Calculus Ill, Year 2
Dr. Abdullah Al-Ani
2020-2021

University of Anbar
College of Engineering
Electrical Engineering Dept.

Chapter Two: Vector-Valued Functions and Motion in

Space

When a body (or object) travels through space, the equations x = f(t), y = g(t), and
z = h(t) that give the body’s coordinates as functions of time serve as parametric equations

for body’s motion and path. With vector notation,
r(t) = f(Oi+ g@®j+ h(Ok

gives the body’s position as a vector function of time. For example, an object moving in xy-

plane, the component function h(t) = 0 for all time.

2.1 Vector Functions

When a particle moves through space during a time interval I, we think of the particle’s

coordinates as functions defined on I:

x=f@®), y=g@0), z=h(), tel

/ The point (x,y,2) = (£ (£), g(©), h(t)), t € I, make

P(f(0), g0, hty)  YP the curve in space that we call the particle’s

path. Thus, a curve in space can be represented

by in vector form

r(t) = 0P = f(Di + g(®O)j + h(Hk

X
Figure 2.1 The position vector.
from the origin to the particle’s position P(f(t),g(t),h(t)) at time t is the particle’s position

vector (see Figure 2.1). The functions f, g, and h are the component functions of the position

vector. r is a vector function (vector-valued function) of the real variable t.
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Examples: Figure 2.2 shows the graph of the vector

function
r(t) = (cost)i+ (sint)j + tk.

The curve rises as the k-component z=t
increases. Each time t increases by 2m, the curve

completes one turn around the cylinder.

More helices can be seen in Figure 2.3.

(8}
!

—
X < X
v Y
i ¥
r(f) = (cos i + (sin )j + tk r(f) = (cos )i + (sin 7)j + 0.3tk r(7) = (cos 50)i + (sin 50)j + tk

Figure 2.3 Helices.

Limits and Continuity: Letr(t) = f(t)i + g(t)j + h(t)k be a vector function and L a vector.

We say that r has limit L at t approaches t, and write

limr(t) = L.

t-t,
If L = Lyi+ L,j + L3k, then tlintn r(t) = L precisely when
lim f(t) =L;, limg(t)=L,, and lim h(t) =L,
t-t, t-t, t-ot, :
Limit tln? r(t) exists if limits of all components exist. If one of limits does not exist, then
—lo

lim r(t) does not exist.

lim r(6) = (tlirntr}) f(t)) i+ (tlirg g(t)>j + (tlirg h(t)) k.

2
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Examplel: Find the limit of vector function r(t) = (cost)i + (sint)j + tk as t approaches %

: . : : A : V2. V2. m
Solution: lim r(t) = ( lim cos t)l + ( lim sin t)] + ( lim t) k=—i+—j+-k.
t-m/4 t-m/4 t-m/4 ton/4 2 2 4
Example2: Find
, : . (1
%Lr{)lr(t) = (tz n 1) i+ (n(t+1)j+ <?> k.

Solution: }irgr(t) =i+ 0j + ook . The limit does not exist (DNE).
For continuity, a vector function r(t) is continuous at a point t =t, in its domain if
tlir? r(t) =r(t,). The function is continuous if it is continuous at every point in its domain.
So, r(t) is continuous at t = ¢, if and only if

lim £(t) = f(t,), lim g(t) = g(t,), and lim h(t) = h(t,),

thatis, all f, g,and h are continuous at t = t,. If one of them is not continuous at t = t,, then

r(t) is not continuous at t = t,.

Example3: What the value of the t in which the vector function

r(t) = (tant)i + (Int)j + (V1 — t)k is continuous.

Solution: Each component function of r(t) is continuous on its domain. So, let us find firstly
the domain of f(t), g(t),and h(t):

D—{t - 3 mm3 }
= 2’ 2’272’
D, ={t >0}
D, ={t <1}

,D,={0<t <1}

Derivatives and Motion: The vector function r(t) = f(t)i + g(t)j + h(t)k has a derivative
(is differentiable) at t if f, g, and h have derivatives at t. The derivative is the vector function
, dr  r(t+A)—-r(t) df., dg. dh
rO=E =T Cat ) e
If r is the position vector of a particle moving along a smooth curve in space, then

1. Velocity is the derivative of position: v(t) = v = %.

2. Speed is the magnitude of the velocity: Speed = |v|.

L . . d dz
3. Acceleration is the derivative of velocity: a = d—‘t' = d—t; .

