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Potential difference and electric potential

When a test charge ¢, is placed in an electric field E created by some source charge
distribution, the electric force acting on the test charge is ¢E. The force ¢yE is
conservative because the force between charges described by Coulomb’s law is conserv-
ative. When the test charge is moved in the field by some external agent, the work
done by the field on the charge is equal to the negauve of the work done by the exter-
nal agent causing the displacement. This is analogous to the situation of lifting an
object with mass in a gravitational field—the work done by the external agent is mgh
and the work done by the gravitational force is —mgh.

When analyzing electric and magnetic fields, it is common practice to use the
notation d/ to represent an infinitesimal displacement vector that is oriented tangent
to a path through space. This path may be straight or curved, and an integral
performed along this path is called either a path integral or a line integral (the two terms
are synonymous).



For a given position of the test charge in the field, the charge-field system has a
potential energy U relative to the configuration of the system that is defined as U = 0.

Dividing the potential energy by the test charge gives a physical quantity that depends
only on the source charge distribution. The potential energy per unit charge U/¢q is
independent of the value of ¢, and has a value at every point in an electric field. This
quantity U/gqqg is called the electric potential (or simply the potential) V. Thus, the
electric potental at any point in an electric field is

U

V=— (25.2)

qo

The fact that potential energy is a scalar quantity means that electric potential also is a

scalar quantity.



Work and Potential (V)

The work done by the electric force in moving a test
charge from point ato point b6is given by

b b
Wa—)b :jﬁdi:jqoﬁdi
Dividing through by the test charge q, we have
b
V,~Vy=E-di

a
Rearranging so the order of the subscripts is the same
on both sides

b
Vy—V,=—|E-dl
a



Electric Potential

From this last result V, -V :_IE dl

We get dV =—E . diord—V —E

dx

We see that the electric field points in the direction of

decreasing potential
Work (W) =Ua—-Ub =q (Va - Vb)

We are often more interested in potential differences
as this relates directly to the work done in moving a
charge from one point to another



Units for Energy

There is an additional unit that is used for energy in
addition to that of joules

A particle having the charge of e (1.6 x 10'1° C) that is
moved through a potential difference of 1 Volt has an
increase in energy that is given by

W =gAV =1.6x10"" joules=1eV



Electric Potential

General Points for either positive or negative charges

The Potential /ncreasesif you move in the direction

opposite to the electric field
AV = —FE d cos 180

AV =GE d E

and

The Potential decreasesif you move in the same
direction as the electric field

MOVE
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MOVE

AV = —E dcos0

AV =<5E d £




Example 1

- A
Points A, B, and Clie in
E - = C

a uniform electric field. - B

VVYyVYYVYYy

What is the potential difference between points A and B?
AVpg = Vg -V

a) AV, >0 b)AV,; =0 c) AV, <0

The electric field, £ points in the direction of decreasing
potential

Since points A and B are in the same relative horizontal
location in the electric field there is no potential
difference between them




Example 2 . A

Points A, B, and C liein £ — =
a uniform electric field.

vVVYyVYyYvVYYVYY

Point Cis at a higher potential than point A.

True

As stated previously the electric field points in the direction of
decreasing potential

Since point Cis further to the right in the electric field and the
electric field is pointing to the right, point Cis at a lower potential

The statement is therefore FALSE




Example 3 A :

>
Points A, B,and Clieina £ — - C >
uniform electric field. g

If a negative charge is moved from point A to point B, its electric
potential energy

a) Increases. b) decreases. @esn’t cha@

The potential energy of a charge at a location in an electric
field is given by the product of the charge and the potential at
the location (pE=q Av)

As shown in Example 1, the potential at points A and B are
the same

Therefore the electric potential energy also doesn’t change




Units for Energy

There is an additional unit that is used for energy in
addition to that of joules

A particle having the charge of e (1.6 x 10'1° C) that is
moved through a potential difference of 1 Volt has an
increase in energy that is given by

W =gAV =1.6x10"" joules=1eV



Electric Potential (V) due to point of charge
We define the term to the right of the summation as

the electric potential at point a

1 .
Electric _ Potential | = Z 2 9,
i 72'(90 V.

