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Chapter Three: Partial Derivatives

In this chapter, we will discuss the functions of several variables and the derivates of

functions of several variables.

3.1 Functions of Several Variables

Function of n Independent Variables: Suppose D is a set of ordered pairs of real numbers
(x4, x5, ..., x5). A real-valued function f on D is a rule that assigns a unique (single) real
number

w = f(xq, X2, ) Xp)
to each element in D. The set D is the function’s domain. The set of w-values taken on by
f is the function’s range. The symbol w is the dependent variable of f, and f is said to be

a function of the n independent variables x;to x,. We also call the x;’s the function’s input

variables and call w the function’s output variable.

If £ is a function of two independent variables, we usually call the independent variables x
and y and picture the domain of f as a region in the xy-plane. If f is a function of three
independent variables, we call the variables x, y, and z and picture the domain as a region

in space.

As usual, we evaluate functions defined by formulas by substituting the values of the
independent variables in the formula and calculating the corresponding value of the

dependent variable.

Examplel: Evaluate the value of f(x,y,z) = \/x? + y? + z? at the point (3,0, 4).

Solution: £(3,0,4) = /(3)2 + (0)2 + (4)2 = V25 = 5.

Domains and Ranges: In defining a function of more than one variable, we follow the usual
practice of excluding inputs that lead to complex numbers or division by zero. If f(x,y) =
Jy — x2,y cannot be less than x2. If f(x,y) = 1/xy, xy cannot be zero. The domain of a

function is assumed to be the largest set for which the defining rule generates real numbers.

The range consists of the set of output values for the dependent variable.
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Example2: (a) Functions of two variables
Function Domain Range
w=.y—x2 |y=x* [0, o0)
1
w = sinxy Entire plane | [-1,1]
(b) Functions of three variables
Function Domain Range
w =.x2+y2+z2 | Entire space [0, )
1
Ve ryrez |00 (0,)
w=xylnz Half-space z > 0 | (—o0, )

Functions of two variables: Regions in the plane can have interior points and boundary
points just like intervals on the real line. Closed intervals [a, b] include their boundary points,
open intervals (a, b) do not include their boundary points, and intervals such as [a, b) are

neither open nor closed.

A point (x,,y,) in a region (set) R in the xy-plane is an interior point of R if it is the centre
of a disk of positive radius that lies entirely in R (Figure 3.1). A point (x,,y,) is a boundary
point of R if every disk centred at (x,,y,) contains points that lie outside of R as well as
points that lie in R.

The interior points of a region, as

a set, make up the interior of the

region. The region’s boundary

points make up its boundary. A

region is open if it consists entirely

of interior points. A region is L

—_

closed if it contains all its (a) Interior point. (b) Boundary point.

boundary points (Figure 3.2). Figure 3.1.
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{Gey) [ x*+y?2 <1}
Open unit disk.
Every point an

interior point.

{ey) 1 x*+y? =1}
Boundary of unit

disk. (The unit

circle.)

4

{(x,y) | x*+y* <1}
Closed unit disk.

SR

Contains all

boundary points.

Figure 3.2.
Aregion in the plane is bounded if it lies inside a disk of fixed radius. A region is unbounded

if it is not bounded.

Examples of bounded sets in the plane include line segments, triangles, interiors of triangles,
rectangles, circles, and disks. Examples of unbounded sets in the plane include lines,
coordinate axes, the graphs of functions defined on infinite intervals, quadrants, half-planes,

and the plane itself.

Example3: Describe the domain of the function f(x,y) = /y — x2.

Solution: Since f is defined only where y
b Interior points,

where y — x? > 0

/

y—x%2>0, the domain is the closed,

unbounded region shown in Figure 3.3. The
parabola y = x? is the boundary of the
domain. The points above the parabola make

up the domain’s interior. The parabola

y—x>=0
is the boundary.

Outside,
2
y—x-<0

| !
-1 0 1

> X

Figure 3.3.

Graphs, Level Curves, and Contours of Functions of Two Variables: There are two
ways to picture the values of a function f(x, y). One is to draw and label curves in the domain

on which f has a constant value. The other is to sketch the surface z = f(x,y) in space.

