¢, and Es is the field due to the negative
charge gs.

Solution First, let us find the magnitude of the electric field

at P due to each charge. The fields E, due to the 7.0-uC

charge and Es; due to the —5.0-uC charge are shown in

Figure 23.14. Their magnitudes are
191

(7.0 X 107%C)
E, =k, = (8.99 X 10 N-m?/C?
. T2 ( Y (0.40 m)?

=39 X 10° N/C

| gs] (5.0 X 10~6C)
=L = (8. X 109 N-m2/C2
Rl Pk R

= 1.8 X 10° N/C

Egzke

The vector E, has only a y component. The vector Es has an
x component given by FEs cos 8 = %Ez and a negative y
component given by — Es sin # = -%EQ . Hence, we can
express the vectors as

E, = 3.9 X 107

E, = (1.1 X 10§ — 1.4 X 10%j) N/C
The resultant field E at Pis the superposition of E; and Eq:

E=E, +E = (1.1 X 10%°i + 25 X 10°j) N/C

From this result, we find that E makes an angle ¢ of 667 with
the positive xaxis and has a magnitude of 2.7 X 10° N/C.



Example 23.6 Electric Field of a Dipole

An electric dipole is defined as a posituve charge ¢ and a
negatve charge — gseparated by a distance 2a. For the dipole
shown in Figure 23.15, find the electric field E at P due to the
dipole, where Pis a distance y => a from the origin.

Solution At P, the fields E; and Es due to the two charges
are equal in magnitude because P is equidistant from the
charges. The total field is E = E; + Eo, where

= g R e
El E? k{ r2 ke _\'2 ¥ o>
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Figure 23.15 (Example 23.6) The total electric field E at Pdue
to two charges of equal magnitude and opposite sign (an elec-
tric dipole) equals the vector sum E; + Es. The field E; is due
to the positive charge g, and Es is the field due to the negative
charge — q.

The y components of E; and Es cancel each other, and
the x components are both in the positive x direction and
have the same magnitude. Therefore, E is parallel to the
x axis and has a magnitude equal to 2FE, cos 6. From
Figure 23.15 we see that cos 8 = a/r = a/(y2 + a?)1V/2,
Therefore,

i — 9K — q £

E = 2E, cos 8 = 2k, G+ @) O+ D)2
2ga

k,m

Because y == a, we can neglect a® compared to y? and write

2qga
E~ k,T%

Thus, we see that, at distances far from a dipole but along
the perpendicular bisector of the line joining the two
charges, the magnitude of the electric field created by the
dipole varies as 1/r”, whereas the more slowly varying field
of a point charge varies as 1/r? (see Eq. 23.9). This is
because at distant points, the fields of the two charges of
equal magnitude and opposite sign almost cancel each
other. The 1/7? variation in E for the dipole also is obtained
for a distant point along the x axis (see Problem 22) and for
any general distant point

The electric dipole is a good model of many mole-
cules, such as hydrochloric acid (HCI). Neutral atoms and
molecules behave as dipoles when placed in an external
electric field. Furthermore, many molecules, such as HCI,
are permanent dipoles. The effect of such dipoles on the
behavior of materials subjected to electric fields is dis-
cussed in Chapter 26.



Electric Field of a Continuous Charge Distribution

The electric field at Pdue to one charge element carrying charge Agis

Ag .
AE =k, ? r
2

where ris the distance from the charge element to point Pand r” is a unit vector
directed from the element toward ~. The total electric field at Adue to all elements

in the charge distribution is approximately

Ag; .
9 T
r;

E;:krz
!

where the index /refers to the /th element in the distribution. Because the charge
distribution is modeled as continuous, the total field at Pin the limit A¢;:— 0 s
Ag; . " dg . P
E=k lim >—L =k, | ¢ (23.11)

Ag—0 r*© ] rZ

AE
where .the integration is over the entlre.charge distribution. ThIS is a vector . Figure 23.16 The electric field at
operation and must be treated appropriately. When performing such calculations, pdue 10 a continuous charge distri-

it is convenient to use the concept of a charge density along with the following bution is the vector sum of the
notations: lic]ds. AE due 1o zll! lh'c clc_‘mcnu'
. . L Ag of the charge distribution.

