Chapter four

Applications of derivatives

4-1- L'Hopital rule :

Suppose that $f\left(x_{o}\right)=g\left(x_{o}\right)=0$ and that the functions f and g are both differentiable on an open interval (a, b) that contains the point x_{o}. Suppose also that $g^{\prime}(x) \neq 0$ at every point in (a, b) except possibly x_{o}. Then :

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} \quad \text { provided the limit exists. }
$$

Differentiate f and g as long as you still get the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ at $x=x_{o}$. Stop differentiating as soon as you get something else . L'Hopital's rule does not apply when either the numerator or denominator has a finite non-zero limit .
$E X-1$ - Evaluate the following limits :

1) $\lim _{x \rightarrow o} \frac{\sin x}{x}$
2) $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5-3}}{x^{2}-4}$
3) $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$
4) $\lim _{x \rightarrow \frac{\pi}{2}}-\left(x-\frac{\pi}{2}\right) \cdot \tan x$

Sol. -

1) $\lim _{x \rightarrow 0} \frac{\sin x}{x} \Rightarrow \frac{0}{0}$ using L'Hoptal's rule \Rightarrow

$$
=\lim _{x \rightarrow 0} \frac{\cos x}{1}=\cos 0=1
$$

2) $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x^{2}-4} \Rightarrow \frac{0}{0} u \sin g L^{\prime}$ Hoptal's rule \Rightarrow

$$
=\lim _{x \rightarrow 2} \frac{\frac{x}{\sqrt{x^{2}+5}}}{2 x}=\lim _{x \rightarrow 2} \frac{1}{2 \sqrt{x^{2}+5}}=\frac{1}{2 \sqrt{4+5}}=\frac{1}{6}
$$

3) $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}} \Rightarrow \frac{0}{0}$ using L'Hoptal's rule \Rightarrow
$=\lim _{x \rightarrow 0} \frac{1-\cos x}{3 x^{2}} \Rightarrow \frac{0}{0}$ using L'Hopital's rule \Rightarrow
$=\frac{1}{6} \lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{1}{6}$
4) $\lim _{x \rightarrow \frac{\pi}{2}}-\left(x-\frac{\pi}{2}\right) \tan x \Rightarrow 0 . \infty$ we can't using L'Hoptal's rule \Rightarrow

$$
\begin{aligned}
& =\lim _{x \rightarrow \frac{\pi}{2}}-\frac{x-\frac{\pi}{2}}{\cos x} \cdot \lim _{x \rightarrow \frac{\pi}{2}} \sin x \Rightarrow \frac{0}{0} \text { using L'Hopital's rule } \Rightarrow \\
& =\lim _{x \rightarrow \frac{\pi}{2}}-\frac{1}{-\sin x} \cdot \lim _{x \rightarrow \frac{\pi}{2}} \sin x=\frac{1}{\sin \frac{\pi}{2}} \cdot \sin \frac{\pi}{2}=1
\end{aligned}
$$

4-2- The slope of the curve :

Secant to the curve is a line through two points on a curve. Slopes and tangent lines:

1. we start with what we can calculate, namely the slope of secant through P and a point Q nearby on the curve .
2. we find the limiting value of the secant slope (if it exists) as Q approaches p along the curve .
3. we take this number to be the slope of the curve at P and define the tangent to the curve at \boldsymbol{P} to be the line through p with this slope.
The derivative of the function f is the slope of the curve :

$$
\text { the slope }=m=f^{\prime}(x)=\frac{d y}{d x}
$$

$\underline{E X-2-}$ Write an equation for the tangent line at $x=3$ of the curve :

$$
f(x)=\frac{1}{\sqrt{2 x+3}}
$$

Sol.-

$$
\begin{aligned}
& m=f^{\prime}(x)=-\frac{1}{\sqrt{(2 x+3)^{3}}} \Rightarrow[m]_{x=3}=f^{\prime}(3)=-\frac{1}{27} \\
& f(3)=\frac{1}{\sqrt{2 * 3+3}}=\frac{1}{3}
\end{aligned}
$$

The equation of the tangent line is :

$$
y-\frac{1}{3}=-\frac{1}{27}(x-3) \Rightarrow 27 y+x=12
$$

4-3- Velocity and acceleration and other rates of changes :

- The average velocity of a body moving along a line is :

$$
v_{a v}=\frac{\Delta s}{\Delta t}=\frac{f(t+\Delta t)-f(t)}{\Delta t}=\frac{\text { displacement }}{\text { time travelled }}
$$