3
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The set of points in the plane where a function f(x,y) has a constant value f(x,y) =c is
called a level curve of f. The set of all points (x, y, f (x,y)) in space, for (x,y) in the domain

of f, is called the graph of f. The graph of f is also called the surface z = f(x, y).

Example4: Graph f(x,y) = 100 — x> — y? and plot the level curves f(x,y) = 0, f(x,y) = 51
and f(x,y) = 75 in the domain of f in the plane.

Solution: The domain of f is the entire xy-plane, j/loo The surface
fx,») =75

z=f(x,)
=100 — x? — »?
is the graph of f.

and the range of f is the set of real numbers less
than or equal to 100. The graph is the paraboloid
z = 100 — x? — y2, a portion of which is shown in

. flx,y) =51
Figure 3.4. (a typical

. . . - ///'__: x — level curve in
The level curve f(x,y) = 0 is the set of points in 3 the function’s
) & domain)
the xy-plane at which — 5
10

f(x,y) =100 —x? —y? =0, or x? +y? =100, flx,y)=0

which is the circle of radius 10 centred at the Figure 3.4.

origin. Similarly, the level curves f(x,y) = 51 and f(x,y) = 75 (Figure 3.4) are the circles

f(x,y) =100 — x? — y? = 51,0r x? + y? = 49,

f(x,y) =100 — x* —y* = 75,0r x* +y* = 25, The contour curve f(x,y) = 100 — x> — y? =75
is the circle x> 4+ y? = 25 in the plane z = 75.

z =100 — x% — y?

The curve in space in which the plane z = ¢ cuts a AL
. . Plane z = 75 100

surface z = f(x,y) is made up of the points that \

represent the function value f(x,y) = c. Itis called 75

the contour curve in the domain of f. Figure 3.5

shows the contour curve f(x,y) =75 on the

surface z = 100 — x2 — y? defined by the function .

f(x,y) =100 — x? — y2. The contour curve lies

directly above the circle x~ + y* = 25 which is the / )

level curve f(x,y) =75 in the function’s domain. x

The level curve f(x, y) = 100 — x2 — y2 =75
is the circle x> + y% = 25 in the xy-plane.

Figure 3.5.



University of Anbar
College of Engineering
Electrical Engineering Dept.

Calculus Ill, Year 2
Dr. Abdullah Al-Ani
2020-2021

Functions of Three Variables: In the plane, the points where a function of two independent
variables has a constant value f(x,y) = ¢ make a curve in the function’s domain. In space,
the points where a function of three independent variables has a constant value

f(x,v,2z) = ¢ make a surface in the function’s domain.

The set of points (x,y,z) in space where a function of three independent variables has a

constant value f(x,y,z) = c is called a level surface of f.

Since the graphs of functions of three variables consist of points (x,y, z, f(x,y,z)) lying in a
four-dimensional space, we cannot sketch them effectively in our three-dimensional frame
of reference. We can see how the function behaves, however, by looking at its three-

dimensional level surfaces.

Example5: Describe the level surfaces of the function

flx,y,2) =x% +y%+2z2.

Solution: The value of f is the distance from

P . ,2 ,2 2_ 1
the origin to the point (x,y,z). Each level V™ Y 4 2"=
2 2 2 — H
surface \/x2 + y2 + z2 = ¢, ¢ > 0 is asphere V2 2t 2 P e

of radius ¢ centred at the origin. Figure 3.6

shows a cutaway view of three of these

spheres. The level surface \/x? + y? + z% =

0 consists of the origin alone.

We are not graphing the function here; we
are looking at level surfaces in the function’s
domain. The level surfaces show how the

function’s values change as we move

through its domain. If we remain on a sphere

Figure 3.6.

of radius ¢ centred at the origin, the function
maintains a constant value c. If we move from one sphere to another, the function’s value
changes. It increases if we move away from the origin and decreases if we move toward the

origin.
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The definitions of interior, boundary, open, closed, bounded, and unbounded for regions in
space are similar to those for regions in the plane. To accommodate the extra dimension,

we use solid balls of positive radius instead of disks.

