University of Anbar College of Engineering Dept. of Electrical Engineering

Electric physics II
Assist. Lac. Yasameen Kamil 2020-2021

Electric physics II
Electric circuits
By
Assist. Lac. Yasameen Kamil
2020-2021

Basic concepts

Electricity: Physical phenomenon arising from
the existence and interactions of electric charge

* Charge
* Current
* Voltage
* Power and Energy

Electric current

An ampere (A) is the number of electrons having a total charge of 1 C moving through a given cross section in 1 sec .

As defined, current flows in direction of positive charge flow

Current density

- It is the amount of current flowing in a unit area and its symbol (J).
- J $=\frac{I}{A}$
-The unite of current density is $\left(\frac{A}{m^{2}}\right)$

Electric circuit

An electric circuit is an interconnection of electrical elements linked together in a closed path so that electric current may flow continuously

Circuit diagrams are the standard for electrical engineers

$\xrightarrow{i_{1}}$ Rate of flow of charge form node a to node b
$\leftarrow i_{2}$ Rate of flow of charge form node \mathbf{b} to node \mathbf{a}

A direct current (dc) is a current of constant magnitude

An alternating current (ac) is a current of varying magnitude and direction

Voltage

The voltage across an element is the work (energy) required to move a unit of positive charge from the " - " terminal to the " + " terminal

A volt is the potential difference (voltage) between two points when 1 joule of energy is used to move 1 coulomb of charge from one point to the other

Power

The rate at which energy is converted or work is performed

$P=I V$

A watt results when 1 joule of energy is converted or used in $\mathbf{1}$ second

Power Dissipated in Resistor

$$
\mathrm{V}\}^{\mathrm{I}} \mathrm{P}=\mathrm{VI}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\mathrm{I}^{2} \mathrm{R}
$$

Resistors

Resistance (\mathbf{R}) is the physical property of an element that impedes the flow of current. The units of resistance are Ohms (Ω)

Resistivity (ρ) is the ability of a material to resist current flow. The units of resistivity are Ohm-meters (Ω-m)

Example:

Resistivity of copper	$1.68 \times 10^{-8} \Omega \cdot \mathrm{~m}$
Resistivity of glass	10^{10} to $10^{14} \Omega \cdot \mathrm{~m}$

Resistors

Resistors

Standard ELA Color Code Table 4 Band $42^{\circ} \%+5^{2} \%$ and $\pm 10^{2}$

Coter	10t Eland 	End Band Qnat hame	Snd Bank (rrubliple)	thelling folorance:
Elick	4	0	10-1	
Erawn	1.	1.	101	
Pred	2	2	191	\%
Qumpe	3	3	198	
Yollow	4	4	10	
Sroun	5	5	185	
His)	θ	9	10	
Matot	7	7	108	
crint	9	5	10^{10}	
Whita	9	9	10	
Gold			101	+59
sluer			10.	410%

Ohm's Law

$$
R=\frac{\rho L}{A}
$$

(remember, R is in Ω and ρ is in Ω.m)

- The resistor consume energy this energy is consumed as a heat

If the temperature increase the resistivity (ρ) also increase du to the following formula

$$
\rho=\rho_{\circ}\left(1+\alpha\left(T-T_{\circ}\right)\right.
$$

Where α is the temperature coefficient of resistivity and its unite $\left(\frac{1}{c}\right)$

And (T) measured in kelvin or centigrade

Can find the resistance from the above formula above

$$
R=R_{\circ}\left(1+\alpha\left(T-T_{\circ}\right)\right.
$$

Electrical sources

An electrical source is a voltage or current generator capable of supplying energy to a circuit

Examples:
-AA batteries
-12-Volt car battery
-Wall plug

Ideal voltage source

An ideal voltage source is a circuit element where the voltage across the source is independent of the current through it.

> Recall Ohm's Law: V=IR

The internal resistance of an ideal voltage source is zero.

If the current through an ideal voltage source is completely determined by the external circuit, it is considered an independent voltage source

Figure 1: An ideal voltage source, V, driving a resistor, R, and creating a

Ideal current source

An ideal current source is a circuit element where the current through the source is independent of the voltage across it.

Recall Ohm's Law: $\mathrm{I}=\mathrm{V} / \mathrm{R}$

The internal resistance of an ideal current source is infinite.

If the voltage across an ideal current source is completely determined by the external circuit, it is considered an independent current source

Dependent Sources

A dependent or controlled source depends upon a different voltage or current in the circuit

Electric Circuit Design Principles

Resistors in series

The resistors in a series circuit are $680 \Omega, 1.5 \mathrm{k} \Omega$, and $2.2 \mathrm{k} \Omega$. What is the total resistance?