The instantaneous velocity of a body moving along a line is the derivative of its position $s=f(t)$ with respect to time t.

$$
\text { i.e. } \quad v=\frac{d s}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}
$$

- The rate at which the particle's velocity increase is called its acceleration a. If a particle has an initial velocity v and a constant acceleration a, then its velocity after time t is $v+a t$.

$$
\text { average acceleration }=a_{a r}=\frac{\Delta v}{\Delta t}
$$

The acceleration at an instant is the limit of the average acceleration for an interval following that instant, as the interval tends to zero .

$$
\text { i.e. } \quad a=\lim _{\Delta \rightarrow 0} \frac{\Delta v}{\Delta t}
$$

- The average rate of a change in a function $y=f(x)$ over the interval from x to $x+\Delta x$ is :
average rate of change $=\frac{f(x+\Delta x)-f(x)}{\Delta x}$
The instantaneous rate of change of f at x is the derivative. $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ provided the limit exists.

EX-3- The position s (in meters) of a moving body as a function of time t (in second) is : $s=2 t^{2}+5 t-3$; find :
a) The displacement and average velocity for the time interval from $t=0$ to $t=2$ seconds.
b) The body's velocity at $t=2$ seconds .
a) 1) $\Delta s=s(t+\Delta t)-s(t)=2(t+\Delta t)^{2}+5(t+\Delta t)-3-\left[2 t^{2}+5 t-3\right]$

$$
=(4 t+5) \Delta t+2(\Delta t)^{2}
$$

$$
\text { at } t=0 \text { and } \Delta t=2 \Rightarrow \Delta s=(4 * 0+5) * 2+2 * 2^{2}=18
$$

2) $v_{a v}=\frac{\Delta s}{\Delta t}=\frac{(4 t+5) \Delta t+2(\Delta t)^{2}}{\Delta t}=4 t+5+2 . \Delta t$

$$
\text { at } t=0 \text { and } \Delta t=2 \Rightarrow v_{a v}=4 * 0+5+2 * 2=9
$$

b) $v(t)=\frac{d}{d t} f(t)=4 t+5$

$$
v(2)=4 * 2+5=13
$$

EX-4- A particle moves along a straight line so that after t (seconds), its distance from O a fixed point on the line is s (meters), where $s=t^{3}-3 t^{2}+2 t:$
i) when is the particle at O ?
ii) what is its velocity and acceleration at these times?
iii) what is its average velocity during the first second ?
iv) what is its average acceleration between $t=0$ and $t=2$?

Sol. -
i) at $s=0 \Rightarrow t^{3}-3 t^{2}+2 t=0 \Rightarrow t(t-1)(t-2)=0$

$$
\text { either } t=0 \text { or } t=1 \text { or } t=2 \text { sec. }
$$

ii) velocity $=v(t)=3 t^{2}-6 t+2 \Rightarrow v(0)=2 m / s$

$$
\begin{aligned}
& \Rightarrow v(1)=-1 m / s \\
& \Rightarrow v(2)=2 m / s
\end{aligned}
$$

acceleration $=a(t)=6 t-6 \Rightarrow a(0)=-6 m / s^{2}$

$$
\begin{aligned}
& \Rightarrow a(1)=0 \mathrm{~m} / \mathrm{s}^{2} \\
& \Rightarrow a(2)=6 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

iii)

$$
v_{a v}=\frac{\Delta s}{\Delta t}=\frac{s(1)-s(0)}{1-0}=\frac{1-3+2-0}{1}=0 \mathrm{~m} / \mathrm{s}
$$

iv) $a_{a v}=\frac{\Delta v}{\Delta t}=\frac{v(2)-v(0)}{2-0}=\frac{2-2}{2}=0 \mathrm{~m} / \mathrm{s}^{2}$

4-4- Maxima and Minima :

Increasing and decreasing function : Let f be defined on an interval and x_{1}, x_{2} denoted a number on that interval :

- If $f\left(x_{1}\right)<f\left(x_{2}\right)$ when ever $x_{1}<x_{2}$ then f is increasing on that interval.
- If $f\left(x_{1}\right)>f\left(x_{2}\right)$ when ever $x_{1}<x_{2}$ then f is decreasing on that interval .
- If $f\left(x_{1}\right)=f\left(x_{2}\right)$ for all values of x_{1}, x_{2} then f is constant on that interval.
The first derivative test for rise and fall : Suppose that a function f has a derivative at every point x of an interval I. Then :
$-f$ increases on I if $f^{\prime}(x)>o, \quad \forall x \in I$
$-f$ decreases on I if $f^{\prime}(x)>o, \quad \forall x \in I$
If \boldsymbol{f}^{\prime} changes from positive to negative values as \boldsymbol{x} passes from left to right through a point c, then the value of f at c is a local maximum value of f, as shown in below figure. That is $f(c)$ is the largest value the function takes in the immediate neighborhood at $x=c$.