If a charge Qis uniformly distributed throughout a volume V, the volume charge
density p is defined by 0

where p has units of coulombs per cubic meter (C/m3). p= _‘\—



* If a charge Qis uniformly distributed on a surface of area A4, the
surface charge density o (lowercase Greek sigma) is defined by
Q
A
e where ¢ has units of coulombs per square meter (C/m2).

o=

* If a charge Qis uniformly distributed along a line of length {, the linear

charge density A is defined by ,

r
* where 3 has units of coulombs per meter (C/m).

[

A

* If the charge is nonuniformly distributed over a volume, surface, or
line, the amounts of charge dgin a small volume, surface, or length

elementare , _, ;v s=ocar  ag=aa



Example 23.8 The Electric Field of a Uniform Ring of Charge

A ring of radius a carries a uniformly distributed positive
total charge (). Calculate the electric field due to the ring at
a point Plying a distance x from its center along the central
axis perpendicular to the plane of the ring (Fig. 23.18a). This field has an x component dE, = dFE cos # along the x

- axis and a component dE; perpendicular to the x axis. As
Solution The magnitude of the electric field at P due to we see in Figure 23.18b, however, the resultant field at P
the segment of charge dgis must lie along the x axis because the perpendicular com-

Ay

dE = k,—5
o

(a) (b)
Figure 23.18 (Example 23.8) A uniformly charged ring of radius a. (a) The field at P
on the x axis due to an element of charge dg. (b) The total electric field at Pis along
the x axis. The perpendicular component of the field at Pdue to segment 1 is canceled
by the perpendicular component due to segment 2.



* components of all the various charge segments sum to zero. That is, the
perpendicular component of the field created by any charge element is
canceled by the perpendicular component created by an element on the

opposite side of the ring. Because = (x? + a2

that:

dE, = dEcos 8 = (A" :

and cos 6 = x/r., we find

dg

)—\: . > 11(]

r= r (x2 + a%)3/2

* we can integrate to obtain the total field at ~.

E,

B ’ k,x .
BACEY

) 9,
| ads ol ) e

k.x
e? /0 11(]

k. x
= 0 )y ] /9 ()
xS T a=)""s

* This result shows that the field is zero at x= 0. Does this finding surprise

you?

 What If? Suppose a negative charge is placed at the center of the ring in
Fi%]ure 23.18 and displaced slightly by a distance x ! a along the x axis.
When released, what type of motion does it exhibit? (it will be a harmonic
motion due to the different type of charges)



Example 23.9 The Electric Field of a Uniformly Charged Disk

A disk of radius R has a uniform surface charge density o.
Calculate the electric field at a point P that lies along the
central perpendicular axis of the disk and a distance x from
the center of the disk (Fig. 23.19).

Solution 1f we consider the disk as a set of concentric rings,
we can use our result from Example 23.8—which gives the
field created by a ring of radius &—and sum the contribu-
tions of all rings making up the disk. By symmetry, the field
at an axial point must be along the central axis.

The ring of radius r and width dr shown in Figure 23.19
has a surface area equal to 2ar dr. The charge dgq on this
ring is equal to the area of the ring multiplied by the surface
charge density: dg = 2mor dr. Using this result in the equa-
tion given for E, in Example 23.8 (with a replaced by ), we
have for the field due to the ring

k.x
dE, = T

(27rorr dr)

Figure 23.19 (Example 23.9) A uniformly charged disk of ra-
dius R The electric field at an axial point Pis directed along
the central axis, perpendicular to the plane of the disk.

To obtain the total field at P, we integrate this expression
over the limits r = 0 to r = R, noting that x is a constant.