4. The unit vector v/|v| is the direction of motion at time t.
3
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Example4: A particle is moving on a path having position vector r(t) = (3cost)i+
(3sint)j + t2K, find: (a) the velocity and acceleration vectors; (b) the particle’s speed at any

time t; (c) the time, when the particle’s acceleration is orthogonal to its velocity.
Solution: (a)

r = (3cost)i+ (3sint)j+ t?k

dr

V= i —(3sint)i+ (3cost)j+ (2t)k
d’r . o

a= Tk —(3cost)i— (3sint)j + 2k

(b) Speed is the magnitude of v:

lv] = /(= 3sint)? + (3cost)? + (2t)2 = \/9sin? t + 9 cos? t + 4t2 = /9 + 4t2,

(c)v-a=09sintcost —9sintcost+4t =0 =t =0.

Differentiation Rules for Vector Functions: Let u and v be differentiable vector functions

of t, C a constant vector, ¢ any scalar, and f any differentiable scalar function.

1. Constant Function Rule: %C =0

2. Scalar Multiple Rules: %[cu(z‘)] = cu'(?)

Lfu@] = f/(Oule) + fe'()

3. St Rule: L Lu(t) + v(H)] = w'(@) + V(1)

4. Diffvenze Rl %[u(r) — ()] = w'(t) = v'(2)

5. Dot Product Rule: %[u(z) v(t)] = u'(¢) - v(z) + u(t)-v'(2)

6, CrosyProdustRule: %[u(t) X v(£)] = w'(t) X v() + u(t) X v'(2)
7. Chain Rule: L Lu(f(0)] = f' (0w’ (f(2))
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Vector Functions of Constant Length: If r is a
differentiable vector function of t of constant length (see
Figure 2.4), then

Figure 2.4.

Example5: Show that r(t) = (sint)i + (cost)j + v3k has constant length and is orthogonal
to its derivative.

Solution:

r(t) = (sint)i + (cost)j + V3k

Ir(t)| = \/(sin t)? + (cost)? + (\/5)2 =v1+3=2

Ir _ (cos i — (sinD)j
7, = (cos )i = (sinD)j

dr . )
r-Ezsmtcost—smtcost: 0

Integrals of Vector Functions (definite and indefinite integrals)

Indefinite Integral: The indefinite integral of r with respect to t is the set of all antiderivatives
of r, denoted by [ r(t)dt. If R is any antiderivative of r, then

J r(t)dt = R() + C.
Example6: Find indefinite integral f((cos )i + j — (2t)K)dt.

Solution: j((cos t)i+j— 2tk)dt = (J cos tdt) i+ (J dt)i - (J 2t dt) k

= (sint + C)i+ (t + C,)j — (t? + C3)k
=sinti+tj—t’k+ C, where C = Cji+ C,j + C3K.

5
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Definite Integral: If the components of r(t) = f(t)i + g(t)j + h(t)k are integrable over

[a, b], then so is r, and the definite integral of r from a to b is

b

fr(t)dtz ff(t)dt i+ fg(t)dt j+ fh(t)dt k.

a

Example7: Evaluate definite integral ["((cos )i + j — 2tk)dt.

s s

T s
Solution: f((cos t)i+j— 2tk)dt = f costdt |i+ f dt |j — f 2t dt |k
0 0 0 0

= [sin¢]§ i + [¢]§ j — [£°]5 k
= [0 —0]i + [m — 0]j — [® — 0%]k
=mj — m?k.
Example8: Find the position vector function of the particle departed initially (at time t = 0)

from point (3, 0, 0) with velocity v(0) = 3j. Also, the acceleration vector of particle is
a = —(3cost)i— (3sint)j + 2k.
Solution: The goal is to find r(t), and we have v(0) = 3j, r(0) = 3i + 0j + 0k, and

d?r

a=—5= —(3cost)i— (3sint)j + 2k

Integrating both sides of acceleration equation with respect to t gives
dr

v(t) = yrin —(3sint)i+ (3cost)j+ )k +C, .

