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Chapter Two: Vector-Valued Functions and Motion in 

Space 

When a body (or object) travels through space, the equations 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), and          

𝑧 = ℎ(𝑡) that give the body’s coordinates as functions of time serve as parametric equations 

for body’s motion and path. With vector notation, 

𝐫(𝑡) = 𝑓(𝑡)𝐢 + 𝑔(𝑡)𝐣 + ℎ(𝑡)𝐤 

gives the body’s position as a vector function of time. For example, an object moving in xy-

plane, the component function ℎ(𝑡) = 0 for all time. 

2.1 Vector Functions 

When a particle moves through space during a time interval 𝐼, we think of the particle’s 

coordinates as functions defined on 𝐼: 

 

Figure 2.1 The position vector. 

from the origin to the particle’s position 𝑃(𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡)) at time 𝑡 is the particle’s position 

vector (see Figure 2.1).  The functions 𝑓, 𝑔, and ℎ are the component functions of the position 

vector. 𝐫 is a vector function (vector-valued function) of the real variable 𝑡.  

 

 

 

 

 

 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡),    𝑧 = ℎ(𝑡), 𝑡 ∈ 𝐼 

The point (𝑥, 𝑦, 𝑧) = (𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡)), 𝑡 ∈ 𝐼, make 

up the curve in space that we call the particle’s 

path. Thus, a curve in space can be represented 

by in vector form 

𝐫(𝑡) = 𝑂𝑃⃑⃑⃑⃑  ⃑ = 𝑓(𝑡)𝐢 + 𝑔(𝑡)𝐣 + ℎ(𝑡)𝐤 
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Figure 2.2 The upper half of the helix. 

 

Figure 2.3 Helices. 

Limits and Continuity: Let 𝐫(𝑡) = 𝑓(𝑡)𝐢 + 𝑔(𝑡)𝐣 + ℎ(𝑡)𝐤 be a vector function and 𝐋 a vector. 

We say that 𝐫 has limit 𝐋 at 𝑡 approaches 𝑡𝑜 and write 

lim
𝑡→𝑡𝑜

𝐫(𝑡) = 𝐋 . 

If 𝐋 = 𝐿1𝐢 + 𝐿2𝐣 + 𝐿3𝐤, then lim
𝑡→𝑡𝑜

𝐫(𝑡) = 𝐋 precisely when  

lim
𝑡→𝑡𝑜

𝑓(𝑡) = 𝐿1, lim
𝑡→𝑡𝑜

𝑔(𝑡) = 𝐿2,    and lim
𝑡→𝑡𝑜

ℎ(𝑡) = 𝐿3 . 

Limit lim
𝑡→𝑡𝑜

𝐫(𝑡) exists if limits of all components exist. If one of limits does not exist, then 

lim
𝑡→𝑡𝑜

𝐫(𝑡) does not exist. 

lim
𝑡→𝑡𝑜

𝐫(𝑡) = (lim
𝑡→𝑡𝑜

𝑓(𝑡)) 𝐢 + (lim
𝑡→𝑡𝑜

𝑔(𝑡)) 𝐣 + (lim
𝑡→𝑡𝑜

ℎ(𝑡)) 𝐤 . 

Examples: Figure 2.2 shows the graph of the vector 

function 

𝐫(𝑡) = (cos 𝑡)𝐢 + (sin 𝑡)𝐣 + 𝑡𝐤. 

The curve rises as the k-component 𝑧 = 𝑡 

increases. Each time t increases by 2𝜋, the curve 

completes one turn around the cylinder. 

More helices can be seen in Figure 2.3. 
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Example1: Find the limit of vector function 𝐫(𝑡) = (cos 𝑡)𝐢 + (sin 𝑡)𝐣 + 𝑡𝐤 as 𝑡 approaches 
𝜋

4
. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  lim
𝑡→𝜋/4 

𝐫(𝑡) = ( lim
𝑡→𝜋/4

cos 𝑡) 𝐢 + ( lim
𝑡→𝜋/4

sin 𝑡) 𝐣 + ( lim
𝑡→𝜋/4

𝑡) 𝐤 =
√2

2
𝐢 +
√2

2
𝐣 +
𝜋

4
𝐤 . 

Example2: Find 

lim
𝑡→0 
𝐫(𝑡) = (

1

𝑡2 + 1
) 𝐢 + (ln(𝑡 + 1))𝐣 + (

1

𝑡
) 𝐤 . 

Solution: lim
𝑡→0 
𝐫(𝑡) = 𝐢 + 0𝐣 + ∞𝐤 . The limit does not exist (DNE). 

For continuity, a vector function 𝐫(𝑡) is continuous at a point 𝑡 = 𝑡𝑜 in its domain if 

lim
𝑡→𝑡𝑜

𝐫(𝑡) = 𝐫(𝑡𝑜). The function is continuous if it is continuous at every point in its domain. 

So, 𝐫(𝑡) is continuous at 𝑡 = 𝑡𝑜 if and only if  

lim
𝑡→𝑡𝑜

𝑓(𝑡) = 𝑓(𝑡𝑜), lim
𝑡→𝑡𝑜

𝑔(𝑡) = 𝑔(𝑡𝑜),  and lim
𝑡→𝑡𝑜

ℎ(𝑡) = ℎ(𝑡𝑜), 

that is, all 𝑓, 𝑔, 𝑎𝑛𝑑 ℎ are continuous at 𝑡 = 𝑡𝑜. If one of them is not continuous at 𝑡 = 𝑡𝑜, then 

𝐫(𝑡) is not continuous at 𝑡 = 𝑡𝑜.  

Example3: What the value of the 𝑡 in which the vector function 

𝐫(𝑡) = (tan 𝑡)𝐢 + (ln 𝑡)𝐣 + (√1 − 𝑡)𝐤 is continuous. 

Solution: Each component function of 𝐫(𝑡) is continuous on its domain. So, let us find firstly 

the domain of 𝑓(𝑡), 𝑔(𝑡), and ℎ(𝑡): 

𝐷𝑓 = {𝑡|  𝑡 ≠ ⋯−
3𝜋

2
, −
𝜋

2
,
𝜋

2
,
3𝜋

2
,… }

𝐷𝑔 = {𝑡 > 0}                                              

𝐷ℎ = {𝑡 ≤ 1}                                              

 , 𝐷𝐫 = {0 < 𝑡 ≤ 1}. 

Derivatives and Motion: The vector function 𝐫(𝑡) = 𝑓(𝑡)𝐢 + 𝑔(𝑡)𝐣 + ℎ(𝑡)𝐤 has a derivative 

(is differentiable) at 𝑡 if 𝑓, 𝑔, and ℎ have derivatives at 𝑡. The derivative is the vector function  

𝐫′(𝑡) =
𝑑𝐫

𝑑𝑡
= lim
∆𝑡→0

𝐫(𝑡 + ∆𝑡) − 𝐫(𝑡)

∆𝑡
=
𝑑𝑓

𝑑𝑡
𝐢 +
𝑑𝑔

𝑑𝑡
𝐣 +
𝑑ℎ

𝑑𝑡
𝐤 . 

If 𝐫 is the position vector of a particle moving along a smooth curve in space, then 

1. Velocity is the derivative of position: 𝐯(𝑡) = 𝐯 =
𝑑𝐫

𝑑𝑡
. 