This gives

This result is valid for all values of x > 0. We can calculate
the field close to the disk along the axis by assuming that

B o= ke : _ 2“1_'- R => x: thus, the expression in parentheses reduces to unity
o Jo (x*+r?)%2 to give us the near-field approximation: |
‘R 5 s
= k,..\‘fm" ) (x* + r°) "V * d{r") E, = 2,0 = 9"
2€
Lt Bl o
= kawo -1/2 ’” where € 1s the permittivity of free space. In the next chapter
we shall obtain the same result for the field created by a
/ % uniformly charged infinite sheet.
s C —
= 2mwk,o (.l =y [{2)""")
A convenient way of visualizing electric field patterns is to draw curved lines that are ol
parallel to the electric field vector at any point in space. These lines, called e/ectric field .
/ines and first introduced by Faraday, are related to the electric field in a region of space - e —
in the following manner: =
* The electric field vector E is tangent to the electric field line at each point. The line has -

a direction, indicated by an arrowhead, that is the same as that of the electric field

vector.

e The number of lines per unit area through a surface perpendicular to the lines is

A
Figure 23.20 Electric field lines

penetrating two surfaces. The mag-
nitude of the field is greater on sur-

proportional to the magnitude of the electric field in that region. Thus, the field lines are  face A than on surface B.
close together where the electric field is strong and far apart where the field is weak.



These properties are illustrated in Figure 23.20. The density of lines through
surface A is greater than the density of lines through surface B. Therefore, the magni-
tude of the electric field is larger on surface A than on surface B. Furthermore, the fact
that the lines at different locations point in different directions indicates that the field
is nonuniform.

Is this relationship between strength of the electric field and the density of field
lines consistent with Equation 23.9, the expression we obtained for E using Coulomb’s
law? To answer this question, consider an imaginary spherical surface of radius r con-
centric with a point charge. From symmetry, we see that the magnitude of the electric
field is the same everywhere on the surface of the sphere. The number of lines N that
emerge from the charge is equal to the number that penetrate the spherical surface.
Hence, the number of lines per unit area on the sphere is N/47r? (where the surface
area of the sphere is 47r?). Because E is proportional to the number of lines per unit
area, we see that Evaries as 1/r?%; this finding is consistent with Equation 23.9.



Courtesy of Harold M. Waage, Princeton University

(a) (b) (c)

Figure 23.21 The electric field lines for a point charge. (a) For a positive point charge,
the lines are directed radially outward. (b) For a negative point charge, the lines are di-
rected radially inward. Note that the figures show only those field lines that lie in the
plane of the page. (c) The dark areas are small pieces of thread suspended in oil, which
align with the electric field produced by a small charged conductor at the center.



* The rules for drawing electric field lines are as follows:

» The lines must begin on a positive charge and terminate on

a negative charge. In the case of an excess of one type of { o)
charge, some lines will begin or end infinitely far away. |
 The number of lines drawn leaving a positive charge or ;
approaching a negative charge is proportional to the | /
magnitude of the charge. W/ c

* No two field lines can cross.

* We choose the number of field lines starting from any

Positively charged object to be Cgand the number of lines ending

on any negatively charged object to be C/qg/ where Cis an arbitrary
proportionality constant. Once Cis chosen, the number of lines is fixed. For
example, if object 1 has charge Q1 and object 2 has charge @2, then the ratio
of number of lines is M2/N1 =Q2/Q1. The electric field lines for two point
charges of equal magnitude but opposite signs (an electric dipole)



Motion of Charged Particles in a Uniform Electric Field

* When a particle of charge gand mass mis placed in an electric field E, the
electric force exerted on the charge is g E according to Equation 23.8. If this
is the only force exerted on the particle, it must be the net force and causes

the particle to accelerate according to Newton’s second law. Thus,
F,= gE = ma
* The acceleration of the particle is therefore qE

m

a:

* |f E is uniform (that is, constant in magnitude and direction), then the
acceleration is constant. If the particle has a positive charge, its
acceleration is in the direction of the electric field. If the particle has a

negative charge, its acceleration is in the direction opposite the electric
field.



Example 23.10 An Accelerating Positive Charge

A positive point charge ¢ of mass m is released from rest in a
uniform electric field E directed along the x axis, as shown
in Figure 23.25. Describe its motion.

Solution The acceleration is constant and is given by
gE/m. The motion is simple linear motion along the x axis.
Therefore, we can apply the equations of kinematics in one
dimension (see Chapter 2):

J('f= X; + v,~t + %atz
U=y + at
'Uf2 — U‘-Q + 2a(xf— x,-)

Choosing the initial position of the charge as x; = 0 and
assigning v; = 0 because the particle starts from rest, the
position of the particle as a function of time is

_1 9_ 9E ,
xf—2a.t = 2”2!