Similarly, if f^{\prime} changes from negative to positive values as \boldsymbol{x} passes left to right through a point d, then the value of f at d is a local minimum value of f. That is $f(d)$ is the smallest value of f takes in the immediate neighborhood of d.
$\underline{E X-5}-$ Graph the function : $y=f(x)=\frac{x^{3}}{3}-2 x^{2}+3 x+2$.
Sol.- $f^{\prime}(x)=x^{2}-4 x+3 \Rightarrow(x-1)(x-3)=0 \Rightarrow x=1,3$

The function has a local maximum at $x=1$ and a local minimum at $x=3$.
To get a more accurate curve, we take :

x	0	1	2	3	4
$f(x)$	2	3.3	2.7	2	3.3

Then the graph of the function is :

Concave down and concave up : The graph of a differentiable function $y=f(x)$ is concave down on an interval where f^{\prime} decreases, and concave up on an interval where f^{\prime} increases.
The second derivative test for concavity : The graph of $y=f(x)$ is concave down on any interval where $y^{\prime \prime}<0$, concave up on any interval where $y^{\prime \prime}>0$.
Point of inflection : A point on the curve where the concavity changes is called a point of inflection. Thus, a point of inflection on a twice - differentiable curve is a point where $y^{\prime \prime}$ is positive on one side and negative on other, i.e. $y^{\prime \prime}=0$.
$\underline{E X-6}$ - Sketch the curve : $y=\frac{1}{6}\left(x^{3}-6 x^{2}+9 x+6\right)$.
Sol. -

$$
\begin{aligned}
& y^{\prime}=\frac{1}{2} x^{2}-2 x+\frac{3}{2}=0 \Rightarrow x^{2}-4 x+3=0 \Rightarrow(x-1)(x-3)=0 \Rightarrow x=1,3 \\
& y^{\prime \prime}=x-2 \Rightarrow \text { at } x=1 \Rightarrow y^{\prime \prime}=1-2=-1<0 \text { concave down } . \\
& \Rightarrow \text { at } x=3 \Rightarrow y^{\prime \prime}=3-2>0 \quad \text { concave up } . \\
& \Rightarrow \text { at } y^{\prime \prime}=0 \Rightarrow x-2=0 \Rightarrow x=2 \text { point of inflection } .
\end{aligned}
$$

x	0	1	2	3	4
y	1	1.7	1.3	1	1.7

$\underline{E X-7}-$ What value of a makes the function :
$f(x)=x^{2}+\frac{a}{x}$, have :
i) a local minimum at $x=2$?
ii) a local minimum at $x=-3$?
iii) a point of inflection at $x=1$?
iv) show that the function can't have a local maximum for any value of a.
Sol. -

$$
f(x)=x^{2}+\frac{a}{x} \Rightarrow \frac{d f}{d x}=2 x-\frac{a}{x^{2}}=0 \Rightarrow a=2 x^{3} \text { and } \frac{d^{2} y}{d x^{2}}=2+\frac{2 a}{x^{3}}
$$

i) at $x=2 \Rightarrow a=2 * 8=16$ and $\frac{d^{2} f}{d x^{2}}=2+\frac{2 * 16}{2^{3}}=6>0$ Mini.
ii) at $x=-3 \Rightarrow a=2(-3)^{3}=-54$ and $\frac{d^{2} f}{d x^{2}}=2+\frac{2(-54)}{(-3)^{3}}=6>0$ Mini.
iii) at $x=1 \Rightarrow \frac{d^{2} f}{d x^{2}}=2+\frac{2 a}{1}=0 \Rightarrow a=-1$
iv) $\quad a=2 x^{3} \Rightarrow \frac{d^{2} f}{d x^{2}}=2+\frac{2\left(2 x^{3}\right)}{x^{3}}=6>0$

