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Chapter One: Vectors and the Geometry of Space 

1.1 3-D Coordinate Systems   

 

 

The planes determined by the coordinates axes are the xy-plane, whose standard equation 

is z = 0; the yz-plane, whose standard equation is x = 0; and the xz-plane, whose standard 

equation is y = 0. They meet at the origin (0, 0, 0) (Figure 1.2). The origin is also identified 

by simply 0 or sometimes the letter O. The three coordinate planes x= 0, y = 0, and z = 0 

divide space into eight cells called octants. The octant in which the point coordinates are all 

positive is called the first octant; no conventional numbering for the other seven octants. 

The points in a plane perpendicular to the x-axis all have the same x-coordinate, this being 

the number at which that plane cuts the x-axis. The y- and z-coordinates can be any 

numbers. Similarly, the points in a plane perpendicular to the y-axis have a common y-

coordinate and the points in a plane perpendicular to the z-axis have a common z-

coordinate. To write equations for these planes, we name the common coordinate’s value. 

The plane x = 2 is the plane perpendicular to the x-axis at x = 2. The plane y = 3 is the plane 

perpendicular to the y-axis at y = 3. The plane z = 5 is the plane perpendicular to the z-axis 

The Cartesian coordinates (x, y, z) of a point P in 

space are the numbers at which the planes 

through P perpendicular to the axes cut the axes 

(Figure 1.1). Cartesian coordinates for space are 

also called rectangular coordinates because the 

axes that define them meet at right angles. Points 

on the x-axis have y- and z-coordinates equal to 

zero. That is, they have coordinates of the form (x, 

0, 0). Similarly, points on the y-axis have 

coordinates of the form (0, y, 0), and points on the 

z-axis have coordinates of the form (0, 0, z). 

Figure 1.1 The Cartesian coordinate 
 system is right-handed. 
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at z = 5. Figure 1.3 shows the planes x = 2, y = 3, and z = 5 together with their intersection 

point (2, 3, 5). 

 

 

The planes x = 2 and y = 3 in Figure 1.3 intersect in a line parallel to the z-axis. This line is 

described by the pair of equations x = 2, y = 3. A point (x, y, z) lies on the line if and only if 

x = 2 and y = 3. Similarly, the line of intersection of the planes y = 3 and z = 5 is described 

by the equation pair y = 3, z = 5. This line runs parallel to the x-axis. The line of intersection 

of the planes x = 2 and z = 5, parallel to the y-axis, is described by the equation pair x = 2, 

z = 5. In the following examples, we match coordinate equations and inequalities with the 

sets of points they define in space. 

Example 1: Interpreting Equations and Inequalities Geometrically 

(a) z ≥ 0 
The half-space consisting of the points on and above the xy-

plane. 

(b) x = -3 
The plane perpendicular to the x-axis at x = -3. This plane lies 

parallel to the yz-plane and 3 units behind it. 

(c) z = 0, x ≤ 0, y ≥ 0 The second quadrant of the xy-plane. 

(d) x ≥ 0, y ≥ 0, z ≥ 0 The first octant. 

(e) -1 ≤ y ≤ 1 The slab between the planes y = -1 and y = 1 (planes included). 

(f) y = -2, z = 2 

The line in which the planes y = -2 and z = 2 intersect. 

Alternatively, the line through the point (0, -2, 2) parallel to the x-

axis. 

 

Figure 1.2 The planes x = 0, y = 0, and 
z = 0 divide space into eight octants. 

Figure 1.3 The planes x = 2, y = 3, and z = 5 
determine three lines through the point (2, 3, 5). 
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Example 2: Graphing Equations 

What points P(x, y, z) satisfy the equations 

x2 + y2 = 4 and z = 3? 

 
 

 

 

Distance and Spheres in Space 

The formula for the distance between two points in the xy-plane extends to points in space. 

The Distance Between P1(x1 , y1 , z1) and P2(x2 , y2 , z2) is 

 

 
 

Proof: We construct a rectangular box with faces parallel to the coordinate planes and the 

points P1 and P2 at opposite corners of the box (Figure 1.5). If A(x2 , y1 , z1) and B(x2 , y2 , 

z1) are the vertices of the box indicated in the figure, then the three box edges P1A, AB, and 

BP2 have lengths 

|𝑃1𝐴| = |𝑥2 − 𝑥1| , |𝐴𝐵| = |𝑦2 − 𝑦1| , |𝐵𝑃2| = |𝑧2 − 𝑧1| 

Because triangles P1BP2 and P1AB are both right-angled, two applications of the 

Pythagorean theorem give 

|𝑃1𝑃2|
2 = |𝑃1𝐵|

2 + |𝐵𝑃2|
2 and  |𝑃1𝐵|

2 = |𝑃1𝐴|
2 + |𝐴𝐵|2 

Solution: The points lie in the horizontal plane z = 3 

and, in this plane, make up the circle x2 + y2 = 4.  We 

call this set of points “the circle x2 + y2 = 4 in the 

plane z = 3” or, more simply, “the circle x2 + y2 = 4, 

z = 3” (Figure 1.4). 

 

Figure 1.4 The circle x2 + y2 = 4 
in the plane z = 3 (Example 2). 

 

|𝑃1𝑃2| = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 
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(see Figure 1.5) 

 

Figure 1.5 We find the distance between P1 and P2 by applying the Pythagorean theorem to the 

right triangles P1AB and P1BP2 

So,  

|𝑃1𝑃2|
2 = |𝑃1𝐵|

2 + |𝐵𝑃2|
2 

               = |𝑃1𝐴|
2 + |𝐴𝐵|2 + |𝐵𝑃2|

2  substitute  |𝑃1𝐵|
2 = |𝑃1𝐴|

2 + |𝐴𝐵|2 

            = |𝑥2 − 𝑥1|
2 + |𝑦2 − 𝑦1|

2 + |𝑧2 − 𝑧1|
2 

               = (𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 

Therefore,    |𝑃1𝑃2| = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

Example 3: Finding the Distance Between Two Points 

The distance between P1(2, 1, 5) and P2(-2, 3, 0) is 

|𝑃1𝑃2| = √(−2 − 2)2 + (3 − 1)2 + (0 − 5)2 

          = √16 + 4 + 25 

             = √45 ≈ 6.708 

We can use the distance formula to write equations for spheres in space (Figure 1.6). A 

point P(x, y, z) lies on the sphere of radius a centered at Po(xo, yo, zo) precisely when    

|𝑃𝑜𝑃| = 𝑎 or 

(𝑥 − 𝑥𝑜)
2 + (𝑦 − 𝑦𝑜)

2 + (𝑧 − 𝑧𝑜)
2 = 𝑎2 

The Standard Equation for the Sphere of Radius a and Centre (xo, yo, zo) 

 

 
(𝑥 − 𝑥𝑜)

2 + (𝑦 − 𝑦𝑜)
2 + (𝑧 − 𝑧𝑜)

2 = 𝑎2 
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Figure 1.6 The standard equation of the sphere of radius a centred at the point (xo, yo, zo) is 

(𝑥 − 𝑥𝑜)
2 + (𝑦 − 𝑦𝑜)

2 + (𝑧 − 𝑧𝑜)
2 = 𝑎2. 

Example 4: Finding the Centre and Radius of a Sphere 

Find the centre and radius of the sphere 

𝑥2 + 𝑦2 + 𝑧2 + 3𝑥 − 4𝑧 + 1 = 0. 