We use v(0) = 3j to find C;:

3j =—(3sin0)i+ (3cos0)j+ (0)k+C, = 3j=3j+C, = C, =0.

So, the velocity vector as function of time is
dr
v(t) = i —(3sint)i+ (3cost)j+ (2t)k

Again, integrating both sides of velocity equation with respect to t gives

r(t) = (3cost)i+ (3sint)j + t?’k + C,.
We use r(0) = 3i to find C,:
3i = (3cos0)i+ (3sin0)j+0k+C, = 3i=3i++C, = C, =0.

So, the position vector as function of time is r(t) = (3 cos t)i + (3 sin t)j + t2k.
6
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2.2 Arc Length and the Unit Tangent Vector T

Arc Length Along a Space Curve: r(t) = x(t)i + y(t)j + z(t)k, the length of a smooth

curve r(t), a <t < b, that is traced exactly once as t increases fromt =atot = b, is

b 2 2 2 b
L—f (dx) +(dy) +(dz) dt L—f| |dt
N dt dt dt ’ or = J tviat.

a a

where |v| is the length of a velocity vector %.

Examplel: Find the length of the helix r(t) = (cost)i + (sint)j+ tk fromt = 0to t = 2m.

Solution:

b 21 21
L= jlvldt = f \/(— sint)? + (cost)? + (1)%dt = f V2dt = 2mV/2 units of length.
a 0 0

If we choose a base point P,(t) on a smooth curve C z
parametrized by t, each value of t determines a point
P(t) = (x(t),y(t),z(t)) on C and a “directed distance”

s(t), measured along C from the base point (Figure 2.5).

We call s an arc length parameter for the curve. The Arc

oint

Base
Length Parameter with Base Point P(t,) is P/\d

X

s©) = [ V@ + 0P+ @R dr = [ v@ldr, Figure 2.5.
to to

If a curve r(t) is given in terms of some parameter t and s(t) is the arc length function given
by equation above, then we may be able to solve for t as a function of s:t = t(s). Then the

curve can be reparametrized in terms of s by substituting for t: r = r(t(s)).

Example2: Find arc length parameterization of helix r(t) = (cost)i + (sint)j + tk if t, = 0.

Solution: s(t) = flv(r)ldr = fJ(— sin7)2 + (cos7)? + (1)2dr = fx/idr =2t
to 0

0

t= % ,r(t(s)) = (cos%)i+ (sin%)i +%k.

7
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Speed on a Smooth Curve:
ds
— = vl

Unit Tangent Vector T: The unit tangent vector of a smooth curve r(t) is
_dr _dr/dt drdt v A
“ds ds/dt dtds |v|’

The unit tangent vector T is a differentiable function
of t whenever v is a differentiable function of t (see
Figure 2.6).

Figure 2.6.

Example3: Find the unit tangent vector of the curve r(t) = (3 cost)i + (3sint)j + t2K.

dr
Solution: yrin —(3sint)i + (3cost)j + 2tk ,and |v| = /9 + 4t2

\% 3sint i+ 3cost - 2t K
= = — i J
vl V9 +4tZ  Vo+4t2 VI + 42

2.3 Curvature and Unit Normal Vector N

Curvature of a Plane Curve: Since T is a unit
vector, its length remains constant and only its
direction changes as the particle moves along the
curve. The rate at which T turns per unit of length
along the curve is called the curvature (Figure 2.7).
The symbol for the curvature function is the Greek

letter x (“kappa”). If T is the unit vector of a smooth

curve, the curvature function of the curve is

dT
ds

K = Figure 2.7.
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If a smooth curve r(t) is already given in terms of some parameter t other than the arc

length parameter s, we can calculate the curvature as

_dT|_det|_ 1 dT|_1dT|
“=asl T dat dsl = dsjaeldel ~ vilde

So, the formula for calculating curvature: If r(t) is a smooth curve, then the curvature is