Since $\frac{d^{2} f}{d x^{2}}>0$ for all value of x in $a=2 x^{3}$.
Hence the function don't have a local maximum .
$\underline{E X-8}$ - What are the best dimensions (use the least material) for a tin can which is to be in the form of a right circular cylinder and is to hold 1 gallon (231 cubic inches) ?
Sol. - The volume of the can is :

$$
v=\pi r^{2} h=231 \Rightarrow h=\frac{231}{\pi r^{2}}
$$

where r is radius, h is height .
The total area of the outer surface (top, bottom , and side) is :

$$
\begin{aligned}
& A=2 \pi r^{2}+2 \pi r h=2 \pi r^{2}+2 \pi r \frac{231}{\pi r^{2}} \Rightarrow A=2 \pi r^{2}+\frac{462}{r} \\
& \frac{d A}{d r}=4 \pi r-\frac{462}{r^{2}}=0 \Rightarrow r=3.3252 \text { inches } \\
& \frac{d^{2} A}{d r^{2}}=4 \pi+\frac{924}{r^{3}}=4 \pi+\frac{924}{(3.3252)^{3}}=37.714>0 \Rightarrow \mathrm{~min} . \\
& h=\frac{231}{\pi r^{2}}=\frac{231}{\frac{22}{7}(3.3252)^{2}}=6.6474 \text { inches }
\end{aligned}
$$

The dimensions of the can of volume 1 gallon have minimum surface area are : $r=3.3252 \mathrm{in}$. and $h=6.6474 \mathrm{in}$.
$\underline{E X-9}$ - A wire of length L is cut into two pieces, one being bent to form a square and the other to form an equilateral triangle. How should the wire be cut :
a) if the sum of the two areas is minimum.
b) if the sum of the two areas is maximum.

Sol. : Let x is a length of square.
$2 y$ is the edge of triangle .

The perimeter is $p=4 x+6 y=L \Rightarrow x=\frac{1}{4}(L-6 y)$.
$(2 y)^{2}=y^{2}+h^{2} \Rightarrow h=\sqrt{3} y$ from triangle.
The total area is $A=x^{2}+y h=\frac{1}{16}(L-6 y)^{2}+y \sqrt{3} y$

$$
\Rightarrow A=\frac{1}{16}(L-6 y)^{2}+\sqrt{3} y^{2}
$$

$\frac{d A}{d y}=\frac{-3}{4}(L-6 y)+2 \sqrt{3} y=0 \Rightarrow y=\frac{3 L}{18+8 \sqrt{3}}$
$\frac{d^{2} A}{d y^{2}}=\frac{9}{2}+2 \sqrt{3}>0 \Rightarrow \min$.
a) To minimized total areas cut for triangle $6 y=\frac{9 L}{9+4 \sqrt{3}}$

And for square $L-\frac{9 L}{9+4 \sqrt{3}}=\frac{4 \sqrt{3} L}{9+4 \sqrt{3}}$.
b) To maximized the value of A on endpoints of the interval

$$
\begin{aligned}
& 0 \leq 4 x \leq L \Rightarrow 0 \leq x \leq \frac{L}{4} \\
& \text { at } x=0 \Rightarrow y=\frac{L}{6} \text { and } h=\frac{L}{2 \sqrt{3}} \Rightarrow A_{1}=\frac{L^{2}}{12 \sqrt{3}} \\
& \text { at } x=\frac{L}{4} \Rightarrow y=0 \Rightarrow A_{2}=\frac{L^{2}}{16}
\end{aligned}
$$

Since $A_{2}=\frac{L^{2}}{16}>A_{1}=\frac{L^{2}}{12 \sqrt{3}}$
Hence the wire should not be cut at all but should be bent into a square .