Solution: We find the centre and radius of a sphere the way we find the centre and radius 

of a circle: Complete the squares on the x-, y-, and z-terms as necessary and write each 

quadratic as a squared linear expression. Then, from the equation in standard form, read 

off the centre and radius. For the sphere here, we have 

𝑥2 + 𝑦2 + 𝑧2 + 3𝑥 − 4𝑧 + 1 = 0 

                                                (𝑥2 + 3𝑥) + 𝑦2 + (𝑧2 − 4𝑧) = −1 

(𝑥2 + 3𝑥 + (
3

2
)
2

) + 𝑦2 + (𝑧2 − 4𝑧 + (−
4

2
)
2

) = −1 + (
3

2
)
2

+ (−
4

2
)
2

 

                                   (𝑥 +
3

2
)
2

+ 𝑦2 + (𝑧 − 2)2 = −1 +
9

4
+ 4 =

21

4
 . 

From this standard form, we read that xo=-3/2, yo=0, zo=2, and 𝑎 =
√21

2
 . The centre is     (-

3/2, 0, 2). The radius is 
√21

2
. 

Example 5: Interpreting Equations and Inequalities 

(a) 𝑥2 + 𝑦2 + 𝑧2 < 4 The interior of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 4. 

(b) 𝑥2 + 𝑦2 + 𝑧2 ≤ 4 

The solid ball bounded by the sphere 𝑥2 + 𝑦2 + 𝑧2 = 4. 

Alternatively, the sphere 𝑥2 + 𝑦2 + 𝑧2 = 4 together with its 

interior. 
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(c) 𝑥2 + 𝑦2 + 𝑧2 > 4 The exterior of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 4. 

(d) 𝑥2 + 𝑦2 + 𝑧2 = 4, z ≤ 0 
The lower hemisphere cut from the sphere 𝑥2 + 𝑦2 + 𝑧2 = 4 

by the xy-plane (the plane z = 0). 

1.2 Vectors: 

 

Figure 1.7 the directed line segment |𝐴𝐵⃑⃑⃑⃑  ⃑ |. 

Examples of two- and three-dimensions vectors (see Figure 1.8): 

 

Figure 1.8 The velocity vector of a particle moving along a path (a) in the plane (b) in space. The 

arrowhead on the path indicates the direction of motion of the particle. 

 

A vector in the plane is a directed line segment. The directed 

line segment 𝐴𝐵⃑⃑⃑⃑  ⃑ has initial point A and terminal point B; its 

length is denoted by |𝐴𝐵⃑⃑⃑⃑  ⃑ | (see Figure 1.7). Two vectors are 

equal if they have the same length and direction. 

 

(a) two dimensions (b) three dimensions 

We need a way to represent vectors 

algebraically so that we can be more 

precise about the direction of a vector. Let 

𝐯 = 𝑃𝑄⃑⃑⃑⃑  ⃑. There is one directed line segment 

equal to 𝑃𝑄⃑⃑⃑⃑  ⃑ whose initial point is the origin 

(Figure 1.9). It is the representative of v in 

standard position and is the vector we 

normally use to represent v.  

 

Figure 1.9 vector 𝑃𝑄⃑⃑⃑⃑  ⃑ in standard position has 

its initial point at the origin. The directed line 

segments 𝑃𝑄⃑⃑⃑⃑  ⃑ and v are parallel and have the 

same length. 
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We can specify v by writing the coordinates of its terminal point (v1, v2, v3) when v is in 

standard position. If v is a vector in the plane its terminal point (v1, v2) has two coordinates. 

So, we can define the Component Form of the vector: 

If v is a two-dimensional vector in the plane equal to the vector with initial point 

at the origin and terminal point (v1, v2), then the component form of v is 

𝐯 = 〈𝑣1, 𝑣2〉 

If v is a three-dimensional vector equal to the vector with initial point at the origin and terminal 

point (v1, v2, v3), then the component form of v is 

𝐯 = 〈𝑣1, 𝑣2, 𝑣3〉 

Given the points (Figure 1.9) P(x1, y1, z1) and Q(x2, y2, z2) the standard position vector 𝐯 =

〈𝑣1, 𝑣2, 𝑣3〉 equal to 𝑃𝑄⃑⃑⃑⃑  ⃑ is 

𝐯 = 〈𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1〉 

If v is two-dimensional with P(x1, y1) and Q(x2, y2)  as points in the plane, then                           

𝐯 = 〈𝑥2 − 𝑥1, 𝑦2 − 𝑦1〉. There is no third component for planar vectors. 

Two vectors are equal if and only if their standard position vectors are identical. Thus 

〈𝑢1, 𝑢2, 𝑢3〉 and 〈𝑣1, 𝑣2, 𝑣3〉 are equal if and only if u1 = v1, u2 = v2, and u3 = v3. The magnitude 

or length of the vector 𝑃𝑄⃑⃑⃑⃑  ⃑ is the length of any of its equivalent directed line segment 

representations. In particular, if 𝐯 = 〈𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1〉 is the standard position vector 

for 𝑃𝑄⃑⃑⃑⃑  ⃑ then the distance formula gives the magnitude or length of v, denoted by the symbol 

|𝐯| or ‖𝐯‖. Therefore, the magnitude or length of the vector is the nonnegative number  

|𝐯| = √𝑣1
2 + 𝑣2

2 + 𝑣3
2 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

Example 1: Component Form and Length of a Vector 

Find the (a) component form and (b) length of the vector with initial point P(-3, 4, 1)and 

terminal point Q(-5, 2, 2). 

Solution:  

(a) The standard position vector v representing 𝑃𝑄⃑⃑⃑⃑  ⃑ has components  

v1 = x2 - x1 = -5 – (-3) = -2,  v2 = y2 - y1 = 2 – 4 = -2, and v3 = z2 - z1 = 2 – 1 = 1. 

The component form of  𝑃𝑄⃑⃑⃑⃑  ⃑ is  

𝐯 = 〈−2, −2, 1〉 
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(b) The length or magnitude of 𝐯 = 𝑃𝑄⃑⃑⃑⃑  ⃑ is 

|𝐯| = √(−2)2 + (−2)2 + (1)2 = √9 = 3. 

Example 2: Force Moving a Cart 

A small cart is being pulled along a smooth horizontal floor with a 20-lb force F making a 45° 

angle to the floor (Figure 1.10). What is the effective force moving the cart forward? 

 

Figure 1.10 The force pulling the cart 

Vector Algebra Operation 

Two principal operations involving vectors are vector addition and scalar multiplication. 

Let 𝐮 = 〈𝑢1, 𝑢2, 𝑢3〉 and 𝐯 = 〈𝑣1, 𝑣2, 𝑣3〉 vectors with k a scalar. A scalar is a real number and 

can be positive, negative, or zero. 

A. Vector addition: 𝐮 ± 𝐯 = 〈𝑢1 ± 𝑣1, 𝑢2 ± 𝑣2, 𝑢3 ± 𝑢3〉 ; 

B. Scalar multiplication: 𝑘 𝐮 = 〈𝑘𝑢1, 𝑘𝑢2, 𝑘𝑢3〉 

 

Figure 1.11 Geometric interpretation  

of the vector sum. 