1

_ ykai
V =) -
Like energy, potential is a SCALAR

We define the potential of a given point charge as being
1 ¢q

472'80 r

Potential =V =

This equation has the convention that the potential is
zero at infinite distance



Question: A particle of charge ¢y = +6.0 pC 1s located on the z-axis at the pomnt z; = 5.1 cm. A second particle

Example

of charge g; = —5.0 uC 1s placed on the z-axis at z; = —3.4cm. What is the absolute electric potential at the

origin (£ = 0)? How much work must we perform in order to slowly move a charge of g3 = —7.0uC from

mfinity to the origin, whilst keeping the other two charges fixed?

@ o (6x107%) :
V, = k. = = (8.988 x 10 = 1.06 x 10°V.
tT g ( ) (5.1 x 1072)
V; = k. il (8.988 x 10°) @A x107) 1.32 x 10° V.

The net potential V at the origin is simply the algebraic sum of the potentials due
to each charge taken in isolation. Thus,

V=V,+V,=-264 x10°V.

The work W which we must perform in order to slowly moving a charge g3 from
infinity to the origin is simply the product of the charge and the potential
difference. Thus,

W =gV =(—7x10"%)(—2.64 x 10°) = 1.85 1.



Electric Potential(v) due to dipole

Az

Line BA is on the z axis. The positive charge is at (0, 0, a)

and the negative charge is at (0, 0, -a)
We consider an electrical potential at the point P, due to

the electric dipole moment

1 1
Viotal = kq 7”_1 - E



Equipotential Surfaces

* It is possible to move a test charge from one
point to another without having any net work
done on the charge.

* This occurs when the beginning and end points
have the same potential

* It is possible to map out such points and a given
set of points at the same potential form an
equipotential surface



Equipotential Surfaces

* The electric field does no work as a charge is moved
along an equipotential surface

« Since no work is done, there is no force, gk, along the
direction of motion

» The electric field is pervendicularto the equipotential
surface

Constant Electric Field Point Charge Electric Dipole

+ + +|
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*Capacitor



Capacitance and Dielectrics

Consider two conductors carrying charges of equal magnitude and opposite sign, as
shown in Figure 26.1. Such a combination of two conductors is called a capacitor.
The conductors are called plates. A potential difference AV exists between the con-
ductors due to the presence of the charges.

What determines how much charge is on the plates of a capacitor for a given
voltage? Experiments show that the quantity of charge Q on a capacitor! is linearly
proportional to the potential difference between the conductors; that is, Q =« AV.
The proportionality constant depends on the shape and separation of the con-
ductors.? We can write this relationship as Q = CAV if we define capacitance as
follows:

The capacitance C of a capacitor is defined as the ratio of the magnitude of the
charge on either conductor to the magnitude of the potential difference between
the conductors:

C

A
— (26.1)



Note that by definition capacilance is always a positrve quantity. Furthermore, the charge
() and the potental difference AV are always expressed in Equation 26.1 as positive
quantities. Because the potential difference increases linearly with the stored charge,
the ratio Q /AVis constant for a given capacitor. Therefore, capacitance is a measure
of a capacitor’s ability to store charge. Because positive and negative charges are sepa-
rated in the system of two conductors in a capacitor, there is electric potential energy
stored in the system.

From Equation 26.1, we see that capacitance has SI units of coulombs per volt. The
SI unit of capacitance is the farad (F), which was named in honor of Michael Faraday:

[F=1C/V



Suppose that we have a capacitor rated at 4 pF. This rating means that the capaci- [ ©¢
tor can store 4 pC of charge for each volt of potential difference between the two ﬂ

: , ; oLl
conductors. If a 9-V battery is connected across this capacitor, one of the conductors wawaem
ends up with a net charge of —36 pC and the other ends up with a net charge of

+ 36 pC.

—43
Figure 26.2 A parallel-plate capac-
itor consists of two parallel con-
ducting plates, each of area A,
separated by a distance d. When
the capacitor is charged by con- Area = A
P - y p L\

necting the plates to the terminals
of a battery, the plates carry equal
amounts of charge. One plate
carries positive charge, and the
other carries negative charge.