A point in a region R in space is an interior point of R if it is the centre of a solid ball that
lies entirely in R (Figure 3.7(a)). A point is a boundary point of R if every sphere centred at
encloses points that lie outside of R as well as points that lie inside R (Figure 3.7(b)). The
interior of R is the set of interior points of R. The boundary of R is the set of boundary

points of R.

A region is open if it consists entirely of interior points. A region is closed if it contains its

entire boundary. Z (x0 Yo» Z0)

Examples of open sets in space include the
interior of a sphere, the open half-space
z > 0, the first octant (where x,y, and z are

all positive), and space itself.

Examples of closed sets in space include

lines, planes, the closed half-space z >0

the first octant together with its bounding Ciblosoig

planes, and space itself (since it has no (X0, Yo» Zo)
Z
boundary points). v /
.
A solid sphere with part of its boundary _—

removed or a solid cube with a missing face,
edge, or corner point would be neither open ¥

nor closed.

Functions of more than three independent
variables are also important. For example, (b) Boundary point
the temperature on a surface in space may Figure 3.7.
depend not only on the location of the point

P(x,y,z) on the surface, but also on time t when it is visited, so we would write

T=f(xy,z2t).
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3.2 Limits and Continuity in Higher Dimensions

Limits: We say that a function f(x,y) approaches the limit L as (x,y) approaches (x,,y,)

and write

fooy) =1L

lim
,y)~=(x0,¥0)

if, for every number € > 0 there exists a corresponding number § > 0 such that for all (x, y)

in the domain of f,

If(x,y) —L| <€ whenever 0<.(x—x,)2+(y—y,)%<6.
Properties of Limits of Functions of Two Variables:

The following rules hold if L, M, and k are real numbers and

lim x,y) =L and lim x,y) = M.
(e, ¥)—>(x0, y0) flx.) (x, }f‘)—’(xu,}f‘o)g( Y)

1.  Sum Rule: lim  (f(x,y) + glx,y) =L+ M
(x, y)—(x0, 0)

2. Difference Rule: lim  (f(x,y) —glx,y))=L—M
(x, ¥)—=>(x0, y0)

3. Product Rule: lim (fx,y) g(x,y)) =L-M
(x, ¥)—(x0, yo)

4. Constant Multiple Rule: ( )lir}l : (kf(x,y)) = kL (any number k)
X, ¥)— X0, Yo

X,

m LSV Ly
(x, )= (x0,0) g(x,¥) M

6. Power Rule: If r and s are integers with no common factors, and s # 0,

then

5. Quotient Rule:

lim , rls _— Lr/s
it )

provided L'”* is a real number. (If s is even, we assume that L > 0.)

Examplel: Calculate the limits:

x—xy+3
(a 1 4 (b) lim /x%+y?

im ;
(xy)~(0,1) x%y + 5xy — y3 xy)~(3,~-4)

x—xy+3 0—-(0)(1)+3

li = = -3
ey)oto ) x2y + 5xy — y%  (0)2(1) + 5(0)(1) — (1)

Solution: (a)

. 2 2 — 2 — 2 — _
® , Jim Py =@+ (4P =V =5,
7
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Example2: Find

x? —xy
(xy)ﬁ(o 0)+/x — \/—

Solution:

xt—xy - (= xy)(Vx +[y) . x(x —y)(Vx +y)
*, y)—>(0 0)+/x — \/_ @y)=00) (Vx — [y)(Vx +/y) = @)oo X —y

x(Vx +/y) = 0(v0 +0) = 0.

Continuity: A function f(x,y) is continuous at the point (x,,y,) if

lim
(x,y)—(0,0)

1. f defined at (x,,v,),
f(x,y) exists,

. lim o f(xy) = f(xo,¥o)-
(x,y)~(x0,¥0)

A function is continuous if it is continuous at every point of its domain.