 

Solution: The effective force is the horizontal 

component of 𝐅 = 〈𝑎, 𝑏〉, given by  

𝑎 = |𝐅| cos 45𝑜 = 20(
√2

2
) ≈ 14.14 Ib 

Notice that F is a two-dimensional vector. 

 

The definition of vector addition is illustrated 

geometrically for planar vectors in Figure 

1.11, where the initial point of one vector is 

placed at the terminal point of the other. 

Figure 1.12 displays a geometric interpretation 

of the product ku of the scalar k and vector u. If 

k  > 0, then ku has the same direction as u; if k  

< 0, then the direction of ku is opposite to that 

of u. Comparing the lengths of u and ku, we see 

that 
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|𝑘𝐮| = √(𝑘𝑢1)2 + (𝑘𝑢2)2 + (𝑘𝑢3)2 = √𝑘2(𝑢1
2 + 𝑢2

2 + 𝑢3
2) = |𝑘|√𝑢1

2 + 𝑢2
2 + 𝑢3

2 = |𝑘||𝐮| 

 

Figure 1.12 Scalar multiples of u. 

By the difference u – v of two vectors, we mean u – v = u + (– v). Note that (u – v) + v = u, 

so adding the vector (u – v) to v gives u (Figure 1.13). Figure 1.14 shows the difference        

u – v as the sum u + (– v). 

 

 

Figure 1.13 The vector u – v, when 

added when added to v, gives u. 

 

Figure 1.14 u – v = u + (– v). 

 

Example 3: Performing Operations on Vectors 

Let 𝐮 = 〈−1, 3, 1〉 and 𝐯 = 〈4, 7, 0〉. Find (a) 2u + 3v; (b) u – v; (c) |
1

2
𝐮|. 

Solution: (a) 2𝐮 + 3𝐯 = 2〈−1, 3, 1〉 + 3〈4, 7, 0〉 = 〈−2, 6, 2〉 + 〈12, 21, 0〉 = 〈10, 27, 2〉  

(b) 𝐮 − 𝐯 = 〈−1, 3, 1〉 − 〈4, 7, 0〉 = 〈−1 − 4, 3 − 7, 1 − 0〉 =  〈−5, −4, 1〉  

(c) |
1

2
𝐮| = |〈−

1

2
,
3

2
,
1

2
〉| = √(−

1

2
)
2

+ (
3

2
)
2

+ (
1

2
)
2

=
1

2
√11. 

 

 

 

The length of ku is the absolute value of the scalar 

k times the length of u. The vector (-1) u = - u has 

the same length as u but points in the opposite 

direction. 
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Properties of Vector Operations 

Let u, v, w be vectors and a, b be scalars. 

 

Unit Vectors  

A vector v of length 1 is called a unit vector. The standard unit vectors are 

𝐢 = 〈1, 0, 0〉, 𝐣 = 〈0, 1, 0〉, 𝐤 = 〈0, 0,1〉 

Any vector can be written as follows: 𝐯 = 〈𝑣1, 𝑣2, 𝑣3〉 = 𝑣1𝐢 + 𝑣2𝐣 + 𝑣3𝐤 

 

Figure 1.15 the vector from P1 to P2. 

Example 4: Finding a Vector’s Direction 

Find a unit vector u in the direction of the vector from P1(1, 0, 1) to P2(3, 2, 0). 

Solution: we divide 𝑃1𝑃2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   by its length: 

𝑃1𝑃2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  = (3 − 1)𝐢 + (2 − 0)𝐣 + (0 − 1)𝐤 = 2𝐢 + 2𝐣 − 𝐤 

|𝑃1𝑃2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  | = √(2)2 + (2)2 + (−1)2 = √4 + 4 + 1 = √9 = 3 

𝐮 =
𝑃1𝑃2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  

|𝑃1𝑃2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  |
=
2𝐢 + 2𝐣 − 𝐤

3
=
2

3
𝐢 +
2

3
𝐣 −
1

3
𝐤 

The unit vector u is the direction of 𝑃1𝑃2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  . 

We call the scalar (or number) v1 component of the 

vector v, v2 the j-component, and v3 the k-component. 

In component form, the vector from P1(x1, y1, z1) to 

P2(x2, y2, z2) is (see Figure 1.15) 

𝑃1𝑃2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  = (𝑥2 − 𝑥1)𝐢 + (𝑦2 − 𝑦1)𝐣 + (𝑧2 − 𝑧1)𝐤 

Whenever 𝐯 ≠ 0, its length |𝐯| is not zero and  

|
1

|𝐯|
𝐯| =

1

|𝐯|
|𝐯| = 1 

That is, 𝐯/|𝐯| is a unit vector in the direction of v. 
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If 𝐯 ≠ 0, then 
𝐯

|𝐯|
 is a unit vector in the direction of v; the equation 𝐯 = |𝐯|

𝐯

|𝐯|
  expresses v in 

terms of its length and direction. 

Midpoint of a Line Segment 

 

Figure 1.16 Midpoint of line segment.  

Example 5: Finding Midpoints 

The midpoint of the segment joining P1(3, -2, 0) and P2(7, 4, 4) is 

(
3 + 7

2
,
−2 + 4

2
,
0 + 4

2
) = (5, 1, 2)  

1.3 The Dot Product 

Dot products are also called inner or scalar products because the product results in a scalar, 

not a vector. It is used to calculate the angle between two vectors directly from their 

components; show whether two vectors are orthogonal or not; find projection vector. 

The dot product u ● v (u dot v) of vectors 𝐮 = 〈𝑢1, 𝑢2, 𝑢3〉 and 𝐯 = 〈𝑣1, 𝑣2, 𝑣3〉 is  

u ● v = u1v1 + u2v2 + u3v3 

Example 1: Finding Dot Product 

(a) 〈1, −2,−1〉 ● 〈−6, 2, −3〉  = (1)(−6) + (−2)(2) + (−1)(−3) =  −7 

(b) (
1

2
𝐢 + 3𝐣 + 𝐤) ● (4𝐢 − 𝐣 + 2𝐤) = (

1

2
) (4) + (3)(−1) + (1)(2) = 1. 

Vectors are often useful in geometry. For example, 

the coordinates of the midpoint of a line segment 

are found by averaging. 

The midpoint M of the line segment joining points 

P1(x1, y1, z1) and P2(x2, y2, z2) is the point (see 

Figure 1.16) 

(
𝑥1 + 𝑥2
2

,
𝑦1 + 𝑦2
2

,
𝑧1 + 𝑧2
2

) 
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Properties of the Dot Product 

If u, v, and w are any vectors and c is a scalar, then  

 

Angle Between Vectors  

 

Figure 1.17 The angle  

between u and v. 

Perpendicular (Orthogonal) Vectors 

 

If we have two vectors u and v, from dot product, we can know: 

1. u ● v = (+), acute angle; 

2. u ● v = (–), obtuse angle; 

3. u ● v = (0), right angle. 