_1 dT|
=i lael”

v

where T = | is the unit tangent vector.

v

In Figure 2.8, on a straight line, the unit tangent vector T always
points in the same direction, so its components are constants.

dS

Figure 2.8.
Examplel: Show that the curvature of a circle of radius a is 1/a.
Solution: the vector function of the circle of radius a is r(t) = (acost)i + (asint)j, then

dr

V=E=—(asint)i+(acost)j,|v| = /= (—asint)? + (acost)? =\/§=a.
v  —(asint)i+ (acost)j
T=—-= ( i+ ( )] = —(sint)i + (cost)j
|v| a
dT dT
= i (i T ikl R PO 2 ain )2 —
7 (cost)i (51nt)],|dt| \/( cost)? + (—sint) 1.
1 dT|_1(1)_1
“Zwilael T a Ta’

Among the vectors orthogonal to the unit tangent vector T is one of particular significance
because it points in the direction in which the curve is turning. Since T has constant length,
the derivative dT/ds is orthogonal to T. Therefore, if we divide dT/ds by its length k we

obtain a unit vector N orthogonal to T (Figure 2.9).
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At a point where k # 0, the principal unit N = 1dT
VT xds
normal vector for a smooth curve in the plane is S T
N = 1dT
kds’

The principal normal vector N will point toward

the concave side of the curve. P, N= %(Z,—?
If a smooth curve r(t) is already given in terms Figure 2.9.

of some parameter t other than the arc length parameter s, we can use the Chain Rule to

calculate N directly:

_avjas _ () (@) _ arjae
|dT/ds| |%%H%§| |dT/dt|

This formula enables us to find N without having to find and k and s first.
So, if r(t) is a smooth curve, then the principal unit normal is

_dT/dt
" |dT/dt|’

where T = I_ZI is the unit tangent vector.

Example2: Find T and N for the circular motion r(t) = (cos 2t)i + (sin 2t)j.

Solution: We first find T:

v = —(2sin2t)i + (2 cos 2t)j,|v| = \/4 sin? 2t + 4 cos? 2t = 2

v
T = — = —(sin 2t)i + (cos 2t)j .

|vi
dT . ) . 1dT :
— = —(2cos 2t)i — (2sin 2t)j, | —| = /4 cos? 2t + 4sin? 2t = 2
dt dt
dT/dt
_ __ 20 — (sin 26)i .
4Tt (cos 2t)i — (sin 2t)j

Notice that T -N = 0, verifying that N is orthogonal to T. Notice too, that for the circular

motion here, N points from r(t) towards the circle’s center at the origin.

10
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Circle of Curvature for Plane Curves: The circle of curvature or osculating circle at a point

P on a plane curve where k # 0 is the circle in the plane of the curve that

1. is tangent to the curve at P (has the same tangent line the curve has);
2. has the same curvature the curve has at P;

3. lies toward the concave or inner side of the curve (as in Figure 2.10).

Circle of
curvature

The radius of curvature of the curve at P is the

radius of the circle of curvature, which, according

Center of

curvature
]

to Examplel, is

Curve
Radius of

Radius of curvature = p = —. )
K curvature

To find p, we find k and take the reciprocal. The
centre of curvature of the curve at P is the centre

of the circle of curvature. Figure 2.10.

Example3: Find and graph the osculating circle of the parabola y = x? at the origin, where

the vector function of the parabola is r(t) = ti + t?j.

Solution: First we find the curvature of the parabola at the origin,

dr
v=—=1+2tj,|v]| =1+ 4t? y

dt Osculating

circlc\

Il
=
()

=Y _ 120 (1+ 4t2)_%' +2t(1+ 4t2)_%'
= == 1
vl V1 +4¢2 ]
1
¢
T 3 _1 _3 ]
i 4t(1 + 4t?)7zi + [2(1 + 4t2)72 — 8t(1 + 4t?)7Z|[j. : N
0 1 ’
At the origin, t = 0, so the curvature is Figure 2.11.
1 dT|
T vl ldt
1
() = oo e T o )| —|01+ 25| = ()02 + 22 = 2.