2. Speed is the magnitude of the velocity: Speed = |𝐯|. 

3. Acceleration is the derivative of velocity: 𝐚 =
𝑑𝐯

𝑑𝑡
=
𝑑2𝐫

𝑑𝑡2
 . 

4. The unit vector 𝐯/|𝐯|  is the direction of motion at time 𝑡. 
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Example4: A particle is moving on a path having position vector 𝐫(𝑡) = (3 cos 𝑡)𝐢 +

(3 sin 𝑡)𝐣 + 𝑡2𝐤, find: (a) the velocity and acceleration vectors; (b) the particle’s speed at any 

time 𝑡; (c) the time, when the particle’s acceleration is orthogonal to its velocity. 

Solution: (a) 

𝐫 = (3 cos 𝑡)𝐢 + (3 sin 𝑡)𝐣 + 𝑡2𝐤 

𝐯 =
𝑑𝐫

𝑑𝑡
= −(3 sin 𝑡)𝐢 + (3 cos 𝑡)𝐣 + (2𝑡)𝐤 

𝐚 =
𝑑2𝐫

𝑑𝑡2
= −(3 cos 𝑡)𝐢 − (3 sin 𝑡)𝐣 + 2𝐤 

(b) Speed is the magnitude of 𝐯: 

|𝐯| = √(−3 sin 𝑡)2 + (3 cos 𝑡)2 + (2𝑡)2 = √9 sin2 𝑡 + 9 cos2 𝑡 + 4𝑡2 = √9 + 4𝑡2. 

(c) 𝐯 ∙ 𝐚 = 9 sin 𝑡 cos 𝑡 − 9 sin 𝑡 cos 𝑡 + 4𝑡 = 0 ⇒ 𝑡 = 0. 

Differentiation Rules for Vector Functions: Let 𝐮 and 𝐯 be differentiable vector functions 

of 𝑡, 𝐂 a constant vector, 𝑐 any scalar, and 𝑓 any differentiable scalar function. 
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Vector Functions of Constant Length: If 𝐫 is a 

differentiable vector function of 𝑡 of constant length (see 

Figure 2.4), then 

 

 

 

 

                                                                                             Figure 2.4. 

Example5: Show that 𝐫(𝑡) = (sin 𝑡)𝐢 + (cos 𝑡)𝐣 + √3𝐤  has constant length and is orthogonal 

to its derivative. 

Solution: 

   𝐫(𝑡) = (sin 𝑡)𝐢 + (cos 𝑡)𝐣 + √3𝐤 

|𝐫(𝑡)| = √(sin 𝑡)2 + (cos 𝑡)2 + (√3)
2
= √1 + 3 = 2  

      
𝑑𝐫

𝑑𝑡
= (cos 𝑡)𝐢 − (sin 𝑡)𝐣 

 𝐫 ∙
𝑑𝐫

𝑑𝑡
= sin 𝑡 cos 𝑡 − sin 𝑡 cos 𝑡 = 0 

Integrals of Vector Functions (definite and indefinite integrals) 

Indefinite Integral: The indefinite integral of 𝐫 with respect to 𝑡 is the set of all antiderivatives 

of 𝐫, denoted by ∫ 𝐫(𝑡)𝑑𝑡. If 𝐑 is any antiderivative of 𝐫, then 

∫𝐫(𝑡)𝑑𝑡 = 𝐑(𝑡) + 𝐂 . 

Example6: Find indefinite integral ∫((cos 𝑡)𝐢 + 𝐣 − (2𝑡)𝐤)𝑑𝑡. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: ∫((cos 𝑡)𝐢 + 𝐣 − 2𝑡𝐤)𝑑𝑡 = (∫cos 𝑡 𝑑𝑡) 𝐢 + (∫𝑑𝑡) 𝐣 − (∫2𝑡 𝑑𝑡) 𝐤 

                              = (sin 𝑡 + 𝐶1)𝐢 + (𝑡 + 𝐶2)𝐣 − (𝑡
2 + 𝐶3)𝐤 

                                                               = sin 𝑡 𝐢 + 𝑡𝐣 − 𝑡2𝐤 + 𝐂 , where  𝐂 = 𝐶1𝐢 + 𝐶2𝐣 + 𝐶3𝐤 . 

𝐫 ∙
𝑑𝐫

𝑑𝑡
= 0 . 
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Definite Integral: If the components of 𝐫(𝑡) = 𝑓(𝑡)𝐢 + 𝑔(𝑡)𝐣 + ℎ(𝑡)𝐤 are integrable over 

[𝑎, 𝑏], then so is 𝐫, and the definite integral of 𝐫 from 𝑎 to 𝑏 is 

∫𝐫(𝑡)𝑑𝑡

𝑏

𝑎

= (∫𝑓(𝑡)𝑑𝑡

𝑏

𝑎

) 𝐢 + (∫𝑔(𝑡)𝑑𝑡

𝑏

𝑎

) 𝐣 + (∫ℎ(𝑡)𝑑𝑡

𝑏

𝑎

)𝐤 . 

Example7: Evaluate definite integral ∫ ((cos 𝑡)𝐢 + 𝐣 − 2𝑡𝐤)𝑑𝑡
𝜋

0
. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: ∫((cos 𝑡)𝐢 + 𝐣 − 2𝑡𝐤)𝑑𝑡

𝜋

0

= (∫ cos 𝑡 𝑑𝑡

𝜋

0

) 𝐢 + (∫𝑑𝑡

𝜋

0

) 𝐣 − (∫ 2𝑡 𝑑𝑡

𝜋

0

)𝐤  

         = [sin 𝑡]0
𝜋 𝐢 + [𝑡]0

𝜋 𝐣 − [𝑡2]0
𝜋 𝐤 

                    = [0 − 0]𝐢 + [π − 0]𝐣 − [π2 − 02]𝐤 

                                                                    = 𝜋𝐣 − 𝜋2𝐤 . 

Example8: Find the position vector function of the particle departed initially (at time 𝑡 = 0) 

from point (3, 0, 0) with velocity 𝐯(0) = 3𝐣. Also, the acceleration vector of particle is              

𝐚 = −(3 cos 𝑡)𝐢 − (3 sin 𝑡)𝐣 + 2𝐤. 

Solution: The goal is to find 𝐫(𝑡), and we have 𝐯(0) = 3𝐣, 𝐫(0) = 3𝐢 + 0𝐣 + 0𝐤, and 

𝐚 =
𝑑2𝐫

𝑑𝑡2
= −(3 cos 𝑡)𝐢 − (3 sin 𝑡)𝐣 + 2𝐤 

Integrating both sides of acceleration equation with respect to 𝑡 gives 

𝐯(𝑡) =
𝑑𝐫

𝑑𝑡
= −(3 sin 𝑡)𝐢 + (3 cos 𝑡)𝐣 + (2𝑡)𝐤 + 𝐂1 . 

We use 𝐯(0) = 3𝐣 to find 𝐂1: 

3𝐣 = −(3 sin 0)𝐢 + (3 cos 0)𝐣 + (0)𝐤 + 𝐂1  ⇒  3𝐣 = 3𝐣 + 𝐂1  ⇒ 𝐂1 = 0 . 

So, the velocity vector as function of time is  

𝐯(𝑡) =
𝑑𝐫

𝑑𝑡
= −(3 sin 𝑡)𝐢 + (3 cos 𝑡)𝐣 + (2𝑡)𝐤 

Again, integrating both sides of velocity equation with respect to 𝑡 gives 

𝐫(𝑡) = (3 cos 𝑡)𝐢 + (3 sin 𝑡)𝐣 + 𝑡2𝐤 + 𝐂2. 