 

 

u 

v 

Let 𝐮 = 𝑢1𝐢 + 𝑢2𝐣 + 𝑢3k and 𝐯 = 𝑣1𝐢 + 𝑣2𝐣 + 𝑣3𝐤 ,  

u ● v = |𝐮||𝐯| cos 𝜃 

The angle ϴ between two nonzero vectors 𝐮 = 〈𝑢1, 𝑢2, 𝑢3〉 and 

𝐯 = 〈𝑣1, 𝑣2, 𝑣3〉 is given by  

𝜃 = cos−1 (
𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3

|𝐮||𝐯|
) = cos−1 (

𝐮 ∙ 𝐯

|𝐮||𝐯|
) 

0 ≤ 𝜃 ≤ 𝜋 

Vectors u and v are orthogonal (or perpendicular) if and only if 

u ● v = 0. 
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Vector Projections 

The vector projection of u onto a nonzero vector v is  

 

Scalar component of u in the direction of v: 

|𝐮| cos 𝜃 =
𝐮 ∙ 𝐯

|𝐯|
= 𝐮 ∙

𝐯

|𝐯|
 

Example 2: Finding the Vector Projection 

Find the vector projection of 𝐮 = 6𝐢 + 3𝐣 + 2𝐤  onto 𝐯 = 𝐢 − 2𝐣 − 2𝐤  and scalar component 

of u in the direction of v. 

Solution:  

proj𝐯 𝐮 = (
𝐮 ∙ 𝐯

|𝐯|2
) 𝐯 =

6 − 6 − 4

1 + 4 + 4
(𝐢 − 2𝐣 − 2𝐤) =

−4

9
(𝐢 − 2𝐣 − 2𝐤) = (−

4

9
𝐢 +
8

9
𝐣 +
8

9
𝐤) 

We find the scalar component  

|𝐮| cos 𝜃 = 𝐮 ∙
𝐯

|𝐯|
= (6𝐢 + 3𝐣 + 2𝐤) ∙ (

1

3
𝐢 −
2

3
𝐣 −
2

3
𝐤) = 2 − 2 −

4

3
= −

4

3
 

1.4 The Cross Product 

The Cross products are widely used to describe the effects of forces in studies of electricity, 

magnetism, fluid flows, and orbital mechanics.  

 

u 

v 𝜃 

proj𝐯 𝐮 = (|𝐮| cos 𝜃)
𝐯

|𝐯|
 

= (
𝐮 ∙ 𝐯

|𝐯|
)
𝐯

|𝐯|
  

= (
𝐮 ∙ 𝐯

|𝐯|2
) 𝐯 

 

We start with two nonzero vectors u and v in 

space. If u and v are not parallel, they determine a 

plane. We select a unit vector n perpendicular to 

the plane by the right-hand rule. This means that 

we choose n to be the unit (normal) vector that 

points the way your right thumb points when your 

fingers curl through the angle from u to v (Figure 

1.18). Then the cross product u × v (“u cross v”) is 

the vector defined as follows: 
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Figure 1.18 The construction 𝐮 × 𝐯. 

𝐮 × 𝐯 = (|𝐮||𝐯| sin 𝜃)𝐧 

Unlike the dot product, the cross product is a vector. For this reason, it is also called the 

vector product of u and v, and applies only to vectors in space. The vector is orthogonal to 

both u and v because it is a scalar multiple of n. 

Parallel Vectors: Nonzero vectors u and v are parallel if and only if 𝐮 × 𝐯 = 0. 

 

Properties of the Cross Product: If u, v, w are any vectors and r, s are scalars, then 

 

Figure 1.19 visualises property 4.  

 

Figure 1.19 The construction 𝐯 × 𝐮. 

 

Figure 1.20 The pairwise cross 

product of i, j, and k. 

 

 

u 

v 

When we apply the definition to calculate the 

pairwise cross products of i, j, and k, we find 

(Figure 1.20) 

𝐢 × 𝐣 = −(𝐣 × 𝐢) = 𝐤 

𝐣 × 𝐤 = −(𝐤 × 𝐣) = 𝐢 

𝐤 × 𝐢 = −(𝐢 × 𝐤) = 𝐣 

and                       𝐢 × 𝐢 = 𝐣 × 𝐣 = 𝐤 × 𝐤 = 0 
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Calculating Cross Product Using Determinants: 

If 𝐮 = 𝑢1𝐢 + 𝑢2𝐣 + 𝑢3𝐤 and 𝐯 = 𝑣1𝐢 + 𝑣2𝐣 + 𝑣3𝐤 , then  

𝐮 × 𝐯 = |
𝐢 𝐣 𝐤
𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3

| = |
𝑢2 𝑢3
𝑣2 𝑣3

| 𝐢 − |
𝑢1 𝑢3
𝑣1 𝑣3

| 𝐣 + |
𝑢1 𝑢2
𝑣1 𝑣2

| 𝐤 

𝐮 × 𝐯 = (𝑢2𝑣3 − 𝑢3𝑣2)𝐢 − (𝑢1𝑣3 − 𝑢3𝑣1)𝐣 + (𝑢1𝑣2 − 𝑢2𝑣1)𝐤 

 

Figure 1.21 The parallelogram  

determined by u and v. 

Example 1: Find 𝐮 × 𝐯 and 𝐯 × 𝐮 if 𝐮 = 2𝐢 + 𝐣 + 𝐤 and 𝐯 = −4𝐢 + 3𝐣 + 𝐤 

Solution:  

𝐮 × 𝐯 = |
𝐢 𝐣 𝐤
2 1 1
−4 3 1

| = |
1 1
3 1

| 𝐢 − |
2 1
−4 1

| 𝐣 + |
2 1
−4 3

| 𝐤 = −2𝐢 − 6𝐣 + 10𝐤 

𝐯 × 𝐮 = −(𝐮 × 𝐯) = 2𝐢 + 6𝐣 − 10𝐤 

Example 2: Find unit vector orthogonal to the vectors 𝐮 = 3𝐢 − 𝐣 + 𝐤 and 𝐯 = 4𝐣 + 𝐤 

Solution:  

𝐮 × 𝐯 = |
𝐢 𝐣 𝐤
3 −1 1
0 4 1

| = |
−1 1
4 1

| 𝐢 − |
3 1
0 1

| 𝐣 + |
3 −1
0 4

| 𝐤 = −5𝐢 − 3𝐣 + 12𝐤 

|𝐮 × 𝐯| = √(−5)2 + (−3)2 + (12)2 = √178 

𝐳 =
1

√178
(−5𝐢 − 3𝐣 + 12𝐤) 

 

 

This is the area of the parallelogram determined 

by u and v (Figure 1.21), |𝐮| being the base of the 

parallelogram and |𝐯||sin 𝜃| the height. Because 

n is a unit vector, the area of a parallelogram is 

|𝐮 × 𝐯| = |𝐮||𝐯||sin 𝜃||𝐧| = |𝐮||𝐯| sin 𝜃 
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1.5 Lines and Planes in Space 

Lines: In the plane, a line is determined by a point and a number giving the slope of the line. 

In space, a line is determined by a point and a vector giving the direction of the line. 

 

Figured 1.22 A point P lies on L. 

Parametric Equations of a Line 

The standard parametrization of the line through Po(xo, yo, zo)  parallel to 𝐯 = 𝑣1𝐢 + 𝑣2𝐣 + 𝑣3𝐤 

is 𝑥 = 𝑥𝑜 + 𝑣1𝑡, 𝑦 = 𝑦𝑜 + 𝑣2𝑡, 𝑧 = 𝑧𝑜 + 𝑣3𝑡. 

Example 1: Find parametric equations for the line through (-2, 0, 4) parallel to 𝐯 = 2𝐢 + 4𝐣 −

2𝐤. 

Solution: 𝑥 = −2 + 2𝑡, 𝑦 = 4𝑡, 𝑧 = 4 − 2𝑡 . 