Therefore, the radius of curvature is ; == and the centre of the circle is ( ) (see Figure

2.11). The equation of the osculating circle is
2

RO
11
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Curvature and Normal Vectors for Space Curves: If a smooth curve in space is specified
by the position vector r(t) as a function of some parameter t, and if s is the arc length
parameter of the curve, then the unit tangent vector T is dr/ds = v/|v|. The curvature in

space is then defined to be

dT
ds

_ 1 dT’
vl ldt

just as for plane curves. The vector dT/ds is orthogonal to T, and we define the principal

unit normal to be

_1dT _ dT/dt
" kds  |dT/dt|’

Example4: Find the curvature and N for the helix:
r(t) = (acost)i+ (asint)j + btk, a,b=>0, a’?+b%+0.

Solution: We calculate T from the velocity vector v:

v =—(asint)i+ (acost)j + bk, |v| = \/a2 sin?t + a? cos?t + b? =\/a2 + b?

v 1
T=—=———|—(asint)i+ (acost)j+ bk
M~ Vargp SOt @cosi+ok]
O - [~(acos)i— (asin
TR e acost)i— (asint)j],
dT| | 1 1 a
—| = —[—(acost)i—(asint)']| =——/a%cos?t + a?sin® t = ———
dt Va2 + b2 ] Va2 + b2 Va2 + b2
1 |dT 1 a a

K=m E|=\/a2+b2\/a2+b2=a2+b2'

N = dT/dt  Va?+ b2 1
|dT/dt] a Va? + b?

[—(acost)i— (asint)j] = —(cost)i— (sint)j.

12
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2.4 Torsion and the Unit Binormal Vector B

If you are traveling along a space curve, the
Cartesian i, j, and k coordinate system for
representing the vectors describing your motion are
not truly relevant to you. What is meaningful instead
are the vectors representative of your forward
direction (the unit tangent vector T), the direction in
which your path is turning (the unit normal vector N),
and the tendency of your motion to “twist” out of the

plane created by these vectors in the direction

Figure 2.12.

perpendicular to this plane (defined by the unit binormal vector B =T X N) (see Figure

2.12).

Torsion: The binormal vector of a curve in space is B =T X N, a unit vector orthogonal to

both T and N (Figure 2.13). Together T, N, and B define a moving
right-handed vector frame that plays a significant role in
calculating the paths of particles moving through space. It is

called the Frenet (“fre-nay”) frame, or the TNB frame.

differentiate B with respectto s dB dT dN
B=TXxN »— =—XN+T X—
ds ds ds

Since N is the direction of dT/ds, dT/ds x N = 0 and

dB—0+T><dN—T><dN
ds ds ds

A

B 5
/4
7
Figure 2.13.

From this we see that dB/ds is orthogonal to T since a cross product is orthogonal to its

factors. Since dB/ds is also orthogonal to B (the latter has constant length), it follows that

dB/ds is orthogonal to the plane of B and T. In other words, dB/ds is parallel to N, so

dB/ds is a scalar multiple of N. In symbols,

aB_
ds R

The negative sign in this equation is traditional. The scalar is called the torsion along the

curve. Notice that

dB so that dB
— N=—tN-N=-1t(1)=—1=—=>17=——7"N

ds d
13
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Let B =T x N. The torsion function of a smooth curve is

=—_—-N
t ds

Unlike the curvature x, which is never negative, the torsion may be positive, negative, or

Zero.

Binormal

The three planes determined by T, N, and B are named . irino

plane Normal plane

and shown in Figure 2.14. The curvature k = |dT/ds]|
can be thought of as the rate at which the normal plane

turns as the point P moves along its path. Similarly, the

torsion = —(dB/ds)-N is the rate at which the P““Cillml
norma
osculating plane turns about T as P moves along the -
curve. Torsion measures how the curve twists. /
\. Osculating plane
Unit tangent

If we think of the curve as the path of a moving body, Figure 2.14.

then |dT/ds| tells how much the path turns to the left or

right as the object moves along; it is called the curvature of the object’s path. The number
—(dB/ds) - N tells how much a body’s path rotates or twists out of its plane of motion as the

object moves along; it is called

the torsion of the body’s path. The torsion %
Look at Figure 2.15. If P is a train TSR . >
climbing up a curved track, the i
rate at which the headlight turns F ET({C;;(VI?;FIL h
from side to side per unit si&cascs N
distance is the curvature of the g ! 0 P !
track. The rate at which the
engine tends to twist out of the _
Figure 2.15.

plane formed by T and N is the

torsion.