Series circuits

A series circuit with a voltage source (such as a battery) and 3 resistors

A series circuit has only one current path

Current through each component is the same

In a series circuit, all elements must function for the circuit to be complete

Multiple elements in a series circuit

Example: Resistors in series

The resistors in a series circuit are $680 \Omega, 1.5 \mathrm{k} \Omega$, and $2.2 \mathrm{k} \Omega$. What is the total resistance?

$$
\begin{aligned}
R_{\text {total }} & =R_{1}+R_{2}+R_{3} \\
& =680 \Omega+1500 \Omega+2200 \Omega \\
& =4380 \Omega \\
& =4.38 k \Omega
\end{aligned}
$$

The current through each resistor?

$$
I=\frac{V}{R_{\text {total }}}=\frac{12 \mathrm{~V}}{4380 \Omega}=2.74 \mathrm{~mA}
$$

Example: Voltage sources in series

Find the total voltage of the sources shown

$$
V_{\text {total }}=V_{1}+V_{2}+V_{3}=27 \mathrm{~V}
$$

Example: Resistors in parallel

The resistors in a parallel circuit are $680 \Omega, 1.5 \mathrm{k} \Omega$, and $2.2 \mathrm{k} \Omega$.
What is the total resistance?

Parallel circuits

Voltage across each pathway is the same

A parallel circuit has more than one current path branching from the energy source

In a parallel circuit, separate current paths function independently of one another

Multiple elements in a parallel circuit

$$
\begin{aligned}
& \frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots+\frac{1}{R_{n}} \\
& \frac{1}{L_{\text {total }}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\ldots+\frac{1}{L_{n}} \\
& C_{\text {total }}=C_{1}+C_{2}+\ldots+C_{n}
\end{aligned}
$$

For parallel voltage sources, the voltage is the same across all batteries, but the current supplied by each element is a fraction of the total current

Example: Resistors in parallel

The resistors in a parallel circuit are $680 \Omega, 1.5 \mathrm{k} \Omega$, and $2.2 \mathrm{k} \Omega$. What is the total resistance?

$$
\begin{aligned}
R_{\text {total }} & =\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}} \\
& =386 \Omega
\end{aligned}
$$

Voltage across each resistor?
Dissipated power?
Current through each resistor?

Circuit Definitions

- Node - any point where 2 or more circuit elements are connected together
- Wires usually have negligible resistance
- Each node has one voltage (w.r.t. ground)
- Branch - a circuit element between two nodes
- Loop - a collection of branches that form a closed path returning to the same node without going through any other nodes or branches twice

Example

- How many nodes, branches \& loops?

Example

- Three nodes

Example

\author{

- 5 Branches
}

Example

- Three Loops, if starting at node A

Kirchoff's Voltage Law (KVL)

-The algebraic sum of voltages around each loop is zero

- Beginning with one node, add voltages across each branch in the loop (if you encounter a + sign first) and subtract voltages (if you encounter a sign first)
- Σ voltage drops $-\Sigma$ voltage rises $=0$
- Or Σ voltage drops $=\Sigma$ voltage rises

Example

- Kirchoff's Voltage Law around $1^{\text {st }}$ Loop

Assign current variables and directions
Use Ohm's law to assign voltages and polarities consistent with passive devices (current enters at the + side)

Example

- Kirchoff's Voltage Law around $1^{\text {st }}$ Loop

$$
-I_{1} R_{1}-I_{2} R_{2}+V s=0
$$

Circuit Analysis

- When given a circuit with sources and resistors having fixed values, you can use Kirchhoff's two laws and Ohm's law to determine all branch voltages and currents

Series Resistors

- KVL: $+\mathrm{I} \cdot 10 \Omega-12 \mathrm{v}=0, \quad$ So $\mathrm{I}=1.2 \mathrm{~A}$
- From the viewpoint of the source, the 7 and 3 ohm resistors in series are equivalent to the 10 ohms

Circuit Analysis

- By Ohm's law: $\mathrm{V}_{\mathrm{AB}}=\mathrm{I} \cdot 7 \Omega$ and $\mathrm{V}_{\mathrm{BC}}=\mathrm{I} \cdot 3 \Omega$
- By KVL: $\mathrm{V}_{\mathrm{AB}}+\mathrm{V}_{\mathrm{BC}}-12 \mathrm{v}=0$
- Substituting: $\mathrm{I} \cdot 7 \Omega+\mathrm{I} \cdot 3 \Omega-12 \mathrm{v}=0$
- Solving: I = 1.2 A

Since $V_{A B}=I \cdot 7 \Omega$ and $V_{B C}=I \cdot 3 \Omega$

And $\mathrm{I}=1.2 \mathrm{~A}$
So $\mathrm{V}_{\mathrm{AB}}=8.4 \mathrm{v}$ and $\mathrm{V}_{\mathrm{BC}}=3.6 \mathrm{v}$

Kirchoff's Current Law (KCL)

- The algebraic sum of currents entering a node is zero
- Add each branch current entering the node and subtract each branch current leaving the node
- Σ currents in $-\Sigma$ currents out $=0$
- Or Σ currents in $=\Sigma$ currents out

Example

- Kirchoff's Current Law at B

Assign current variables and directions
Add currents in, subtract currents out: $I_{1}-I_{2}-I_{3}+I s=0$

Example: Find VAB for the Figure below

And $V_{A B}=\mathbf{I}_{\mathbf{2}}^{\mathbf{4}} \mathbf{4} \mathbf{= 2 6 . 3 3}$ volts

Another Way

> By Ohm's Law: $V_{A B}=10 \mathrm{~A} \cdot 2.667 \Omega$ So $V_{A B}=26.67$ volts

Replacing two parallel resistors (8 and 4Ω) by one equivalent one produces the same result from the viewpoint of the rest of the circuit.