Problems - 4

1. Find the velocity v if a particle's position at time t is $s=180 t-16 t^{2}$ When does the velocity vanish?
(ans.: 5.625)
2. If a ball is thrown straight up with a velocity of 32 ft ./sec., its high after t sec. is given by the equation $s=32 t-16 t^{2}$. At what instant will the ball be at its highest point ? and how high will it rise ?
(ans.: 1, 16)
3. A stone is thrown vertically upwards at $35 \mathrm{~m} . / \mathrm{sec}$. . Its height is : $s=35 t-4.9 t^{2}$ in meter above the point of projection where t is time in second later :
a) What is the distance moved, and the average velocity during the $3^{\text {rd }} \sec$. (from $t=2$ to $\left.t=3\right) ?$
b) Find the average velocity for the intervals $t=2$ to $t=2.5, t=2$ to $t=2.1 ; t=2$ to $t=2+h$.
c) Deduce the actual velocity at the end of the $2^{\text {nd }}$ sec. .
(ans.: a) 10.5 , 10.5 ; b) $12.95,14.91,15.4-4.9 h$, c) 15.4)
4. A stone is thrown vertically upwards at $24.5 \mathrm{~m} . / \mathrm{sec}$. from a point on the level with but just beyond a cliff ledge. Its height above the ledge t sec. later is $4.9 t(5-t) \mathrm{m}$. . If its velocity is $v \mathrm{~m} . / \mathrm{sec}$., differentiate to find v in terms of t :
i) when is the stone at the ledge level ?
ii) find its height and velocity after $1,2,3$, and 6 sec. .
iii) what meaning is attached to negative value of s ? a negative value of v ?
iv) when is the stone momentarily at rest? what is the greatest height reached ?
v) find the total distance moved during the $3^{\text {rd }}$ sec. .
(ans.:v=24.5-9.8t; i)0,5; ii)19.6,29.4,29.4,-29.4;14.7,4.9, -4.9,-34.3; iv)2.5;30.625; v)2.45)
5. A stone is thrown vertically downwards with a velocity of 10 $\mathrm{m} . / \mathrm{sec}$, and gravity produces on it an acceleration of $9.8 \mathrm{~m} . / \mathrm{sec}^{2}$:
a) what is the velocity after $1,2,3, t$ sec. ?
b) sketch the velocity -time graph . (ans.: 19.8, 29.6, 39.4,10+9.8t)
6. A car accelerates from 5 km ./h. to 41 km . h . in 10 sec . . Express this acceleration in $: \mathbf{i}) \mathbf{k m} . / \mathrm{h}$. per sec. ii) $\mathrm{m} . / \mathrm{sec}^{2}{ }^{2}$, iii) km./h. ${ }^{2}$.
(ans.: i)3.6; ii)1; iii) 12960)
7. A car can accelerate at $4 \mathrm{~m} . / \mathrm{sec}^{2}$. How long will it take to reach 90 km./h. from rest ?
(ans.: 6.25)
8. An express train reducing its velocity to $40 \mathrm{~km} . / \mathrm{h}$., has to apply the brakes for 50 sec . If the retardation produced is $0.5 \mathrm{~m} . / \mathrm{sec}^{2}{ }^{2}$, find its initial velocity in $\mathbf{k m}$./h. .
(ans.: 130)
9. At the instant from which time is measured a particle is passing through O and traveling towards A, along the straight line $O A$. It is s m . from O after t sec. where $s=t(t-2)^{2}$:
i) when is it again at O ?
ii) when and where is it momentarily at rest?
iii) what is the particle's greatest displacement from O, and how far does it moves, during the first 2 sec .?
iv) what is the average velocity during the $3^{r d}$ sec.?
v) at the end of the $1^{\text {st }}$ sec. where is the particle, which way is it going, and is its speed increasing or decreasing?
vi) repeat (v) for the instant when $t=-1$.
(ans.:i)2;ii)0,32/27;iii)64/27;iv)3;v)OA;inceasing; vi)AO;decreasing)
10. A particle moves in a straight line so that after t sec. it is $s \mathrm{~m}$., from a fixed point O on the line, where $s=t^{4}+3 t^{2}$. Find :
i) The acceleration when $t=1, t=2$, and $t=3$.
ii) The average acceleration between $t=1$ and $t=3$.
(ans.: i)18, 54,114; ii)58)
11. A particle moves along the x-axis in such away that its distance x cm . from the origin after t sec. is given by the formula $x=27 t-2 t^{2}$ what are its velocity and acceleration after 6.75 sec . ? How long does it take for the velocity to be reduced from $15 \mathrm{~cm} . / \mathrm{sec}$. to 9 $\mathrm{cm} . / \mathrm{sec}$., and how far does the particle travel mean while ? (ans.: 0,-4,1.5 ;18)
12. A point moves along a straight line $O X$ so that its distance $x \mathbf{c m}$. from the point O at time t sec. is given by the formula $x=t^{3}-6 t^{2}+9 t$. Find :