) |
(x,y)~(x0,¥0)

Example3: Find the points at which the function is continuous

2x% +y

sin(xy)

Solution: f(x,y) is continuous when sin(xy) # 0, thatis, xy # nmt, n =0,+1,%2, ....

fl,y) =

Functions of More Than Two Variables: The definitions of limit and continuity for functions
of two variables and the conclusions about limits and continuity for sums, products,
guotients, powers, and composites all extend to functions of three or more variables.
Functions like

ysinz
x—1

In(x+y+2z) and

are continuous throughout their domains, and limits like

ex+Z el—l

lim = =—,
P-(1,0,-1) z2 4 cos [xy (—1)2 +cos0 2

where P denotes the point (x, y, z), may be found by direct substitution.
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3.3 Partial Derivatives

Partial Derivatives of a Function of Two Variables: The partial derivative of f(x,y) with

respect to x at the point (x,,y,) is

o

. f(xo + h' yo) - f(xo' yo)
m
0x (x0,Y0)

d
= Yo) = lim - :

Xo

provided the limit exists.

The notation for a partial derivative of the surface z = f(x, y):

of 9z
fx'ax 120 O 5

“Partial derivative of f (or z) with respect to x.”

The partial derivative of f(x,y) with respect to y at the point (x,,y,) is

g _if(x y) _ limf(xO'yO +h)_f(x0ﬂy0)
= or — )
ay (x0,Y0) dy V=Y, h—0 h

provided the limit exists.

The notation for a partial derivative of the surface z = f(x, y):
af 0z
fy,a , Zy, OF 9y

“Partial derivative of f (or z) with respect to y.”

Calculation: The definitions of df /dx and df /dy give us two different ways of differentiating
f at a point: with respect to x in the usual way while treating y as a constant and with respect
to y in the usual way while treating x as constant. As the following examples show, the

values of these partial derivatives are usually different at a given point (x,,y,)-
Examplel: Find the values of df /dx and df /dy at the point (4, —5) if
flx,y) =x*+3xy+y—1.

Solution: To find df /0x we treat y as a constant and differentiate with respect to x:

af—a(2+3 +y—-1)=2x+3y+0—-0=2x+3
ax_axx xy+y = 2x y =2x V.
of

=l =2(4) +3(=5) = —7.

GX(4‘_5)
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To find df /0y we treat x as a constant and differentiate with respect to y:

af_a(2+3 +y—-1)=0+3x+1-0=3x+1
ay_ayx xy+y = X = 3x .
d

of =3(4)+1=13.

dy

(4,-5)
Example2: Find of /oy if f(x,y) = y sinxy.

Solution: We treat x as a constant and f as a product of y and sin xy:
af o
dy 9y

= xycosxy + sinxy .

. J . : d d .
(ysinxy) =y @ sinxy + (sinxy) @ (y) = (ycosxy) @ (xy) + sinxy

Example3: Find f, and f, if

2y
y+cosx’

fl,y) =

Solution: We treat f as a quotient. With y held constant, we get

fe

6( 2y )_(y+cosx)aa—x(2y)—Zyaa—x(y+cosx)=(y+cosx)(0)_2y(_sinx)

~ ox y+cosx/ (y + cosx)? (y + cos x)?

_ 2ysinx
~ (y+cosx)?’

With x held constant, we get

d d
Kl ( Zy ) _ (y + cos X)W(Zy) — Zyw(y + cos X) (y + cos X)(Z) _ 2}/(1)

Yy + cosx (y + cosx)? (y + cos x)?

_ 2Cosx
~ (y+cosx)?’

Implicit Partial Differentiation: Implicit differentiation works for partial derivatives the way

it works for ordinary derivatives, as the next example illustrates.

Example4: Find 0z/dx if the equation yz —Inz = x + y defines z as a function of the two

independent variables x and y and the partial derivative exists.

10
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Solution: We differentiate both sides of the equation with respect to x, holding y constant

and treating z as a differentiable function of x:

d 0 dx 0y
a(yz)—a—xan—a—x+a
0z 162_1 0

yax z0x

( 1)62_1

Y z)0x

az_ Z

ox yz—1'

Example5: The plane x = 1 intersects the paraboloid z = x? + y? in a parabola. Find the

slope of the tangent to the parabola at 2
(1,2,5) (Figure 3.8). T
Solution: The slope is the value of the Surface
artial derivative dz/dy at (1, 2) - m=
[ ivative 0z , 2):
P Y Plane Tangent
x = 1
0z 0 (<2 4 37) 291 line
. =TTy =2Yla,2)
Wz 0¥ (12)
=2(22)=4.