We use 𝐫(0) = 3𝐢 to find 𝐂2: 

3𝐢 = (3 cos 0)𝐢 + (3 sin 0)𝐣 + 0𝐤 + 𝐂2  ⇒  3𝐢 = 3𝐢 + +𝐂2  ⇒ 𝐂2 = 0 . 

So, the position vector as function of time is 𝐫(𝑡) = (3 cos 𝑡)𝐢 + (3 sin 𝑡)𝐣 + 𝑡2𝐤. 
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2.2 Arc Length and the Unit Tangent Vector 𝐓 

Arc Length Along a Space Curve: 𝐫(𝑡) = 𝑥(𝑡)𝐢 + 𝑦(𝑡)𝐣 + 𝑧(𝑡)𝐤, the length of a smooth 

curve 𝐫(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏, that is traced exactly once as 𝑡 increases from 𝑡 = 𝑎 to 𝑡 = 𝑏, is 

𝐿 = ∫√(
𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

+ (
𝑑𝑧

𝑑𝑡
)
2

𝑑𝑡

𝑏

𝑎

, or            𝐿 = ∫|𝐯|𝑑𝑡

𝑏

𝑎

 . 

where |𝐯| is the length of a velocity vector 
𝑑𝐫

𝑑𝑡
. 

Example1: Find the length of the helix 𝐫(𝑡) = (cos 𝑡)𝐢 + (sin 𝑡)𝐣 + 𝑡𝐤 from 𝑡 = 0 to 𝑡 = 2𝜋. 

Solution:  

𝐿 = ∫|𝐯|𝑑𝑡

𝑏

𝑎

= ∫ √(−sin 𝑡)2 + (cos 𝑡)2 + (1)2𝑑𝑡

2𝜋

0

= ∫ √2𝑑𝑡

2𝜋

0

= 2𝜋√2 units of length. 

If we choose a base point 𝑃𝑜(𝑡) on a smooth curve 𝐶 

parametrized by 𝑡, each value of 𝑡 determines a point 

𝑃(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) on 𝐶 and a “directed distance” 

𝑠(𝑡), measured along 𝐶 from the base point (Figure 2.5). 

We call 𝑠 an arc length parameter for the curve. The Arc 

Length Parameter with Base Point 𝑃(𝑡𝑜) is 

𝑠(𝑡) = ∫√[𝑥′(𝜏)]2 + [𝑦′(𝜏)]2 + [𝑧′(𝜏)]2

𝑡

𝑡𝑜

𝑑𝜏 = ∫|𝐯(𝜏)|𝑑𝜏

𝑡

𝑡𝑜

. 

If a curve 𝐫(𝑡) is given in terms of some parameter 𝑡 and 𝑠(𝑡) is the arc length function given 

by equation above, then we may be able to solve for 𝑡 as a function of 𝑠: 𝑡 = 𝑡(𝑠). Then the 

curve can be reparametrized in terms of 𝑠 by substituting for 𝑡: 𝐫 = 𝐫(𝑡(𝑠)). 

Example2: Find arc length parameterization of helix 𝐫(𝑡) = (cos 𝑡)𝐢 + (sin 𝑡)𝐣 + 𝑡𝐤 if 𝑡𝑜 = 0. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 𝑠(𝑡) = ∫|𝐯(𝜏)|𝑑𝜏

𝑡

𝑡𝑜

= ∫√(−sin 𝜏)2 + (cos 𝜏)2 + (1)2𝑑𝜏

𝑡

0

= ∫√2𝑑𝜏

𝑡

0

= √2 𝑡. 

𝑡 =
𝑠

√2
 , 𝐫(𝑡(𝑠)) = (cos

𝑠

√2
) 𝐢 + (sin

𝑠

√2
) 𝐣 +

𝑠

√2
𝐤 . 

Figure 2.5. 
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Speed on a Smooth Curve:  

𝑑𝑠

𝑑𝑡
= |𝐯(𝑡)| . 

Unit Tangent Vector 𝐓: The unit tangent vector of a smooth curve 𝐫(𝑡) is 

𝐓 =
𝑑𝐫

𝑑𝑠
=
𝑑𝐫/𝑑𝑡

𝑑𝑠/𝑑𝑡 
=
𝑑𝐫

𝑑𝑡

𝑑𝑡

𝑑𝑠
=
𝐯

|𝐯|
 . 

The unit tangent vector 𝐓 is a differentiable function 

of 𝑡 whenever 𝐯 is a differentiable function of 𝑡 (see 

Figure 2.6). 

 

 

 

 

Example3: Find the unit tangent vector of the curve 𝐫(𝑡) = (3 cos 𝑡)𝐢 + (3 sin 𝑡)𝐣 + 𝑡2𝐤. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 
𝑑𝐫

𝑑𝑡
= −(3 sin 𝑡)𝐢 + (3 cos 𝑡)𝐣 + 2𝑡𝐤 , and |𝐯| = √9 + 4𝑡2 

𝐓 =
𝐯

|𝐯|
= −

3 sin 𝑡

√9 + 4𝑡2
𝐢 +

3 cos 𝑡

√9 + 4𝑡2
𝐣 +

2𝑡

√9 + 4𝑡2
𝐤 . 

2.3 Curvature and Unit Normal Vector 𝐍 

Curvature of a Plane Curve: Since 𝐓 is a unit 

vector, its length remains constant and only its 

direction changes as the particle moves along the 

curve. The rate at which 𝐓 turns per unit of length 

along the curve is called the curvature (Figure 2.7). 

The symbol for the curvature function is the Greek 

letter 𝜅 (“kappa”). If 𝐓 is the unit vector of a smooth 

curve, the curvature function of the curve is 

𝜅 = |
𝑑𝐓

𝑑𝑠
| . 

Figure 2.6. 

Figure 2.7. 
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If a smooth curve 𝐫(𝑡) is already given in terms of some parameter 𝑡 other than the arc 

length parameter 𝑠, we can calculate the curvature as 

𝜅 = |
𝑑𝐓

𝑑𝑠
| = |

𝑑𝐓

𝑑𝑡
 
𝑑𝑡

𝑑𝑠
| =

1

𝑑𝑠/𝑑𝑡
|
𝑑𝐓

𝑑𝑡
| =

1

|𝐯|
|
𝑑𝐓

𝑑𝑡
| 

So, the formula for calculating curvature: If 𝐫(𝑡) is a smooth curve, then the curvature is  

𝜅 =
1

|𝐯|
|
𝑑𝐓

𝑑𝑡
| , 

where 𝐓 =
𝐯

|𝐯|
 is the unit tangent vector. 

In Figure 2.8, on a straight line, the unit tangent vector 𝐓 always 

points in the same direction, so its components are constants. 

Therefore, 

|
𝑑𝐓

𝑑𝑠
| = |0| = 0 . 

 

Example1: Show that the curvature of a circle of radius 𝑎 is 1/𝑎. 

Solution: the vector function of the circle of radius 𝑎 is 𝐫(𝑡) = (𝑎 cos 𝑡)𝐢 + (𝑎 sin 𝑡)𝐣, then  

𝐯 =
𝑑𝐫

𝑑𝑡
= −(𝑎 sin 𝑡)𝐢 + (𝑎 cos 𝑡)𝐣 , |𝐯| = √= (−𝑎 sin 𝑡)2 + (𝑎 cos 𝑡)2 = √𝑎2 = 𝑎 . 