The speed of the particle is given by

qE
= at=——1
e m

The third kinematic equation gives us

vf? = 2(1xf= ( 2qE) Xf

m

from which we can find the kinetic energy of the charge
after it has moved a distance Ax = x;— x;:

= ) Ax = qEAx

_ 1 2 =1
K= My~ = gm (

We can also obtain this result from the work-kinetic energy

theorem because the work done by the electric force is
F,Ax = gEAxand W= AK.

e E —
- —
+ —_
Tlv=0 e |
.r—\ .
G ———\&
+ 7 B
+ -
+ | —— X —>{—

Figure 23.25 (Example 23.10) A positive point charge gin a
uniform electric field E undergoes constant acceleration in the
direction of the field.



* The electric field in the region between two oppositely charged flat metallic
plates is approximately uniform (Fig. 23.26). Suppose an electron of charge -eis
projected horizontally into this field from the origin with an initial velocity v,—i at
time ¢= 0. Because the electric field E in Figure 23.26 is in the positive ydirection,
the acceleration of the electron is in the negative ydirection. That is,

2 3 (23.13)
m,

Because the acceleration is constant, we can apply the equations of kinematics in

two dimensions with y.; = 1, and Uy = (). After the electron has been in the

i =

v:1
i
— emmsmmiie @ — — L _ -l
" ‘ - - - - - .
(0,0) ol Active Figure 23.26 An electron is
: : ' S Y—x projected horizontally into a uniform
€5 bt N electric field produced by two
E \\ ~lr4- ;'1 lf sg T =9 'ilh -~ '1;'
= charged plates. The electron under-

v goes a downward acceleration (oppo-
+ + + + + + + + + + + + : . ; ; g
| site E), and its motion is parabolic

while it is between the plates.



electric field for a time interval, the components of its velocity at time tare
v, = v; = constant

el
Uy =a4 = ——1
. . . ; * m,
Its pOSItIOh coordinates at time tare B—
p / — 1'1

1 9 | (’I'.- 9
V= gyl = —g—1°
K < m,

(23.14)

(23.15)

(23.16)

(23.17)

Substituting the value ¢= x,/v,from Equation 23.16 into Equation 23.17, we see that y;is
proportional to x.2. Hence, the trajectory is a parabola. This should not be a surprise—
consider the analogous situation of throwing a ball horizontally in a uniform gravitational
field. After the electron leaves the field, the electric force vanishes and the electron continues
to move in a straight line in the direction of v in Figure 23.26 with a speed v> v;.

Note that we have neglected the gravitational force acting on the electron. This is a good
approximation when we are dealing with atomic particles. For an electric field of 10* N/C, the
ratio of the magnitude of the electric force e £to the magnitude of the gravitational force mg

is on the order of 10 for an electron and on the order of 101! for a proton.



Example 23.11 An Accelerated Electron

An electron enters the region of a uniform electric field
as shown in Figure 23.26, with »; = 3.00 X 10°m/s and
E=200N/C. The horizontal length of the plates is
¢ =0.100 m.

(A) Find the acceleration of the electron while it is in the
electric field.

Solution The charge on the electron has an absolute value
of 1.60 X 10719 C, and m,=9.11 X 1073! kg. Therefore,
Equation 23.13 gives

eE & (1.60 X 1077 C)(200N/C)
== J

1 9.11 X 1073 kg

a = —
m

= —351 X 1013 m/s2

(B) If the electron enters the field at time ¢ = 0, find the
time at which it leaves the field.

Solution The horizontal distance across the field is € =
0.100 m. Using Equation 23.16 with x;= €, we find that the
time at which the electron exits the electric field is

¢ 0.100 m

= = 333x10°8
v 3.00 X 100m/s BRI

t:

(C) If the vertical position of the electron as it enters the field
is y; = 0, what is its vertical position when it leaves the field?

Solution Using Equation 23.17 and the results from parts
(A) and (B), we find that

at? = —1(3.51 X 10! m/s2)(8.33 x 10~%5)2

y

RS —

=

=—-00195m= —-195cm

If the electron enters just below the negative plate in Figure
23.26 and the separation between the plates is less than the
value we have just calculated, the electron will strike the pos-
itive plate.