Distance from a Point S to a Line Through P Parallel to v (see Figure 1.23) 

 

Figure 1.23 The distance from point to a line. 

 

S 

𝑃𝑆⃑⃑ ⃑⃑  sin 𝜃 

Suppose that L is a line in space passing through a 

point Po(xo, yo, zo) parallel to a vector 𝐯 = 𝑣1𝐢 + 𝑣2𝐣 +

𝑣3𝐤, then L is the set of all points P(x, y, z) for which 

𝑃𝑜𝑃⃑⃑ ⃑⃑ ⃑⃑   parallel to v (Figure 1.22). Thus, 𝑃𝑜𝑃⃑⃑ ⃑⃑ ⃑⃑  = 𝑡𝐯, t is 

scalar parameter (−∞,∞). 

(𝑥 − 𝑥𝑜)𝐢 + (𝑦 − 𝑦𝑜)𝐣 + (𝑧 − 𝑧𝑜)𝐤 = 𝑡(𝑣1𝐢 + 𝑣2𝐣 + 𝑣3𝐤) 

or  

𝑥 − 𝑥𝑜
𝑣1

=
𝑦 − 𝑦𝑜
𝑣2

=
𝑧 − 𝑧𝑜
𝑣3

= 𝑡 

𝑑 =
|𝑃𝑆⃑⃑ ⃑⃑  × 𝐯|

|𝐯|
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Example 2: Find the distance from the point S(1, 1, 5) to the line 

L: 𝑥 = 1 + 𝑡, 𝑦 = 3 − 𝑡, 𝑧 = 2𝑡 

Solution: from the equation for the L, L passes through P(1, 3, 0) and parallel to 𝐯 = 𝐢 − 𝐣 +

2𝐤.  𝑃𝑆⃑⃑ ⃑⃑  = (1 − 1)𝐢 + (1 − 3)𝐣 + (5 − 0)𝐤 = −2𝐣 + 5𝐤  and 

𝑃𝑆⃑⃑ ⃑⃑  × 𝐯 = |
𝐢 𝐣 𝐤
0 −2 5
1 −1 2

| = 𝐢 + 5𝐣 + 2𝐤  

𝑑 =
|𝑃𝑆⃑⃑ ⃑⃑  × 𝐯|

|𝐯|
=
√1 + 25 + 4

√1 + 1 + 4
=
√30

√6
= √5 . 

Parallel Lines: L1║L2 ⇒𝐀× 𝐁 = 0. Orthogonal Lines: L1⊥ L2 ⇒𝐀 ⋅ 𝐁 = 0. 

 
 

 

Angle Between Two Lines: 

 

Skew Lines: are two lines that do not intersect and not parallel. 

 

 

 

 

 

A 

B 

L1 

L2 
A 

B 

L1 

L2 

A 

B 𝜃 

L1 

L2 

𝜃 = cos−1 (
𝐀 ∙ 𝐁

|𝐀||𝐁|
) 
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An Equation for a Plane in Space 

A plane in space is determined by knowing a point on the plane and vector normal 

(perpendicular) to the plane (see Figure 1.24). 

 

Figure 1.24 A plane in space. 

Example 3: Find an equation for the plane through Po(-3, 0, 7) perpendicular to 

𝐧 = 5𝐢 + 2𝐣 − 𝐤. 

Solution: the component equation is 5(𝑥 − (−3)) + 2(𝑦 − 0) + (−1)(𝑧 − 7) = 0 

5𝑥 + 2𝑦 − 𝑧 = −22 . 

Parallel Planes: P1║P2 ⇒ 𝐧𝟏 × 𝐧𝟐 = 0. Orthogonal Planes: P1⊥P2 ⇒ 𝐧𝟏 ⋅ 𝐧𝟐 = 0. 

  

 

Angle Between Two Planes:  

 

P1 
P2 

n1 

n2 

n1 
n2 

P1 

P2 

𝐧 = 𝑎𝐢 + 𝑏𝐣 + 𝑐𝐤 

n1 

n2 

P1 

P2 

ϴ 

𝐧 ∙ 𝑃𝑜𝑃⃑⃑ ⃑⃑ ⃑⃑  = 0 

(𝑎𝐢 + 𝑏𝐣 + 𝑐𝐤) ∙ [(𝑥 − 𝑥𝑜)𝐢 + (𝑦 − 𝑦𝑜)𝐣 + (𝑧 − 𝑧𝑜)𝐤] = 0 

𝑎(𝑥 − 𝑥𝑜) + 𝑏(𝑦 − 𝑦𝑜) + 𝑐(𝑧 − 𝑧𝑜) = 0 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑, 

    where                     𝑑 = 𝑎𝑥𝑜 + 𝑏𝑦𝑜 + 𝑐𝑧𝑜  

𝜃 = cos−1 (
𝐧𝟏 ∙ 𝐧𝟐
|𝐧𝟏||𝐧𝟐|

) 
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Distance Between Point and Plane: 

 

Or as you can see in the next example: 

𝐷 = |𝑃𝑆⃑⃑ ⃑⃑  ∙
𝐧

|𝐧|
| 

Example 4: Find the distance from S(1, 1, 3) to the plane 3𝑥 + 2𝑦 + 6𝑧 = 6. 

 

Figure 1.25 The distance from point S to the plane 

𝑃𝑆⃑⃑ ⃑⃑  = (1 − 0)𝐢 + (1 − 3)𝐣 + (3 − 0)𝐤 = 𝐢 − 2𝐣 + 3𝐳 

|𝐧| = √(3)2 + (2)2 + (6)2 = √49 = 7 

The distance from S to the plane is  

𝐷 = |𝑃𝑆⃑⃑ ⃑⃑  ∙
𝐧

|𝐧|
| = |(𝐢 − 2𝐣 + 3𝐳) ∙ (

3

7
𝐢 +
2

7
𝐣 +
6

7
𝐳)| = |

3

7
−
4

7
+
18

7
| =

17

7
 . 

 

 

P(x
o
, y

o
, z

o
) 

D 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑 

Plane 

𝐷 =
𝑎𝑥𝑜 + 𝑏𝑦𝑜 + 𝑐𝑧𝑜 − 𝑑

√𝑎2 + 𝑏2 + 𝑐2
 

𝐷 = {

+ 𝑝𝑜𝑖𝑛𝑡 𝑃 𝑙𝑖𝑒𝑠 𝑎𝑏𝑜𝑣𝑒
− 𝑝𝑜𝑖𝑛𝑡 𝑃 𝑙𝑖𝑒𝑠 𝑏𝑒𝑙𝑜𝑤
0 𝑝𝑜𝑖𝑛𝑡 𝑃 𝑙𝑖𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒

 

Solution: First, we find a point in 

the plane and calculate the length 

of the vector projection of 𝑃𝑆⃑⃑ ⃑⃑   onto 

a vector n normal to the plane 

(Figure 1.25). The coefficients in 

the equation give 

𝐧 = 3𝐢 + 2𝐣 + 6𝐤 

We can find interception points 

from the plane’s equation. If 

we take P to be the y-intercept (0, 

3, 0), then 

 



University of Anbar 
College of Engineering 

Electrical Engineering Dept. 
 