 𝐓 =
𝐯

|𝐯|
=
−(𝑎 sin 𝑡)𝐢 + (𝑎 cos 𝑡)𝐣

𝑎
= −(sin 𝑡)𝐢 + (cos 𝑡)𝐣 

𝑑𝐓

𝑑𝑡
= −(cos 𝑡)𝐢 − (sin 𝑡)𝐣 , |

𝑑𝐓

𝑑𝑡
| = √(−cos 𝑡)2 + (−sin 𝑡)2 = 1 . 

𝜅 =
1

|𝐯|
|
𝑑𝐓

𝑑𝑡
| =

1

𝑎
 (1) =

1

𝑎
 . 

Among the vectors orthogonal to the unit tangent vector 𝐓 is one of particular significance 

because it points in the direction in which the curve is turning. Since 𝐓 has constant length, 

the derivative 𝑑𝐓/𝑑𝑠 is orthogonal to 𝐓. Therefore, if we divide 𝑑𝐓/𝑑𝑠 by its length 𝜅 we 

obtain a unit vector 𝐍 orthogonal to 𝐓 (Figure 2.9). 

Figure 2.8. 
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At a point where 𝜅 ≠ 0, the principal unit 

normal vector for a smooth curve in the plane is 

𝐍 =
1

𝜅

𝑑𝐓

𝑑𝑠
 . 

The principal normal vector 𝐍 will point toward 

the concave side of the curve. 

If a smooth curve 𝐫(𝑡) is already given in terms 

of some parameter 𝑡 other than the arc length parameter 𝑠, we can use the Chain Rule to 

calculate 𝐍 directly: 

𝐍 =
𝑑𝐓/𝑑𝑠 

|𝑑𝐓/𝑑𝑠|
=
(
𝑑𝐓
𝑑𝑡
) (
𝑑𝑡
𝑑𝑠
)

|
𝑑𝐓
𝑑𝑡
| |
𝑑𝑡
𝑑𝑠
|
=
𝑑𝐓/𝑑𝑡 

|𝑑𝐓/𝑑𝑡|
 . 

This formula enables us to find 𝐍 without having to find and 𝜅 and 𝑠 first. 

So, if 𝐫(𝑡) is a smooth curve, then the principal unit normal is 

𝐍 =
𝑑𝐓/𝑑𝑡 

|𝑑𝐓/𝑑𝑡|
 , 

where 𝐓 =
𝐯

|𝐯|
 is the unit tangent vector.  

Example2: Find 𝐓 and 𝐍 for the circular motion 𝐫(𝑡) = (cos 2𝑡)𝐢 + (sin 2𝑡)𝐣. 

Solution: We first find 𝐓: 

𝐯 = −(2 sin 2𝑡)𝐢 + (2 cos 2𝑡)𝐣 , |𝐯| = √4 sin2 2𝑡 + 4 cos2 2𝑡 = 2 

𝐓 =
𝐯

|𝐯|
= −(sin 2𝑡)𝐢 + (cos 2𝑡)𝐣 . 

𝑑𝐓

𝑑𝑡
= −(2 cos 2𝑡)𝐢 − (2 sin 2𝑡)𝐣 , | 

𝑑𝐓

𝑑𝑡
| = √4 cos2 2𝑡 + 4 sin2 2𝑡 = 2 

𝐍 =
𝑑𝐓/𝑑𝑡 

|𝑑𝐓/𝑑𝑡|
= −(cos 2𝑡)𝐢 − (sin 2𝑡)𝐣 . 

Notice that 𝐓 ∙ 𝐍 = 0, verifying that 𝐍 is orthogonal to 𝐓. Notice too, that for the circular 

motion here, 𝐍 points from 𝐫(𝑡) towards the circle’s center at the origin. 

Figure 2.9. 
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Circle of Curvature for Plane Curves: The circle of curvature or osculating circle at a point 

𝑃 on a plane curve where 𝜅 ≠ 0 is the circle in the plane of the curve that 

1. is tangent to the curve at 𝑃 (has the same tangent line the curve has); 

2. has the same curvature the curve has at 𝑃; 

3. lies toward the concave or inner side of the curve (as in Figure 2.10). 

The radius of curvature of the curve at 𝑃 is the 

radius of the circle of curvature, which, according 

to Example1, is 

Radius of curvature = 𝜌 =
1

𝜅
 . 

To find 𝜌, we find 𝜅 and take the reciprocal. The 

centre of curvature of the curve at 𝑃 is the centre 

of the circle of curvature. 

Example3: Find and graph the osculating circle of the parabola 𝑦 = 𝑥2 at the origin, where 

the vector function of the parabola is 𝐫(𝑡) = 𝑡𝐢 + 𝑡2𝐣. 

Solution: First we find the curvature of the parabola at the origin, 

𝐯 =
𝑑𝐫

𝑑𝑡
= 𝐢 + 2𝑡𝐣 , |𝐯| = √1 + 4𝑡2 

𝐓 =
𝐯

|𝐯|
=
𝐢 + 2𝑡𝐣

√1 + 4𝑡2
= (1 + 4𝑡2)−

1
2𝐢 + 2𝑡(1 + 4𝑡2)−

1
2𝐣  

𝑑𝐓

𝑑𝑡
= 4𝑡(1 + 4𝑡2)−

3
2𝐢 + [2(1 + 4𝑡2)−

1
2 − 8𝑡(1 + 4𝑡2)−

3
2] 𝐣 . 

At the origin, 𝑡 = 0, so the curvature is  

𝜅 =
1

|𝐯|
|
𝑑𝐓

𝑑𝑡
| 

𝜅(0) =
1

|𝐯(0)|
|
𝑑𝐓

𝑑𝑡
(0)| =

1

√1
|0𝐢 + 2𝐣 | = (1)√02 + 22 = 2 . 

Therefore, the radius of curvature is 
1

𝜅
=
1

2
 and the centre of the circle is (0,

1

2
)  (see Figure 

2.11). The equation of the osculating circle is 

(𝑥 − 0)2 + (𝑦 −
1

2
)
2

= (
1

2
)
2

   or   𝑥2 + (𝑦 −
1

2
)
2

=
1

4
 

Figure 2.10. 

Figure 2.11. 
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Curvature and Normal Vectors for Space Curves: If a smooth curve in space is specified 

by the position vector 𝐫(𝑡) as a function of some parameter 𝑡, and if 𝑠 is the arc length 

parameter of the curve, then the unit tangent vector 𝐓 is 𝑑𝐫/𝑑𝑠 = 𝐯/|𝐯|. The curvature in 

space is then defined to be 

𝜅 = |
𝑑𝐓

𝑑𝑠
| =

1

|𝐯|
|
𝑑𝐓

𝑑𝑡
| 

just as for plane curves. The vector 𝑑𝐓/𝑑𝑠 is orthogonal to 𝐓, and we define the principal 

unit normal to be 

𝐍 =
1

𝜅

𝑑𝐓

𝑑𝑠
=
𝑑𝐓/𝑑𝑡 

|𝑑𝐓/𝑑𝑡|
 . 

Example4: Find the curvature and 𝐍 for the helix: 

𝐫(𝑡) = (𝑎 cos 𝑡)𝐢 + (𝑎 sin 𝑡)𝐣 + 𝑏𝑡𝐤 , 𝑎, 𝑏 ≥ 0 , 𝑎2 + 𝑏2 ≠ 0 . 