14
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Tangential and Normal Components of Acceleration: When a body is accelerated, we
usually want to know how much of the acceleration acts in the direction of motion, in the

tangential direction T. We can calculate this using the Chain Rule to rewrite v as

_dr_drds_ ds
V= T dsdt | de

dT_
ds

kN

\ 4

and differentiating both sides |

dv d( dS)_dZS dsdT d?s ds (des> d?s dS( ds>

=—=—|T—|=—T+——= T+—(——)=—T+— (kKN—
a dt dt\ dt dt? +dtdt dt? +dt ds dt dt? +dt K dt

So, the Tangential and Normal Components of Acceleration
a = aTT + aNN ,
where

_dzs_dll : _ (dS)Z_ w2
aT_dtZ_dtV an aN = K = K|V

are the tangential and normal scalar components of acceleration.

Notice that the binormal vector B does not appear in the equation above. No matter how the
path of the moving body we are watching may appear to twist and turn in space, the
acceleration a always lies in the plane of T and N orthogonal to B. The equation also tells us
exactly how much of the acceleration takes place tangent to the motion (d?s/dt?) and how
much takes place normal to the motion [k(ds/dt)?]
(Figure 2.16). a is the rate of change of velocity v,
and in general, both the length and direction of v
change as a body moves along its path. The
tangential component of acceleration ar measures
the rate of change of the length of v (that is, the

change in the speed). The normal component of

acceleration ay measures the rate of change of the Figure 2.16.

direction of v.

15
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If a body moves in a circle at a constant speed,
d%s/dt? is zero and all the acceleration points along
N toward the circle’s centre. If the body is speeding
up or slowing down, a has a nonzero tangential

component (Figure 2.17). To calculate ay we usually

use the formula ay = +/|al? — ar2, which comes from

solving the equation |a|? = a-a = ar? + ay? for ay.

With this formula, we can find ay without having to

calculate « first. Figure 2.17.
So, the Formula for Calculating the Normal Component of Acceleration is
ay = 1al> —ar?.
Examplel: Without finding T and N, write the acceleration of the motion
r(t) = (cost + tsint)i+ (sint —tcost)j, t>0
in the form of tangential and normal components.

Solution: First, we find arg:

dr
V:E:(—sint+sint+tcost)i+(cost—cost+tsint)i=(tcost)i+(tsint)]'
lv| = t2cos?t + t2sin?t =+/t2 =|t| =t, t>0

d d
ar=—I|vl=—((t) =1
r=oe vl == ©
To find ay:

a = (cost —tsint)i+ (sint + t cost)j

la] = y/(cost — tsint)? + (sint + t cos t)2 =tz +1

lal? =t +1

ay=+af—ar=JE+ D 1=tz =t

Then, a:aT+aN:(1)T+(t)N:T+tN
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Formulas for Computing Curvature and Torsion: We now give some easy-to-use

formulas for computing the curvature and torsion of a smooth curve.

ca= (S0)x [S2 e (S) N = (B rumy + (%) crxmy
/v VT dt? “\at — \dt dt? “\ar
v_dl‘_dST (ds>3 TxT=0 and
el _ (%
dt dt i TXN—EB
It follows that
3 3 49 vl and |B] =1
IVXa|=KE IB| = k|v|>. g7 = vl an =

Solving for k gives the following formula: Vector Formula for Curvature is

v x a
L

This equation calculates the curvature, a geometric property of the curve, from the velocity
and acceleration of any vector representation of the curve in which |v| is different from zero.
From any formula for motion along a curve, no matter how variable the motion may be (as
long as v is never zero), we can calculate a physical property of the curve that seems to

have nothing to do with the way the curve is traversed.