i) at what times and in what positions the point will have zero velocity .
ii) its acceleration at these instants .
iii) its velocity when its acceleration is zero .
(ans.: i)1,3;4,0; ii)-6,6; iii)-3)
13. A particle moves in a straight line so that its distance $x \mathrm{~cm}$. from a fixed point O on the line is given by $x=9 t^{2}-2 t^{3}$ where t is the time in seconds measured from O. Find the speed of the particle when $t=3$. Also find the distance from O of the particle when $t=4$, and show that it is then moving towards O.
(ans.: 0, 16)
14. Find the limits for the following functions by using L'Hopital's rule :
1) $\lim _{x \rightarrow \infty} \frac{5 x^{2}-3 x}{7 x^{2}+1}$
2) $\lim _{t \rightarrow 0} \frac{\sin t^{2}}{t}$
3) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{2 x-\pi}{\cos x}$
4) $\lim _{t \rightarrow 0} \frac{\cos t-1}{t^{2}}$
5) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{1+\cos 2 x}$
6) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin x-\cos x}{x-\frac{\pi}{4}}$
7) $\lim _{x \rightarrow 1} \frac{2 x^{2}-(3 x+1) \sqrt{x}+2}{x-1}$
8) $\lim _{x \rightarrow 0} \frac{x(\cos x-1)}{\sin x-x}$
9) $\lim _{x \rightarrow 0} x \cdot c s c^{2} \sqrt{2 x}$
10) $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x \cdot \sin x}$ $($ ans.: 1$\left.\left.\left.\left.\left.\left.\left.\left.\left.) \frac{5}{7} ; 2\right) 0 ; 3\right)-2 ; 4\right)-\frac{1}{2} ; 5\right) \frac{1}{4} ; 6\right) \sqrt{2} ; 7\right)-1 ; 8\right) 3 ; 9\right) \frac{1}{2} ; 10\right) 1$)
15. Find any local maximum and local minimum values, then sketch each curve by using first derivative :
1) $f(x)=x^{3}-4 x^{2}+4 x+5$
(ans.: max.(0.7,6.2);min.(2,5))
2) $f(x)=\frac{x^{2}-1}{x^{2}+1}$
(ans.: min.(0,-1))
3) $f(x)=x^{5}-5 x-6$
(ans.: max.(-1,-2); min.(1,-10))
4) $f(x)=x^{\frac{4}{3}}-x^{\frac{1}{3}}$
(ans.: min.(0.25,-0.47))
16. Find the interval of x-values on which the curve is concave up and concave down, then sketch the curve :
1) $f(x)=\frac{x^{3}}{3}+x^{2}-3 x$
(ans.:up($-1, \infty$);down($-\infty,-1$))
2) $f(x)=x^{2}-5 x+6$
(ans.:up $(-\infty, \infty)$)
3) $f(x)=x^{3}-2 x^{2}+1$
(ans.: up $\left(\frac{2}{3}, \infty\right) ;$ down $\left(-\infty, \frac{2}{3}\right)$)
4) $f(x)=x^{4}-2 x^{2}$ (ans. : up $\left.\left(-\infty,-\frac{1}{\sqrt{3}}\right),\left(\frac{1}{\sqrt{3}}, \infty\right) ; \operatorname{down}\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\right)$
17. Sketch the following curve by using second derivative :
1) $y=\frac{x}{1+x^{2}}$
2) $y=-x(x-7)^{2}$
3) $y=(x+2)^{2}(x-3)$
4) $y=x^{2}(5-x)$
(ans.: max.(1,0.5); min.(-1,-0.5))
(ans.: max.(7,0);min.(2.3,-50.8))
(ans.: max.(-2,0);min.(1.3,-18.5))
(ans.: max.(3.3,18.5);min.(0,0))
18. What is the smallest perimeter possible for a rectangle of area 16 in. ${ }^{2}$?
(ans.: 16)
19. Find the area of the largest rectangle with lower base on the x axis and upper vertices on the parabola $y=12-x^{2}$. (ans.:32)
20) A rectangular plot is to be bounded on one side by a straight river and enclosed on the other three sides by a fence . With 800 m . of fence at your disposal. What is the largest area you can enclose?
(ans.:80000)
21) Show that the rectangle that has maximum area for a given perimeter is a square .
22) A wire of length L is available for making a circle and a square . How should the wire be divided between the two shapes to maximize the sum of the enclosed areas?
(ans.: all bent into a circle)
23) A closed container is made from a right circular cylinder of radius r and height h with a hemispherical dome on top. Find the relationship between \boldsymbol{r} and \boldsymbol{h} that maximizes the volume for a given surface area s.

$$
\left(\text { ans. }: r=h=\sqrt{\frac{s}{5 \pi}}\right)
$$

24) An open rectangular box is to be made from a piece of cardboard 8 in . wide and 15 in . long by cutting a square from each corner and bending up the sides Find the dimensions of the box of largest volume . (ans.: height=5/3; width=14/3; length=35/3)