Solution: We calculate 𝐓 from the velocity vector 𝐯: 

𝐯 = −(𝑎 sin 𝑡)𝐢 + (𝑎 cos 𝑡)𝐣 + 𝑏𝐤 , |𝐯| = √𝑎2 sin2 𝑡 + 𝑎2 cos2 𝑡 + 𝑏2 = √𝑎2 + 𝑏2 

𝐓 =
𝐯

|𝐯|
=

1

√𝑎2 + 𝑏2
[−(𝑎 sin 𝑡)𝐢 + (𝑎 cos 𝑡)𝐣 + 𝑏𝐤]  

𝑑𝐓

𝑑𝑡
=

1

√𝑎2 + 𝑏2
[−(𝑎 cos 𝑡)𝐢 − (𝑎 sin 𝑡)𝐣] , 

|
𝑑𝐓

𝑑𝑡
| = |

1

√𝑎2 + 𝑏2
[−(𝑎 cos 𝑡)𝐢 − (𝑎 sin 𝑡)𝐣]| =

1

√𝑎2 + 𝑏2
√𝑎2cos2 𝑡 + 𝑎2sin2 𝑡 =

𝑎

√𝑎2 + 𝑏2
 

𝜅 =
1

|𝐯|
|
𝑑𝐓

𝑑𝑡
| =

1

√𝑎2 + 𝑏2

𝑎

√𝑎2 + 𝑏2
=

𝑎

𝑎2 + 𝑏2
 . 

𝐍 =
𝑑𝐓/𝑑𝑡 

|𝑑𝐓/𝑑𝑡|
=
√𝑎2 + 𝑏2

𝑎
⋅

1

√𝑎2 + 𝑏2
[−(𝑎 cos 𝑡)𝐢 − (𝑎 sin 𝑡)𝐣] = −(cos 𝑡)𝐢 − (sin 𝑡)𝐣 . 
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2.4 Torsion and the Unit Binormal Vector 𝐁 

If you are traveling along a space curve, the 

Cartesian 𝐢, 𝐣, and 𝐤 coordinate system for 

representing the vectors describing your motion are 

not truly relevant to you. What is meaningful instead 

are the vectors representative of your forward 

direction (the unit tangent vector 𝐓), the direction in 

which your path is turning (the unit normal vector 𝐍), 

and the tendency of your motion to “twist” out of the 

plane created by these vectors in the direction 

perpendicular to this plane (defined by the unit binormal vector 𝐁 = 𝐓 × 𝐍) (see Figure 

2.12). 

Torsion: The binormal vector of a curve in space is 𝐁 = 𝐓 × 𝐍, a unit vector orthogonal to 

both 𝐓 and 𝐍 (Figure 2.13). Together 𝐓, 𝐍, and 𝐁 define a moving 

right-handed vector frame that plays a significant role in 

calculating the paths of particles moving through space. It is 

called the Frenet (“fre-nay”) frame, or the 𝐓𝐍𝐁 frame. 

𝐁 = 𝐓 × 𝐍 
differentiate 𝐁 with respect to 𝑠
⇒                       

𝑑𝐁

𝑑𝑠
=
𝑑𝐓

𝑑𝑠
× 𝐍 + 𝐓 ×

𝑑𝐍

𝑑𝑠
 

Since 𝐍 is the direction of 𝑑𝐓/𝑑𝑠, 𝑑𝐓/𝑑𝑠 × 𝐍 = 0 and 

𝑑𝐁

𝑑𝑠
= 0 + 𝐓 ×

𝑑𝐍

𝑑𝑠
= 𝐓 ×

𝑑𝐍

𝑑𝑠
 

From this we see that 𝑑𝐁/𝑑𝑠 is orthogonal to T since a cross product is orthogonal to its 

factors. Since 𝑑𝐁/𝑑𝑠 is also orthogonal to 𝐁 (the latter has constant length), it follows that 

𝑑𝐁/𝑑𝑠 is orthogonal to the plane of 𝐁 and 𝐓. In other words, 𝑑𝐁/𝑑𝑠 is parallel to 𝐍, so 

𝑑𝐁/𝑑𝑠 is a scalar multiple of 𝐍. In symbols, 

𝑑𝐁

𝑑𝑠
= −𝜏 𝐍 . 

The negative sign in this equation is traditional. The scalar is called the torsion along the 

curve. Notice that 

𝑑𝐁

𝑑𝑠
∙ 𝐍 = −𝜏 𝐍 ∙ 𝐍 = −𝜏(1) = −𝜏

so that
⇒     𝜏 = −

𝑑𝐁

𝑑𝑠
∙ 𝐍 

Figure 2.12. 

Figure 2.13. 
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Let 𝐁 = 𝐓 × 𝐍. The torsion function of a smooth curve is  

𝜏 = −
𝑑𝐁

𝑑𝑠
∙ 𝐍 

Unlike the curvature 𝜅, which is never negative, the torsion may be positive, negative, or 

zero. 

The three planes determined by 𝐓, 𝐍, and 𝐁 are named 

and shown in Figure 2.14. The curvature 𝜅 = |𝑑𝐓/𝑑𝑠| 

can be thought of as the rate at which the normal plane 

turns as the point 𝑃 moves along its path. Similarly, the 

torsion 𝜏 = −(𝑑𝐁/𝑑𝑠) ∙ 𝐍 is the rate at which the 

osculating plane turns about 𝐓 as 𝑃 moves along the 

curve. Torsion measures how the curve twists. 

If we think of the curve as the path of a moving body, 

then |𝑑𝐓/𝑑𝑠| tells how much the path turns to the left or 

right as the object moves along; it is called the curvature of the object’s path. The number 

−(𝑑𝐁/𝑑𝑠) ∙ 𝐍 tells how much a body’s path rotates or twists out of its plane of motion as the 

object moves along; it is called 

the torsion of the body’s path. 

Look at Figure 2.15. If 𝑃 is a train 

climbing up a curved track, the 

rate at which the headlight turns 

from side to side per unit 

distance is the curvature of the 

track. The rate at which the 

engine tends to twist out of the 

plane formed by 𝐓 and 𝐍 is the 

torsion. 

 

 

Figure 2.14. 

Figure 2.15. 



University of Anbar 
College of Engineering 

Electrical Engineering Dept. 

 Calculus III, Year 2 
Dr. Abdullah Al-Ani 

2020-2021 

 

15 
 

Tangential and Normal Components of Acceleration: When a body is accelerated, we 

usually want to know how much of the acceleration acts in the direction of motion, in the 

tangential direction 𝐓. We can calculate this using the Chain Rule to rewrite 𝐯 as 

𝐯 =
𝑑𝐫

𝑑𝑡
=
𝑑𝐫

𝑑𝑠

𝑑𝑠

𝑑𝑡
= 𝐓

𝑑𝑠

𝑑𝑡
 

and differentiating both sides 

𝐚 =
𝑑𝐯

𝑑𝑡
=
𝑑

𝑑𝑡
(𝐓
𝑑𝑠

𝑑𝑡
) =

𝑑2𝑠

𝑑𝑡2
 𝐓 +

𝑑𝑠

𝑑𝑡

𝑑𝐓

𝑑𝑡
=
𝑑2𝑠

𝑑𝑡2
 𝐓 +

𝑑𝑠

𝑑𝑡
 (
𝑑𝐓

𝑑𝑠

𝑑𝑠

𝑑𝑡
) =

𝑑2𝑠

𝑑𝑡2
 𝐓 +

𝑑𝑠

𝑑𝑡
 (𝜅𝐍

𝑑𝑠

𝑑𝑡
) 

    =
𝑑2𝑠

𝑑𝑡2
 𝐓 + 𝜅 (

𝑑𝑠

𝑑𝑡
)
2

𝐍 . 