Calculus III, Year 2 
Dr. Abdullah Al-Ani 

2020-2021 

 

20 
 

Solved Problems: 

Prob1. Find a vector has length 15 in the direction of 𝐁 = 𝐢 + 2𝐣 − 𝐤. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: |𝐁| = √(1)2 + (2)2 + (−1)2 = √6 ,
𝐁

|𝐁|
=
1

√6
𝐢 +

2

√6
𝐣 −

1

√6
𝐤 , 

𝐯 = 15 (
1

√6
𝐢 +

2

√6
𝐣 −

1

√6
𝐤) =

15

√6
𝐢 +
30

√6
𝐣 −
15

√6
𝐤 . 

Prob2. Find a vector has length 22 in the opposite direction of 𝐀 = 2𝐢 − 3𝐣. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: |𝐀| = √(2)2 + (−3)2 = √13 ,
𝐀

|𝐀|
=

2

√13
𝐢 −

3

√13
𝐣 , 

𝐯 = −22 (
2

√13
𝐢 −

3

√13
𝐣) = −

44

√13
𝐢 +

66

√13
𝐣 . 

Prob3. Using vectors, show that the sum of triangle angles is 180o, the points of triangle are 

(1, 1), (4, 3), and (2, 5). Then, find the area of the triangle. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 𝐀 = (2 − 1)𝐢 + (5 − 1)𝐣 = 𝐢 + 4𝐣 ,      |𝐀| = √1 + 16 = √17 

                𝐁 = (4 − 1)𝐢 + (3 − 1)𝐣 = 3𝐢 + 2𝐣 ,    |𝐁| = √9 + 4 = √13 

                𝐂 = (2 − 4)𝐢 + (5 − 3)𝐣 = −2𝐢 + 2𝐣 , |𝐂| = √4 + 4 = √8 

𝜃 = cos−1 (
𝐀 ∙ 𝐁

|𝐀||𝐁|
) = cos−1 (

3 + 8

√17 √13
) = cos−1 (

11

√221 
) = 42.27° 

𝛽 = cos−1 (
−𝐁 ∙ 𝐂

|𝐁||𝐂|
) = cos−1 (

6 − 4

√13 √8
) = cos−1 (

2

√104 
) = 78.69° 

𝛼 = cos−1 (
−𝐀 ∙ −𝐂

|𝐀||𝐂|
) = cos−1 (

−2 + 8

√17 √8
) = cos−1 (

6

√136 
) = 59.03° 

𝜃 + 𝛽 + 𝛼 = 179.99 ≈ 180° 

 

 

y 

x 

A 

B 

C 

(1, 1) 

(4, 3) 

(2, 5) 

𝜃 

𝛽 
𝛼 

Area of traingle =
1

2
|𝐀 × 𝐁| =

1

2
|
𝐢 𝐣 𝐤
1 4 0
3 2 0

| 

                                                       =
1

2
|−10𝐤| = 5 unit2. 
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Prob4. Find equation of the plane has P1(3, 2, 1), P2(2, 1, -1), and P3(-1, 3, 2). 

Solution:  

 

𝐀 = −3𝐢 + 2𝐣 + 3𝐤         
𝐁 = 𝐢 + 𝐣 + 2𝐤                 

 }     𝐧 = 𝐀 × 𝐁 = |
𝐢 𝐣 𝐤
−3 2 3
1 1 2

| = (4 − 3)𝐢 − (−6 − 3)𝐣 + (−3 − 2)𝐤 

                𝐧 = 𝐢 + 9𝐣 − 5𝐤, point P2(2, 1, -1), or any point, we find 

𝑥 + 9𝑦 − 5𝑧 = 1(2) + 9(1) − 5(−1) 
Equ.  of plane is 
⇒            𝑥 + 9𝑦 − 5𝑧 = 16 .  

Prob5: Given equations of two planes, plane1 (𝑥 + 𝑦 + 𝑧 = 1) and plane2 (2𝑥 − 3𝑦 + 𝑧 =

4), find: (a) point ∈ plane1; (b) whether the two planes are parallel or not; (c) the intersection 

point, if they are intersecting; (d) equation of the line of intersection for the two planes. 

Solution: (a)  𝑦 = 𝑧 = 0, ⇒  𝑥 = 1,⇒  point is (1, 0, 0) . 

(𝐛)  
𝐧𝟏 = 𝐢 + 𝐣 + 𝐤     
𝐧𝟐 = 2𝐢 − 3𝐣 + 𝐤

 }    𝐧𝟏 × 𝐧𝟐 = |
𝐢 𝐣 𝐤
1 1 1
2 −3 1

| = (1 + 3)𝐢…… . . ≠ 0, so they are not parallel. 

(𝐜)    𝑧 = 0, 
         
⇒   

𝑥 + 𝑦 = 1
2𝑥 − 3𝑦 = 4

} 
Multiply 1st equ.  by 3 
⇒                  

3𝑥 + 3𝑦 = 3
2𝑥 − 3𝑦 = 4

5𝑥 = 7

  

                                                                                                     𝑥 =
7

5
 , 𝑦 = −

2

5
 , point is 𝑃 (

7

5
 , −
2

5
 , 0).  

(𝐝)      𝐯 = 𝐧𝟏 × 𝐧𝟐 = |
𝐢 𝐣 𝐤
1 1 1
2 −3 1

| = (1 + 3)𝐢 − (1 − 2)𝐣 + (−3 − 2)𝐤 = 4𝐢 + 𝐣 − 5𝐤 , 

x 

y 

z 

-z 

-x P1 

P3 

P2 

P1(3, 2, 1) 

P3(-1, 3, 2) P2(2, 1, -1) 

n 

B 

A 
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we have  𝑃 (
7

5
 , −
2

5
 , 0) and the vector 𝐯 

Equ.  of line is 
⇒            

𝑥 −
7
5

4
=
𝑦 +

2
5

1
=
𝑧

−5
 . 

                                                                 

Prob6: Determine a point P ∈ plane (𝑥 − 2𝑦 + 3𝑧 = 0), then find the distance between that 

point P and an intersection point of line (L) with the plane. 

𝐿:  
4 − 𝑧

−3
=
2𝑥

3
=
1 −

1
2𝑦

4
 

Solution: 𝑦 = 𝑧 = 0,
           
⇒   𝑥 = 0,

           
⇒   𝑃(0, 0, 0), 

4 − 𝑧

−3
=
2𝑥

3
=
1 −

1
2𝑦

4
 
  rearrange 
⇒        

𝑥

3/2 
=
𝑦 − 2

−8
=
𝑧 − 4

3
= 𝑡 , 

parametric equ.  
𝑥 =

3

2
𝑡

𝑦 = 2 − 8𝑡
𝑧 = 4 + 3𝑡

} 
substitute in plane
⇒             

{
 
 

 
 
3

2
𝑡 − 2(2 − 8𝑡) + 3(4 + 3𝑡) = 0

3

2
𝑡 − 4 + 16𝑡 + 12 + 9𝑡 = 0

53

2
𝑡 = −8 ⇒  𝑡 = −

16

53

 

 

substitute 𝑡 in
parametric equ.