Types of capacitors

 1- parallel plate capacitor

c = % = % ....... (26-3) due to the geometry

parallel plate capacitor

2- cylindrical capacitor
Q 2T &0l

Cc=—=—3 due to the geometry

v lnz

Where a= the small radios, b= the bigger radios and I:
the length of the cylinder |




Ty p e S Of C a p a C | t O rS Total charge +¢ Total charge —¢

3- Spherical capacitor

4TEoab
CcC = 2 —_—
v b—a

due to the geometry

* Where a=the small radios, b= the bigger
radios

Gaussian
Path of surface
integration

Example 26.1 Parallel-Plate Capacitor

A parallelplate capacitor with air between the plates has an €A (885X 107'2C2/N-m?)(2.00 X 10~* m?)

area A = 2.00 X 10~* m? and a plate separation d = 1.00 mm. C=

& . d 1.00 X 10" *m
Find its capacitance.

" _ = 177X 1072 F= 1.77pF
Solution From Equation 26.3, we find that



Connection of Capacitors

1- parallel combination

. The individual potential differences across capacitors . S I

connected in parallel are the same and are equal to the
potential difference applied across the combination.

w

W

\/=‘U1 =='U2 ==’v3

. The total charge on capacitors connected in parallel is
the sum of the charges on the individual capacitor

Q=01 + Q2 +03

Q1 Q2
C1 Cs Ca
Q1 -Q2
Q1=C1v
Q2=c,v
Q3 =c3v
CoqV=CLV+Cv+cC3v
Q=0, +0Q; +03

The equivalent capacitance of parallel connected is the
algebraic sum of individual capacitance

Ceq =C1 +C3 +C3 parallel connection

Ceq =C +C2 +C3



Series combination

* The charges on capacitors connected in series are
the same

*Q =01 =02 =03
* The total potential differences across any number
of capacitors connected in series is the sum of the
potential difference across the individual capacitors
*V=V; + VU + Vs
* The inverse of the equivalent capacitance of series
connection is the algebraic sum of inverse of the
individual capacitances
1 1, 1 1
=—+— +—

Ceq C1 C2 C3




Example

Example 26.4 Equivalent Capacitance

Find the equivalent capacitance between a and & for the
combination of capacitors shown in Figure 26.11a. All
capacitances are in microfarads.

Solution Using Equadons 26.8 and 26.10, we reduce the
combination step by step as indicated in the figure. The 1.0-uF
and 3.0-uF capacitors are in parallel and combine according
to the expression C., = C; + C3 = 4.0 uF. The 2.0-uF and
6.0-uF capacitors also are in parallel and have an equivalent
capacitance of 8.0 uF. Thus, the upper branch in Figure
26.11b consists of two 4.0-uF capacitors in sernies, which
combine as follows:

1.0

1 1 1 1 1 1

-+ —
Cq ©C1  Cs 40upF  40pF 20pF
Ceq = 2.0uF

The lower branch in Figure 26.11b consists of two 8.0-uF
capacitors in series, which combine to yield an equiva-
lent capacitance of 4.0 uF. Finally, the 2.0-uF and 4.0-uF
capacitors in Figure 26.11c are in parallel and thus have an

equivalent capacitance of 6.0 uF.

S 4.0
4.0/’_||_‘T".\ 2.0
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(a) (b) (c) (d)

Figure 26.11 (Example 26.4) To find the equivalent capacitance of the capacitors in
part (a), we reduce the various combinations in steps as indicated in parts (b), (¢), and
(d). using the series and parallel rules described in the text
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Energy Stored In a Charged Capacitor

* The work done in charging the capacitor appears as electric potential
energy U stored in the capacitor as in the following forms

U =2 cv? ... 1
2
U=—=QV......2
2
U= 3

* The unite of energy is joule (J)



Energy density

* The energy per unite volume known as the energy density

U

° uE — ;

2w leopp?
Uy = 2 _2

Ad dAd

1 L
‘U = - s&E?  the unite is (J/m3)

The energy density in any electric field is proportional to the square of
magnitude of the electric field at a given point.




Dielectric

* The capacitance of a set of charged parallel plates is
increased by the insertion of a dielectric material.
oA

® Co =
d
o The dielectric is the free space (air)
* Also co = & }

Vo
e if we put the dielectric between two plates of the

capacitors, then the capacitance is increased as in the
following form

ke A
d

K=o oy ke
Co

where k = the dielectric constant

e C=

+Qo

-Qo