So, the Tangential and Normal Components of Acceleration 

𝐚 = 𝑎T𝐓 + 𝑎N𝐍 , 

where 

𝑎T =
𝑑2𝑠

𝑑𝑡2
=
𝑑

𝑑𝑡
|𝐯|               and               𝑎N = 𝜅 (

𝑑𝑠

𝑑𝑡
)
2

= 𝜅|𝐯|2 

are the tangential and normal scalar components of acceleration. 

Notice that the binormal vector 𝐁 does not appear in the equation above. No matter how the 

path of the moving body we are watching may appear to twist and turn in space, the 

acceleration 𝐚 always lies in the plane of 𝐓 and 𝐍 orthogonal to 𝐁. The equation also tells us 

exactly how much of the acceleration takes place tangent to the motion (𝑑2𝑠/𝑑𝑡2) and how 

much takes place normal to the motion [𝜅(𝑑𝑠/𝑑𝑡)2] 

(Figure 2.16). 𝐚 is the rate of change of velocity 𝐯, 

and in general, both the length and direction of 𝐯 

change as a body moves along its path. The 

tangential component of acceleration 𝑎T measures 

the rate of change of the length of 𝐯 (that is, the 

change in the speed). The normal component of 

acceleration 𝑎N measures the rate of change of the 

direction of 𝐯. 

𝑑𝐓

𝑑𝑠
= 𝜅𝐍 

Figure 2.16. 
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If a body moves in a circle at a constant speed, 

𝑑2𝑠/𝑑𝑡2 is zero and all the acceleration points along 

𝐍 toward the circle’s centre. If the body is speeding 

up or slowing down, 𝐚 has a nonzero tangential 

component (Figure 2.17). To calculate 𝑎N we usually 

use the formula 𝑎N = √|𝐚|2 − 𝑎T2, which comes from 

solving the equation |𝐚|2 = 𝐚 ∙ 𝐚 = 𝑎T
2 + 𝑎N

2 for 𝑎N. 

With this formula, we can find 𝑎N without having to 

calculate 𝜅 first. 

So, the Formula for Calculating the Normal Component of Acceleration is  

𝑎N = √|𝐚|2 − 𝑎T2 . 

Example1: Without finding 𝐓 and 𝐍, write the acceleration of the motion 

𝐫(𝑡) = (cos 𝑡 + 𝑡 sin 𝑡)𝐢 + (sin 𝑡 − 𝑡 cos 𝑡)𝐣 ,       𝑡 > 0 

in the form of tangential and normal components. 

Solution: First, we find 𝑎T: 

𝐯 =
𝑑𝐫

𝑑𝑡
= (− sin 𝑡 + sin 𝑡 + 𝑡 cos 𝑡)𝐢 + (cos 𝑡 − cos 𝑡 + 𝑡 sin 𝑡)𝐣 = (𝑡 cos 𝑡)𝐢 + (𝑡 sin 𝑡)𝐣 

|𝐯| = √𝑡2 cos2 𝑡 + 𝑡2 sin2 𝑡 = √𝑡2 = |𝑡| = 𝑡 , 𝑡 > 0 

𝑎T =
𝑑

𝑑𝑡
|𝐯| =

𝑑

𝑑𝑡
(𝑡) = 1 

To find 𝑎N: 

𝐚 = (cos 𝑡 − 𝑡 sin 𝑡)𝐢 + (sin 𝑡 + 𝑡 cos 𝑡)𝐣 

|𝐚| = √(cos 𝑡 − 𝑡 sin 𝑡)2 + (sin 𝑡 + 𝑡 cos 𝑡)2 = √𝑡2 + 1 

|𝐚|2 = 𝑡2 + 1 

𝑎N = √|𝐚|2 − 𝑎T2 = √(𝑡2 + 1) − 1 = √𝑡2 = 𝑡 

Then,           𝐚 = 𝑎T + 𝑎N = (1)𝐓 + (𝑡)𝐍 = 𝐓 + 𝑡𝐍 . 

Figure 2.17. 
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Formulas for Computing Curvature and Torsion: We now give some easy-to-use 

formulas for computing the curvature and torsion of a smooth curve. 

𝐯 × 𝐚 = (
𝑑𝑠

𝑑𝑡
𝐓) × [

𝑑2𝑠

𝑑𝑡2
 𝐓 + 𝜅 (

𝑑𝑠

𝑑𝑡
)
2

𝐍] = (
𝑑𝑠

𝑑𝑡

𝑑2𝑠

𝑑𝑡2
) (𝐓 × 𝐓) + 𝜅 (

𝑑𝑠

𝑑𝑡
)
3

(𝐓 × 𝐍) 

= 𝜅 (
𝑑𝑠

𝑑𝑡
)
3

𝐁 . 

It follows that  

|𝐯 × 𝐚| = 𝜅 |
𝑑𝑠

𝑑𝑡
|
3

|𝐁| = 𝜅|𝐯|3 . 

Solving for 𝜅 gives the following formula: Vector Formula for Curvature is  

𝜅 =
|𝐯 × 𝐚|

|𝐯|3
 . 

This equation calculates the curvature, a geometric property of the curve, from the velocity 

and acceleration of any vector representation of the curve in which |𝐯| is different from zero. 

From any formula for motion along a curve, no matter how variable the motion may be (as 

long as 𝐯 is never zero), we can calculate a physical property of the curve that seems to 

have nothing to do with the way the curve is traversed. 

The most widely used formula for torsion, derived in more advanced texts, is 

𝜏 =

|

�̇� �̇� �̇�
�̈� �̈� �̈�
𝑥 𝑦 𝑧

|

|𝐯 × 𝐚|2
        (if  𝐯 × 𝐚 ≠ 0) 

This formula calculates the torsion directly from the derivatives of the component functions 

𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), 𝑧 = ℎ(𝑡) that make up 𝐫. The determinant’s first row comes from 𝐯, the 

second row comes from 𝐚, and the third row comes from �̇� = 𝑑𝐚/𝑑𝑡. 

 

 

 

 

𝐯 =
𝑑𝐫

𝑑𝑡
=
𝑑𝑠

𝑑𝑡
𝐓 

𝐓 × 𝐓 = 0    and 

𝐓 × 𝐍 = 𝐁 

𝑑𝑠

𝑑𝑡
= |𝐯|   and   |𝐁| = 1 
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Example2: Use vector formula for curvature and torsion formula to find 𝜅 and 𝜏 for the helix 

𝐫(𝑡) = (𝑎 cos 𝑡)𝐢 + (𝑎 sin 𝑡)𝐣 + (𝑏𝑡)𝐤  . 