As a check, we can treat the parabola
as the graph of the single-variable
function z = (1) +y2 =1+ y? in the x
plane x = 1 and ask for the slope aty =
2. The slope, calculated now as an

ordinary derivative, is

dz d

L L avyy| =2y, =4
dyy=2 dy y yyz

y=2

Functions of More Than Two Variables: The definitions of the partial derivatives of
functions of more than two independent variables are like the definitions for functions of two
variables. They are ordinary derivatives with respect to one variable, taken while the other

independent variables are held constant.
11
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Example6: If x, y, and z are independent variables and f (x, y,z) = xsin(y + 3z), find df /0z.
Solution:

of 0 _ 0 | B 0 B
3, =3, [xsin(y + 32)] = xgsm(y + 3z) = x cos(y + 3z) EP (y+3z) =3xcos(y + 32).

Second-Order Partial Derivatives: When we differentiate a function f(x,y) twice, we

produce its second-order derivatives. These derivatives are usually denoted by

0%f The defining equations are

—5 O fu

dx 0*%f 0 (af) o*%f 9 (af>
i dx2  0x\ox/' dxdy dx\dy/’
302 or fyy

y and so on.

0% f

or

dxdy Tyx

0% f
dyox or Jxy

Notice the order in which the derivatives are taken:

% f
dxdy

Differentiate first with respect to y, then with respect to x.

fyx = (fy)x Means the same thing.

Example7: If f(x,y) = x cosy + ye*, find

o’f  9*f  9*f q o*f
0x2’ 0dyox’ 0y? an 0xdy
Solution:
g — i(x cosvV + ex) = CcosvVy + ex g = i(x COS + ex) = —x sin + ex
ox ax XYY yry ay oy 0T g
So So
0% f 0 (af) 0% f d (0f
=—|=—)=—siny +e”* :—(—):—' x
dydx 0y \0x Y 0xdy 0x \dy siny+e
az_f:i(i):yex az_f—i(i)—_
d0x?  0x \0x ' dy2  dy\oy) TEOS Y-

12
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The Mixed Derivative Theorem: If f(x,y) and its partial derivatives f,, f,, fy, and f,,, are
defined throughout an open region containing a point (a, b) and are all continuous at (a, b),

then
f;cy(ar b) = fyx(a, b) .

Example8: Find d%w/dxdy if

ey

y2i+1

w=xy+

Solution: The symbol d%w/dxdy tells us to differentiate first with respect to y and then with
respect to x. If we postpone the differentiation with respect to y and differentiate first with

respect to x, however, we get the answer more quickly. In two steps,

ow 0w
— =y and

=1.
0x

dyox

If we differentiate first with respect to y, we obtain 92w /dxdy = 1 as well.

Partial Derivatives of Still Higher Order:

a3f a4f
E)xayZ:fyyx ’ (')xz(')yZ:fyyxx'

Example9: Find £, if f(x,y,2) = 1 = 2xy*z + x?y .

Solution: We first differentiate with respect to the variable y, then x, then y again, and finally

with respect to z:
fy = —4xyz + x*
fyx = —4yz + 2x
fray = —42

fyxyz =—4.

13
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3.4 The Chain Rule

The Chain Rule for functions of a single variable said that when w = f(x) was a
differentiable function of x and x = f(t) was a differentiable function of t, w became a
differentiable function of t and dw/dt could be calculated with the formula

dw _ dwdx

dt dxdt’
For functions of two or more variables the Chain Rule has several forms. The form depends
on how many variables are involved but works like the Chain Rule in single variable functions

once we account for the presence of additional variables.

Functions of Two Variables: The Chain Rule formula for a function w = f(x,y) when

x = x(t) and y = y(t) are both differentiable functions of t is given in the following theorem.