The most widely used formula for torsion, derived in more advanced texts, is

Z
P
> (if vxa=#0)

This formula calculates the torsion directly from the derivatives of the component functions
x = f(t),y = g(t),z = h(t) that make up r. The determinant’s first row comes from v, the

second row comes from a, and the third row comes from a = da/dt.
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Example2: Use vector formula for curvature and torsion formula to find x and t for the helix
r(t) = (acost)i+ (asint)j+ (bt)k .
Solution: First, we calculate the curvature:

v =—(asint)i+ (acost)j + (b)k

a = —(acost)i— (asint)j
i j k
vxa=|-asint acost b|= (absint)i- (abcost)j+ a’k

—acost —asint 0

_|V><a| va?b? + a* ava? + b? a

|v|3 = (aZ + b2)3/2 = (aZ + b2)3/2 - a2 + b2 '

Notice that the result agrees with in Example4 (section 2.3, page 12), where we calculated

the curvature directly from its definition.

To evaluate torsion, we find the entries in the determinant by differentiating r with respect to

t. We already have v and a, and

da
a=—=(asint)i— (acost)j.
dt
Hence,
x y Z —asint acost b
Xy oz —acost —asint 0 — o
,_% ¥ 71 _| asint —acost 0 =b(a cos“t + a“sin t)= b
lv x a|? (a\/m)z a?(a® + b?) a?+ b2’

From this last equation we see that the torsion of a helix about a circular cylinder is constant.
In fact, constant curvature and constant torsion characterise the helix among all curves in

space.
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Formulas for Curves in Space:

Unit tangent vector:

Principal unit normal vector:
Binormal vector:

Curvature:

Torsion:

Tangential and normal scalar

components of acceleration:

_V
vl
dT/dt
= |dT/dt]|
B=TxN
dT
==

N

_|lvxal
[v[3

X
P

dB

T ds |v

y
y
T = Y
X

NN NN

al
a:aTT+aNN

ar =—|V

r= ol

anN = k|v|? = vV |a]? — ar?
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Solved Problems:

2.1 Vector Functions

Probl: Find the angle between the velocity and acceleration vectors at time t =0 for

position vector:
r(t) = (In(t? + 1))i + (tan~' t)j + V2 + 1k.

Solution:

v=< 2t )i+(ﬁ)1‘+t(t2+1)—%k S v0) =j = [v(0) =1

t2+1
—2t% + 2 2t
= i — i — 73 — 2 —
! (t:2+1)zll [(t2+1)z]'+ (t2+1)%k = a(0) =2i+k [a(0)|=y/(2?+1=V5
B 1 v(0) -a(0) B I
6 = cos —lv(O)IIa(O)I = CosS 0—2.

Prob2: Find parametric equations for the line that is tangent to the given curve at t = 0

r(t) = (sint)i+ (t? — cost)j + e’k.

Solution:
=0
v(t) = (cost)i+ (2t + sint)j + e'k = v(0)=i+k

r(0)=—j+k= P,(0,—-1,1)

x=t
y =—1 ; are the parametric equations of the tangent line.
z=1+t

Prob3: A particle is moving along the path of the unit circle with position vector

r(t) = (cost)i— (sint)j, t =0, answer the following:

(a) Does the patrticle have constant speed? If so, what is its constant speed?
(b) Is the particle’s acceleration vector always orthogonal to its velocity vector?
(c) Does the particle move clockwise or counterclockwise around the circle?
(d) Does the particle begin at the point (1, 0)?
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Solution: v(t) = —(sint)i— (cost)j = a(t) = —(cost)i + (sint)j

(@) |[v(t)| = Vsin2t + cos?t =1 = constant speed.

(b) v-a=sintcost —sintcost =0 = yes, orthogonal.

(c) Clockwise movement.

(d) Yes, r(0) =i—0j.

2.2 Arc Length and the Unit Tangent Vector T

Prob1: Find the length of the curve r(t) = (et cost)i + (etsint)j+e'k,—In4 <t < 0.