Solution: First, we calculate the curvature: 

𝐯 = −(𝑎 sin 𝑡)𝐢 + (𝑎 cos 𝑡)𝐣 + (𝑏)𝐤  

𝐚 = −(𝑎 cos 𝑡)𝐢 − (𝑎 sin 𝑡)𝐣 

𝐯 × 𝐚 = |
𝑖 𝑗 𝑘

−𝑎 sin 𝑡 𝑎 cos 𝑡 𝑏
−𝑎 cos 𝑡 −𝑎 sin 𝑡 0

| = (𝑎𝑏 sin 𝑡)𝐢 − (𝑎𝑏 cos 𝑡)𝐣 + 𝑎2𝐤 

𝜅 =
|𝐯 × 𝐚|

|𝐯|3
=
√𝑎2𝑏2 + 𝑎4

(𝑎2 + 𝑏2)3/2 
=
𝑎√𝑎2 + 𝑏2

(𝑎2 + 𝑏2)3/2 
=

𝑎

𝑎2 + 𝑏2
 . 

Notice that the result agrees with in Example4 (section 2.3, page 12), where we calculated 

the curvature directly from its definition. 

To evaluate torsion, we find the entries in the determinant by differentiating 𝐫 with respect to 

𝑡. We already have 𝐯 and 𝐚, and 

�̇� =
𝑑𝐚

𝑑𝑡
= (𝑎 sin 𝑡)𝐢 − (𝑎 cos 𝑡)𝐣 . 

Hence,  

𝜏 =

|

�̇� �̇� �̇�
�̈� �̈� �̈�
𝑥 𝑦 𝑧

|

|𝐯 × 𝐚|2
=

|
−𝑎 sin 𝑡     𝑎 cos 𝑡 𝑏
−𝑎 cos 𝑡 −𝑎 sin 𝑡 0
   𝑎 sin 𝑡 −𝑎 cos 𝑡 0

|

(𝑎√𝑎2 + 𝑏2)
2 =

𝑏(𝑎2 cos2 𝑡 + 𝑎2 sin2 𝑡)

𝑎2(𝑎2 + 𝑏2)
=

𝑏

𝑎2 + 𝑏2
 . 

From this last equation we see that the torsion of a helix about a circular cylinder is constant. 

In fact, constant curvature and constant torsion characterise the helix among all curves in 

space. 
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Formulas for Curves in Space: 

 

Unit tangent vector: 𝐓 =
𝐯

|𝐯|
 

Principal unit normal vector: 𝐍 =
𝑑𝐓/𝑑𝑡 

|𝑑𝐓/𝑑𝑡|
 

Binormal vector: 𝐁 = 𝐓 × 𝐍 

Curvature: 𝜅 = |
𝑑𝐓

𝑑𝑠
| =

|𝐯 × 𝐚|

|𝐯|3
 

Torsion: 

𝜏 = −
𝑑𝐁

𝑑𝑠
∙ 𝐍 =

|

�̇� �̇� �̇�
�̈� �̈� �̈�
𝑥 𝑦 𝑧

|

|𝐯 × 𝐚|2
 

Tangential and normal scalar 

components of acceleration: 

𝐚 = 𝑎T𝐓 + 𝑎N𝐍 

𝑎T =
𝑑

𝑑𝑡
|𝐯| 

𝑎N = 𝜅|𝐯|
2 = √|𝐚|2 − 𝑎T2  
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Solved Problems: 

2.1 Vector Functions 

Prob1: Find the angle between the velocity and acceleration vectors at time 𝑡 = 0 for 

position vector: 

𝐫(𝑡) = (ln(𝑡2 + 1))𝐢 + (tan−1 𝑡)𝐣 + √𝑡2 + 1𝐤. 

Solution:  

𝐯 = (
2𝑡

𝑡2 + 1
) 𝐢 + (

1

𝑡2 + 1
) 𝐣 + 𝑡(𝑡2 + 1)−

1
2𝐤  ⇒   𝐯(0) = 𝐣  ⇒  |𝐯(0)| = 1 

𝐚 = [
−2𝑡2 + 2

(𝑡2 + 1)2
] 𝐢 − [

2𝑡

(𝑡2 + 1)2
] 𝐣 + [

1

(𝑡2 + 1)
3
2

] 𝐤  ⇒  𝐚(0) = 2𝐢 + 𝐤    |𝐚(0)| = √(2)2 + 1 = √5  

𝜃 = cos−1 [
𝐯(0) ∙ 𝐚(0)

|𝐯(0)||𝐚(0)|
] = cos−1 0 =

𝜋

2
 . 

Prob2: Find parametric equations for the line that is tangent to the given curve at 𝑡 = 0 

𝐫(𝑡) = (sin 𝑡)𝐢 + (𝑡2 − cos 𝑡)𝐣 + 𝑒𝑡𝐤. 

Solution: 

𝐯(𝑡) = (cos 𝑡)𝐢 + (2𝑡 + sin 𝑡)𝐣 + 𝑒𝑡𝐤    
𝑡=0
⇒     𝐯(0) = 𝐢 + 𝐤 

𝐫(0) = −𝐣 + 𝐤 ⇒ 𝑃𝑜(0, −1, 1) 

𝑥 = 𝑡       
𝑦 = −1   
𝑧 = 1 + 𝑡

}  are the parametric equations of the tangent line.  

Prob3: A particle is moving along the path of the unit circle with position vector                   

𝐫(𝑡) = (cos 𝑡)𝐢 − (sin 𝑡)𝐣 ,    𝑡 ≥ 0, answer the following: 

(a) Does the particle have constant speed? If so, what is its constant speed? 

(b) Is the particle’s acceleration vector always orthogonal to its velocity vector? 

(c) Does the particle move clockwise or counterclockwise around the circle? 

(d) Does the particle begin at the point (1, 0)?   
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Solution:  𝐯(𝑡) = −(sin 𝑡)𝐢 − (cos 𝑡)𝐣  ⇒   𝐚(𝑡) = −(cos 𝑡)𝐢 + (sin 𝑡)𝐣   

(a) |𝐯(𝑡)| = √sin2 𝑡 + cos2 𝑡 = 1  ⇒  constant speed. 

(b) 𝐯 ∙ 𝐚 = sin 𝑡 cos 𝑡 − sin 𝑡 cos 𝑡 = 0  ⇒  yes, orthogonal. 

(c) Clockwise movement. 

(d) Yes, 𝐫(0) = 𝐢 − 0𝐣 . 

2.2 Arc Length and the Unit Tangent Vector 𝐓 

Prob1: Find the length of the curve 𝐫(𝑡) = (𝑒𝑡 cos 𝑡)𝐢 + (𝑒𝑡 sin 𝑡)𝐣 + 𝑒𝑡𝐤 , − ln 4 ≤ 𝑡 ≤ 0. 

Solution: 𝐯 = (𝑒𝑡 cos 𝑡 − 𝑒𝑡 sin 𝑡)𝐢 + (𝑒𝑡 sin 𝑡 + 𝑒𝑡 cos 𝑡)𝐣 + 𝑒𝑡𝐤 

|𝐯| = √(𝑒𝑡 cos 𝑡 − 𝑒𝑡 sin 𝑡)2 + (𝑒𝑡 sin 𝑡 + 𝑒𝑡 cos 𝑡)2 + (𝑒𝑡)2 = √3𝑒2𝑡 = √3𝑒𝑡 

𝐿 = ∫|𝐯|𝑑𝑡

𝑏

𝑎

= ∫ √3𝑒𝑡𝑑𝑡

0

− ln 4

= √3𝑒𝑡|
− ln 4

0
= √3 −

√3

4
=
3√3

4
  unit length. 