Chain Rule Theorem for Functions of Two Independent Variables: If w = f(x,y) has
continuous partial derivatives f, and f, and if x = x(t),y = y(t) are differentiable functions
of t, then the composite w = f(x(t),y(t)) is a differentiable function of t and

dw _ofdx ofdy

dt odxdt oJydt’

The tree diagram provides a convenient way to remember the Chain Rule. To remember

the Chain Rule picture the diagram below. To find Chain Rule
dw/dt, start at w and read down each route to ¢, w = f(x,y) ?;f;gi ent
multiplying derivatives along the way. Then add the
products.
. . L . Intermediate
Examplel: Use the Chain Rule to find the derivative * variables
of w=xy with respect to t along the path
x =cost,y =sint. What is the derivative’s value at
¢ = w27 , —

dw dwdx  dw dy
Solution: We apply the Chain Rule to find dw/dt as  dr ~ ax dr * ay dr

follows:

dw dfdx dfdy 0d(xy)d d(xy) d
— === —(cost) + ———
dt oJxdt OJdydt dx dt dy dt
= (sint)(—sint) + (cost)(cost) = —sin? t + cos?t = cos 2t.

(sint) = (y)(—sint) + (x)(cost)

In this example, we can check the result with a more direct calculation. As a function of t,
14
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1
w=xy=costsint=zsin2t,

SO
dw—d(1'2t>—12 2t = cos 2t
dt = dt ZSIH = 5 CcoS = COS .

In either case, at the given value of t,
dw T
<E)t=n’/2 = cos (2 E) =cosm =-—1.

Functions of Three Variables: it only involves adding the expected third term to the two-

variable formula.

Chain Rule Theorem for Functions of Three Independent Variables: If w = f(x,y,2) is
differentiable and x,y, and z are differentiable functions of t, then w is a differentiable
function of t and

dw ofdx dfdy 0fdz
dt odxdt dydt odzdt’

The diagram we use for remembering the new equation is similar to the previous one, with

three routes from w to t. Here we have three Chain Rule
routes from w to t instead of two, but finding w = f(x,y,z) Dependent
. . ariable
dw/dt is still the same. Read down each Y
route, multiplying derivatives along the way;
then add. .
X Intermediate
Example2: Find dw/dt if variables
w=xy+2z x=cost, y=sint, z=t.
What is the derivative’s value at t = 0? Independent
_ variable
Solution: dw odwdx dwdy owdz

dr “oxdt Ty dr Tozdr
dw dfdx ofdy 0fdz

dt  dxdt  dydt  dzdt
= (y)(=sint) + (x)(cost) + (1)(1) = (sint)(—sint) + (cost)(cost) + 1

= —sin®t +cos’t+1 =1+ cos2t.

(dw) — 1+ cos(0) = 2
dt o = COoS = .

15
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Functions Defined on Surfaces: See the following theorem.
Chain Rule Theorem for Two Independent Variables and Three Intermediate Variables:

Suppose that w = f(x,y,z),x = g(r,s),y = h(r,s),and z = k(r,s). If all four functions are

differentiable, then w has partial derivatives with respect to r and s, given by the formulas

ow awax+away+awaz
or o0xor dyodr 0zor
ow 6W6x+ 6W6y+8waz
ds 0xds 0yds 0zds’
The first of these equations can be derived from the Chain Rule in previous Theorem by

holding s fixed and treating r as t. The second can be derived in the same way, holding r

fixed and treating s as t. The tree diagrams for both equations are shown in Figure below.

Dependent w = f(x,,2) w = f(x,y,2)
variable EI
S

. [Tt [

Intermediate | [, - |
2 ¥y z
variables D :
Independent
variables 4
w = f(g(r,s), h(r,s), k(r,s) dw  dw dx | ow dy  Ow oz dw _ dw dx | dw dy | dw oz

9 ox ar * 8) ar Az ar ds  dx ds  dy os 9z ds

Example3: Express dw/dr and dw/ds in terms of r and s if

r
w=x+2y+2z2%, xX=-, y=1r%+Ins, z=2r.
s

Solution:

ow Odwodx Owdy 0Owoz

1 1
5 =55 5y 5 5 (1)( )+ @)@r) + @2)@) = ¢ +4r + 4r)(2) = < + 12r

ow Owox away ow 0z (1)( r)+(2)(1)+(2 )(0) = 2 r
9s  ox 63 ay 63 9z 0s s? S “ B sz’
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If f is a function of two variables instead of three, each equation in previous Theorem

becomes correspondingly one term shorter.
Ifw = f(x,), x = g(r,s), and y = h(r,s), then

ow Jdwadx Jdwady dw Jdwadx OJwady
— =t —= and — =t ——
dr JdxOor OJdyor ds 0x0ds 0dyads

The tree diagram for the first of these equations. The diagram

Chain Rule
w = f(x,¥)

for the second equation is similar; just replace r with s.