   

𝑥 =
3

2
(−
16

53
) = −

24

53

𝑦 = 2 − 8(−
16

53
) =

234

53

𝑧 = 4 + 3 (−
16

53
) =

164

53 }
 
 

 
 

,

point of intersection (−
24

53
,
234

53
,
164

53
)

𝐷 = √(−
24

53
− 0)

2

+ (
234

53
− 0)

2

+ (
164

53
− 0)

2

𝐷 =
1

53
√(24)2 + (234)2 + (164)2 = 5.41 unit

 

n1 

n2 

Plane1 

Plane2 

ϴ 

v 
P 

plane 

D 

Line 

P 
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Prob7: Find the angle between two planes, plane1 (2𝑥 − 3𝑦 + 3𝑧 = 1) and plane2              

(𝑥 − 𝑦 +
1

3
𝑧 = 0). Then, find the distance between P(1, 1, -2) and plane1. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:    

𝐧𝟏 = 2𝐢 − 3𝐣 + 3𝐤

𝐧𝟐 = 𝐢 − 𝐣 +
1

3
𝐤    
}  , 𝜃 = cos−1 (

𝐧𝟏 ∙ 𝐧𝟐
|𝐧𝟏||𝐧𝟐|

) = cos−1

(

 
2 + 3 + 1

√4 + 9 + 9 √1 + 1 +
1
9)

  

            = cos−1

(

 
6

√22 √
19
9 )

  = 28.3°, 

𝐷 =
2(1) − 3(1) + 3(−2) − 1

√4 + 9 + 9
= −

8

√22
=

8

√22
 , the point lies below the plane. 

Prob8: Check whether these two planes are parallel or not and find the distance between 

them: plane1 (𝑥 − 2𝑦 + 4𝑧 = 1) and plane2 (3𝑥 − 6𝑦 + 12𝑧 = 5). 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 
𝐧𝟏 = 𝐢 − 2𝐣 + 4𝐤

     𝐧𝟐 = 3𝐢 − 6𝐣 + 12𝐤
} , 𝐧𝟏 × 𝐧𝟐 = |

𝐢 𝐣 𝐤
1 −2 4
3 −6 12

| 

                                                                               = (−24 + 24)𝐢 − (12 − 12)𝐣 + (−6 + 6)𝐤 = 0 , 

so, plane1 ∥ plane2, 

Then, find point ∈ plane1, 𝑦 = 𝑧 = 0,
         
⇒   𝑥 = 1, 𝑃(1, 0, 0),  

𝐷 =
3(1) − 6(0) + 12(0) − 5

√9 + 36 + 144
= −

2

√189
= −0.145 = 0.145 unit, plane1 lies below plane2. 

Prob9: Find the intersection point of the line passes through (2, 4, -1), (5, 0, 7) with xz-plane. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 𝐯 = 3𝐢 − 4𝐣 + 8𝐤,with initial point (2, 4, −1),⇒
𝑥 − 2

3
=
𝑦 − 4

−4
=
𝑧 + 1

8
= 𝑡 ,  

𝑥𝑧 − 𝑝𝑙𝑎𝑛𝑒 ⇒  𝑦 = 0,⇒  𝑦 = 4 − 4𝑡 
𝑦=0  
⇒   4 − 4𝑡 = 0 ⇒  𝑡 = 1 , 

𝑥 = 2 + 3(1) = 5    
𝑦 = 4 − 4(1) = 0    

𝑧 = −1 + 8(1) = 7

} 
the point is 
⇒         (5, 0, 7). 

Prob10: Find the equation of plane through (1, 2, -1) and perpendicular to line of intersection 

of these two planes (2𝑥 + 𝑦 + 𝑧 = 2), (𝑥 + 2𝑦 + 𝑧 = 3). 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 
𝐧𝟏 = 2𝐢 + 𝐣 + 𝐤
𝐧𝟐 = 𝐢 + 2𝐣 + 𝐤

} , 𝐯 = 𝐧𝟏 × 𝐧𝟐 = |
𝐢 𝐣 𝐤
2 1 1
1 2 1

| = (1 − 2)𝐢 − (2 − 1)𝐣 + (4 − 1)𝐤 
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 𝐯 = −𝐢 − 𝐣 + 3𝐤 , which is the normal vector to the plane3, 

−𝑥 − 𝑦 + 3𝑧 = −1(1) − 1(2) + 3(−1)  ⇒ −𝑥 − 𝑦 + 3𝑧 = −6 
Equ.  of plane
⇒          𝑥 + 𝑦 − 3𝑧 = 6. 

1.5 Cylinders and Quadric Surfaces:   

Cylinders: 

A cylinder is a surface that is generated by moving a straight line along a given planar curve 

while holding the line parallel to a given fixed line. The curve is called a generating curve for 

the cylinder. The cylinder can be generated by different curves. 

Cylinder is generated by parabola: 𝑦 = 𝑥2, suppose that the point 𝑃𝑜(𝑥𝑜 , 𝑥𝑜
2, 0) lies on the 

parabola 𝑦 = 𝑥2 in the xy-plane. Then, for any value of z, the point 𝑄(𝑥𝑜 , 𝑥𝑜
2, 𝑧) will lie on the 

cylinder because it lies on the line 𝑥 = 𝑥𝑜 , 𝑦 = 𝑥𝑜
2 through Po parallel to the z-axis. 

Conversely, any point 𝑄(𝑥𝑜 , 𝑥𝑜
2, 𝑧) whose y-coordinate is the square of its x-coordinate lies 

on the cylinder because it lies on the line 𝑥 = 𝑥𝑜 , 𝑦 = 𝑥𝑜
2 through Po parallel to the z-axis (see 

Figures 1.25 and 1.26). 

 

Figure 1.25 The cylinder of lines 

passing through the parabola 𝑦 = 𝑥2 in the 

xy-plane parallel to the z-axis. 

 

Figure 1.26 Every point of the cylinder in 

Figure 1.25 has coordinates of (𝑥𝑜, 𝑥𝑜
2, 𝑧). We 

call it the cylinder  𝑦 = 𝑥2. 
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Cylinder is generated by circle (circular cylinder): The equation 𝑥2 + 𝑦2 = 𝑟2 defines the 

circular cylinder made by the lines parallel to the z-axis that pass through the circle              

𝑥2 + 𝑦2 = 𝑟2 in the xy-plane (see Figure 1.27).  

Cylinder is generated by ellipse (elliptical cylinder): For example, the equation             

𝑥2 + 4𝑧2 = 4 defines the elliptical cylinder made by the lines parallel to the y-axis that pass 

through the ellipse 𝑥2 + 4𝑧2 = 4 in the xz-plane (see Figure 1.28). 

 

Figure 1.27 Cylinder is generated from circle. 

 

Figure 1.28 Elliptical cylinder. 

 

Cylinder is generated from hyperbola: For example, the hyperbolic cylinder 𝑦2 − 𝑧2 = 1 

is made of lines parallel to the x-axis and passing through the hyperbola 𝑦2 − 𝑧2 = 1 in the 

yz-plane. The cross-sections of the cylinder in planes perpendicular to the x-axis are 

hyperbolas congruent to the generating hyperbola (see Figure 1.29). 

𝑥2 + 𝑦2 = 𝑟2 

𝑟 

𝑥 𝑦 

𝑧 
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Figure 1.29 The hyperbolic cylinder. 

Quadric Surfaces:  

Quadric surfaces are surfaces defined by second-degree equations in x, y, and z. These 

surfaces are the three-dimensional analogues of ellipses, parabolas, and hyperbolas. The 

most general form:  

𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑧2 + 𝐷𝑥𝑦 + 𝐸𝑦𝑧 + 𝐹𝑥𝑧 + 𝐺𝑥 + 𝐻𝑦 + 𝐽𝑧 + 𝐾 = 0 , 

where A, B, C, and so on are constants. The basic quadric surfaces are ellipsoids, 

paraboloids, elliptical cones, and hyperboloids. Each type is presented by an example.  