2.3 Curvature and Unit Normal Vector 𝐍 

Prob1: Find 𝐓, 𝐍, and 𝜅 for the space curve 𝐫(𝑡) = (cosh 𝑡)𝐢 − (sinh 𝑡)𝐣 + 𝑡𝐤 

Solution: 𝐯 = (sinh 𝑡)𝐢 − (cosh 𝑡)𝐣 + 𝐤 ⇒ |𝐯| = √sinh2 𝑡 + cosh2 𝑡 + 1 = √2 cosh 𝑡 

𝐓 =
𝐯

|𝐯|
=
(sinh 𝑡)𝐢 − (cosh 𝑡)𝐣 + 𝐤 

√2 cosh 𝑡
= (

1

√2
tanh 𝑡) 𝐢 − (

1

√2
) 𝐣 + (

1

√2
sech 𝑡) 𝐤  

𝑑𝐓

𝑑𝑡
= (

1

√2
sech2 𝑡) 𝐢 − (

1

√2
sech 𝑡 tanh 𝑡) 𝐤  ⇒ |

𝑑𝐓

𝑑𝑡
| = √(

1

√2
sech2 𝑡)

2

+ (
1

√2
sech 𝑡 tanh 𝑡)

2

 

|
𝑑𝐓

𝑑𝑡
| = √

1

2
sech4 𝑡 +

1

2
sech2 𝑡 tanh2 𝑡 =

1

√2
sech 𝑡 

𝐍 =

𝑑𝐓
𝑑𝑡

|
𝑑𝐓
𝑑𝑡
|
=

(
1

√2
sech2 𝑡) 𝐢 − (

1

√2
sech 𝑡 tanh 𝑡) 𝐤  

1

√2
sech 𝑡

= (sech 𝑡)𝐢 − (tanh 𝑡)𝐤  

𝜅 =
1

|𝐯|
|
𝑑𝐓

𝑑𝑡
| =

1

√2 cosh 𝑡
 
1

√2
sech 𝑡 =

1

2
sech2 𝑡 . 
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Prob2: Find an equation for the circle of curvature of the curve 𝐫(𝑡) = 𝑡𝐢 + (sin 𝑡)𝐣 at the 

point (
𝜋

2
, 1). (The curve parametrises the graph of 𝑦 = sin 𝑥 in the 𝑥𝑦-plane.) 

Solution: 𝐯 = 𝐢 + (cos 𝑡)𝐣 ⇒ |𝐯| = √1 + cos2 𝑡    ⇒  |𝐯 (
𝜋

2
)| = 1 

𝐓 =
𝐯

|𝐯|
=
𝐢 + (cos 𝑡)𝐣

√1 + cos2 𝑡
  ⇒ 

𝑑𝐓

𝑑𝑡
=  

sin 𝑡 cos 𝑡

(1 + cos2 𝑡)
3
2

𝐢 +
−sin 𝑡

(1 + cos2 𝑡)
3
2

𝐣 

|
𝑑𝐓

𝑑𝑡
| = √

sin2 𝑡 cos2 𝑡

(1 + cos2 𝑡)3
+

sin2 𝑡

(1 + cos2 𝑡)3
=

|sin 𝑡|

1 + cos2 𝑡
   ⇒   |

𝑑𝐓

𝑑𝑡
|
𝑡=
𝜋
2

= 1 

𝜅 =
1

|𝐯|
|
𝑑𝐓

𝑑𝑡
|   ⇒   𝜅 (

𝜋

2
) = 1   ⇒    𝜌 =

1

𝜅
= 1  and the centre is  (

𝜋

2
, 0)   ⇒   (𝑥 −

𝜋

2
)
2

+ 𝑦2 = 1 . 

2.4 Torsion and the Unit Binormal Vector 𝐁 

Prob1: Find 𝐓, 𝐍, 𝜅, 𝐁 and 𝜏 for the space curve 𝐫(𝑡) = (cosh 𝑡)𝐢 − (sinh 𝑡)𝐣 + 𝑡𝐤. 

Solution: 𝐯 = (sinh 𝑡)𝐢 − (cosh 𝑡)𝐣 + 𝐤 ⇒ |𝐯| = √sinh2 𝑡 + cosh2 𝑡 + 1 = √2 cosh 𝑡 

𝐓 =
𝐯

|𝐯|
=
(sinh 𝑡)𝐢 − (cosh 𝑡)𝐣 + 𝐤 

√2 cosh 𝑡
= (

1

√2
tanh 𝑡) 𝐢 − (

1

√2
) 𝐣 + (

1

√2
sech 𝑡) 𝐤  

𝑑𝐓

𝑑𝑡
= (

1

√2
sech2 𝑡) 𝐢 − (

1

√2
sech 𝑡 tanh 𝑡) 𝐤  ⇒ |

𝑑𝐓

𝑑𝑡
| = √(

1

√2
sech2 𝑡)

2

+ (
1

√2
sech 𝑡 tanh 𝑡)

2

 

|
𝑑𝐓

𝑑𝑡
| = √

1

2
sech4 𝑡 +

1

2
sech2 𝑡 tanh2 𝑡 =

1

√2
sech 𝑡 

𝐍 =

𝑑𝐓
𝑑𝑡

|
𝑑𝐓
𝑑𝑡
|
=

(
1

√2
sech2 𝑡) 𝐢 − (

1

√2
sech 𝑡 tanh 𝑡) 𝐤  

1

√2
sech 𝑡

= (sech 𝑡)𝐢 − (tanh 𝑡)𝐤  

𝜅 =
1

|𝐯|
|
𝑑𝐓

𝑑𝑡
| =

1

√2 cosh 𝑡
 
1

√2
sech 𝑡 =

1

2
sech2 𝑡 . 

𝐁 = 𝐓 × 𝐍 = |

𝐢 𝐣 𝐤
1

√2
tanh 𝑡 −

1

√2

1

√2
sech 𝑡

sech 𝑡 0 −tanh 𝑡

| 
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= (
1

√2
tanh 𝑡) 𝐢 − (−

1

√2
tanh2 𝑡 −

1

√2
sech2 𝑡) 𝐣 + (

1

√2
sech 𝑡) 𝐤 

= (
1

√2
tanh 𝑡) 𝐢 + (

1

√2
) 𝐣 + (

1

√2
sech 𝑡) 𝐤 

𝐚 = (cosh 𝑡)𝐢 − (sinh 𝑡)𝐣   ⇒    �̇� =
𝑑𝐚

𝑑𝑡
= (sinh 𝑡)𝐢 − (cosh 𝑡)𝐣 

𝐯 × 𝐚 = |
𝐢 𝐣 𝐤

sinh 𝑡 −cosh 𝑡 1
cosh 𝑡 − sinh 𝑡 0

| = (sinh 𝑡)𝐢 − (−cosh 𝑡)𝐣 + (− sinh2 𝑡 + cosh2 𝑡)𝐤 

            = (sinh 𝑡)𝐢 + (cosh 𝑡)𝐣 + 𝐤    ⇒   |𝐯 × 𝐚|2 = sinh2 𝑡 + cosh2 𝑡 + 1 

𝜏 =

|

�̇� �̇� �̇�
�̈� �̈� �̈�
𝑥 𝑦 𝑧

|

|𝐯 × 𝐚|2
=

|
sinh 𝑡 −cosh 𝑡 1
cosh 𝑡 − sinh 𝑡 0
sinh 𝑡 − cosh 𝑡 0

|

sinh2 𝑡 + cosh2 𝑡 + 1
=

−1

sinh2 𝑡 + cosh2 𝑡 + 1
=

−1

2cosh2 𝑡
 . 

 

 

 

 

 

 