Solution: v = (et cost —e'sint)i + (efsint + e cost)j + e’k

Iv| = (et cost — efsint)? + (efsint + et cost)? + (et)? = y/3e2t = /3et

b 0
V3 3V3
L=f|v|dt= f \/§etdt=\/§et|ol =3 —— = —— unitlength.
—Iln4 4 4
a

—In4

2.3 Curvature and Unit Normal Vector N

Probl: Find T, N, and k for the space curve r(t) = (cosht)i — (sinht)j + tk

Solution: v = (sinh t)i — (cosht)j + k = |v| = Vsinh? t + cosh?t + 1 =2 cosht

T v (sinht)i — (cosht)j + k (1t ht)' (1)_+(1 ht)k
_ v _ = (—tan i—(— —sec
[v] V2 cosht V2 V2 ] V2
at (1 hzt)' <1 htt ht)k:>|dT| (1 h2t)2+(1 htt hf:)2
— = (—sec i—[—=sechttan —| = [|—=sec —sechttan
dt ~\V2 V2 arl = |\ 2
dT|— 1 h4t+1 h? t tanh? t = ! ht
7| = 2sec 2sec an —ﬁsec
dT (% sech? t) i— (% sech t tanh t) k
N = g{, = T = (secht)i — (tanht)k
|% ﬁsecht
1 dT| 1 AU S
K=—|—| =—— —secht ==sec )
vl Idt] /2cosht V2 2
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Prob2: Find an equation for the circle of curvature of the curve r(t) = ti + (sint)j at the

point (g 1). (The curve parametrises the graph of y = sinx in the xy-plane.)

Solution: v=1i+ (cost)j = |v| =Vv1+cos’t = |v(§)| =1

v i+ (cost)j dT sintcost | —sint
T = ﬁ = —2 = d_t = 3 1 _|_ 3]
VI v1+cos®t (14 cos?2t)z2 (14 cos?t)2

dT| sin? t cos?t N sin? t |sin t| dT
— = = = —_— =
dt (14 cos?2t)®  (1+4cos?t)® 1+ cos?t dt e=2
1 |dT T 1 T T 2
I ) — — _ — : _ _ 2
K_|V| dt| K(z)—l = p—K—landthecentrels (2,0) = (x 2) +y-=1.

2.4 Torsion and the Unit Binormal Vector B

Probl: Find T, N, x, B and t for the space curve r(t) = (cosht)i — (sinht)j + tk.

Solution: v = (sinht)i — (cosht)j + k = |v| = VsinhZt + cosh?t + 1 =2 cosht

T v (sinht)i — (cosht)j + k (1t ht)' (1)_+(1 ht)k
- = (—tan i—-(— —sec
vi VZ cosh ¢ V2 2 T\

at (1 hzt)' <1 htt ht)k :>|dT (1 h2t)2+(1 htt hf:)2
— = | —=SecC 1—|—SsecC an — = —SecC —SecC an
dt  \\2 V2 dt NG NG

dT|— 1 h4t+1 h? t tanh? t = ! ht
7= 2sec 2sec an —ﬁsec
aT (i sech? t) i— (i sech t tanh t) k
dt _ W2 V2 .
N = g,i. = T = (secht)i — (tanht)k
|E ﬁsecht
1 dT| LN SOOI SN
K=—|—| =———— —secht = =sec )
lvlldt] +/2cosht 2 2
i j k
B=TXN ! tanht - - ht
= = |—tan —— —sec
V2 V2 V2
secht 0 —tanht
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<1t ht)' ( 1t h?t ! hzt)'+(1 ht)k
= | —1an 1— | ——=1an — —=SeC —SecC
vz Vz Vz Im\z

= (%tanh t)i + <%)] + (%sech t) k

da
a = (cosht)i— (sinht)j = a= Frin (sinh t)i — (cosht)j

i j k
vXa=|sinht —cosht 1|= (sinht)i— (—cosht)j+ (—sinh?t + cosh?t)k
cosht —sinht O
= (sinht)i+ (cosht)j+k = |vxal?=sinh?t+ cosh?t+1

x y Z sinht —cosht 1

x y Z cosht —sinht 0
I = X Y Z1_lsinht —cosht OI _ —1 _ —1

|v x al? sinh?t + cosh?t+1 sinh?t+cosh?t+1 2cosh?t’
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