Ellipsoids: The ellipsoid below cuts the coordinate axes at (± 𝑎, 0, 0), ( 0, ± 𝑏, 0), (0, 0, ± 𝑐) 

(see Figure 1.30). 

𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1 

It lies within the rectangular box defined by the inequalities |𝑥| ≤ 𝑎, |𝑦| ≤ 𝑏, and |𝑧| ≤ 𝑐. The 

surface is symmetric with respect to each of the coordinate planes because each variable 

in the defining equation is squared. It can be seen from Figure 1.30 that the ellipsoid has 

elliptical cross-sections in each of the three coordinate planes. The curves in which the three 

coordinate planes cut the surface are ellipses. For example, 

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1  when  𝑧 = 0 
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Figure 1.30 The ellipsoid. 

The section cut from the surface by the plane 𝑧 = 𝑧𝑜 , |𝑧𝑜| < 𝑐,  is the ellipse 

𝑥2

𝑎2 (1 − (
𝑧𝑜
𝑐 )

2
)
+

𝑦2

𝑏2 (1 − (
𝑧𝑜
𝑐 )

2
)
= 1 

If any two of the semi-axes a, b, and c are equal, the surface is an ellipsoid of revolution. If 

all three are equal, the surface is a sphere. 

Paraboloids: The elliptical paraboloid below is symmetric with respect to the planes 𝑥 = 0 

and 𝑦 = 0 (see Figure 1.31). 

𝑥2

𝑎2
+
𝑦2

𝑏2
=
𝑧

𝑐
 

The only intercept on the axes is the origin. Except for this point, the surface lies above (if 

𝑐 > 0) or entirely below (if 𝑐 < 0) the xy-plane, depending on the sign of c. The sections cut 

by the coordinate planes are 

𝑥 = 0:   the parabola 𝑧 =
𝑐

𝑏2
𝑦2

𝑦 = 0:   the parabola 𝑧 =
𝑐

𝑎2
𝑥2

𝑧 = 0:   the point (0, 0, 0).         

 

Figure 1.31 is shown for 𝑐 > 0. The cross-sections 

perpendicular to the z-axis above the xy-plane are 

ellipses. The cross-sections in the planes that contain the 

z-axis are parabolas. 
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Figure 1.31 The elliptical paraboloid.  

Each plane 𝑧 = 𝑧𝑜 above the xy-plane cuts the surface in the ellipse 

𝑥2

𝑎2
+
𝑦2

𝑏2
=
𝑧𝑜
𝑐
 . 

Cones: The elliptical cone below is symmetric with respect to the three coordinate planes 

(see Figure 1.32).  

𝑥2

𝑎2
+
𝑦2

𝑏2
=
𝑧2

𝑐2
 

 

                                      Figure 1.32 The elliptical cone. 

Planes perpendicular 

to the z-axis cut the 

cone in ellipses above 

and below the xy-

plane. Vertical planes 

that contain the z-axis 

cut it in pairs of 

intersecting lines. 



University of Anbar 
College of Engineering 

Electrical Engineering Dept. 
 

Calculus III, Year 2 
Dr. Abdullah Al-Ani 

2020-2021 

 

29 
 

The sections cut by the coordinate planes are 

𝑥 = 0:   the lines 𝑧 = ±
𝑐

𝑏
𝑦

𝑦 = 0:   the lines 𝑧 = ±
𝑐

𝑎
𝑥

𝑧 = 0:   the point (0, 0, 0).  

 

Hyperboloids: The hyperboloid of one sheet is symmetric with respect to each of the three 

coordinate planes (see Figure 1.32). Planes perpendicular to the z-axis cut it in ellipses. 

Vertical planes containing the z-axis cut it in hyperbolas. 

𝑥2

𝑎2
+
𝑦2

𝑏2
−
𝑧2

𝑐2
= 1 

 

Figure 1.33 The hyperboloid. 

The sections cut out by the coordinate planes are 

𝑥 = 0:   the hyperbola 
𝑦2

𝑏2
−
𝑧2

𝑐2
= 1

𝑦 = 0:   the hyperbola 
𝑥2

𝑎2
−
𝑧2

𝑐2
= 1

𝑧 = 0:   the ellipse 
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1.     

 

 

 

 

The sections cut by planes 𝑧 = 𝑧0 above and below the xy-

plane are ellipses whose centres lie on the z-axis and whose 

vertices lie on the lines given above. If 𝑎 = 𝑏, the cone is a right 

circular cone. 

 

The plane 𝑧 = 𝑧𝑜 cuts the surface in an ellipse with 

centre on the z-axis and vertices on one of the 

hyperbolic sections above. The surface is connected, 

meaning that it is possible to travel from one point on it 

to any other without leaving the surface. For this reason, 

it is said to have one sheet, in contrast to the hyperboloid 

in the next example, which has two sheets. If the 𝑎 = 𝑏, 

hyperboloid is a surface of revolution. 
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The hyperboloid of two sheets is symmetric with respect to the three coordinate planes (see 

Figure 1.33).  

𝑧2

𝑐2
−
𝑥2

𝑎2
−
𝑦2

𝑏2
= 1 

The plane 𝑧 = 0 does not intersect the surface; in fact, for a horizontal plane to intersect the 

surface, we must have 𝑧 ≥ 𝑐. The hyperbolic sections 

𝑥 = 0:   
𝑧2

𝑐2
−
𝑦2

𝑏2
= 1

𝑦 = 0:   
𝑧2

𝑐2
−
𝑥2

𝑎2
= 1

 

 

Figure 1.33 The hyperboloid of two sheets. 

Planes perpendicular to the z-axis above and below the vertices cut it in ellipses. Vertical 

planes containing the z-axis cut it in hyperbolas. 

The hyperbolic paraboloid (A Saddle Point): The hyperbolic paraboloid has symmetry 

with respect to the planes 𝑥 = 0 and 𝑦 = 0 (see Figure 1.34). 

𝑦2

𝑏2
−
𝑥2

𝑎2
=
𝑧

𝑐
 , 𝑐 > 0 

have their vertices and foci on the z-axis. The surface is separated 

into two portions, one above the plane 𝑧 = 𝑐 and the other below the 

plane 𝑧 = −𝑐. 
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Figure 1.34 The hyperbolic paraboloid. 

The sections in these planes are 

𝑥 = 0:      the parabola  𝑧 =
𝑐

𝑏2
𝑦2

𝑦 = 0:  the parabola  𝑧 = −
𝑐

𝑎2
𝑥2

 

 

In the plane 𝑥 = 0, the parabola opens upward from the origin. The parabola in the plane 

𝑦 = 0 opens downward. If we cut the surface by a plane 𝑧 = 𝑧𝑜 > 0, the section is a 

hyperbola, 

𝑦2

𝑏2
−
𝑥2

𝑎2
=
𝑧𝑜
𝑐

 

Near the origin, the surface is shaped like a saddle or mountain pass. To a person traveling 

along the surface in the yz-plane the origin looks like a minimum. To a person traveling in 

the xz-plane the origin looks like a maximum. Such a point is called a saddle point of a 

surface. 

The cross-sections in planes perpendicular to the 

z-axis above and below the xy-plane are hyperbolas. 

The cross-sections in planes perpendicular to the other 

axes are parabolas. 