Example4: Express dw/dr and dw/ds in terms of r and s if
w=x%+7y? X=1r-—s, y=r+s.

Solution: X

ow 0dwdx Owdy

=t Ty = (2x)(1) + (2y)(1)

=2(r—s)+2(r+s) =4r. ’

ow dwox Owdy ow _ dw dx | dw dy

ow _ogwor gwWor _ _ ow _ n
ds 0Ox s + dy 0s @)(=D + (2 M) dr  dx dr  dy Ir

=-2(r—s)+2(r+s)=4s.

If £ is a function of x alone, our equations become even simpler. Chain Rule

Ifw = f(x) and x = g(r,s), then w = f(x)

ow B dw dx odw B dw 0x
or  dx or an ds  dx 0s
In this case, we can use the ordinary (single-variable) derivative,

dw/dx as you can see in the tree diagram.

Implicit Differentiation Revisited: The two-variable Chain

Rule leads to a formula that takes most of the work out of implicit

differentiation. Suppose that

_ o _ ow _ dw dx

1. The function F(x, y) is differentiable and ar dx or
2. The equation F(x,y) =0 defines y implicity as a dw  dw dx
differentiable function of x, say y = h(x). ds  dx 9s
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w = F(x, )

Since w = F(x,y) = 0 the derivative dw/dx must be
zero. Computing the derivative from the Chain Rule (as
shown in tree diagram), we find ( as before, but with
t=xand f =F)

dw dx d d
0= =F Y + E 4

T dx Fdx dx  * Vdx
If E, = dw/dy # 0 we can solve this equation for dy/dx
to get
dy _ _E
dx E,’

This relationship gives a surprisingly simple shortcut to finding derivatives of implicitly

defined functions, which we state here.

A Formula for Implicit Differentiation: Suppose that F(x, y) is differentiable and that the
equation F(x,y) = 0 defines y as differentiable function of x. Then at any point where
E, # 0,

dy F
dx E’

Example5: Find dy/dx if y> — x? —sinxy =0

Solution: Take F(x,y) = y?> — x? —sinxy. Then
dy F, ~ —2x—ycosxy 2x+ycosxy

dx  F,  2y—xcosxy 2y—Xcosxy

Functions of Many Variables: In general, suppose that w = f(x, y, ..., v) is a differentiable
function of the variables x, y, ..., v (a finite set) and x, y, ..., v the are differentiable functions
of p, q, ..., t (@another finite set). Then w is a differentiable function of the variables p through
t and the partial derivatives of w with respect to these variables are given by equations of
the form

dw Jdwadx O0Owady Jdw v

@ axop ayop ' ovop

The other equations are obtained by replacing p by g, ..., t one at a time.

One way to remember this ow dw  ow ox dy  0Ov
way (o remember (ol By g (220
equation is to think of the right- ox dy 0dv dp 0q Ot
. Derivatives of w with Derivatives of intermediate
hand side as the dot product of respect to the variables with respect to the
intermediate variables selected independent variables

two vectors with components
18
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3.5 Directional Derivatives and Gradient Vectors

Directional Derivatives in the Plane: Suppose that the function f(x,y) is defined
throughout a region R in the xy-plane, that Y

P,(x,,y,) is a pointin R, and that u = u,i + u,j Linex =xo + suy, y = yo + suy
is a unit vector. Then the equations

X =X, + suy, y =Y, + su,

parametrise the line through parallel to u. If the

parameter s measures arc length from P, in U=t )
the direction of u, we find the rate of change of .Dlrecm.m of
mcreasing s
f at in the direction of u by calculating df /ds

at P, (Figure 3.9). R

{

So, the directional derivative can be defined: Folxo, 7o)
The derivative of f at P, in the direction of the >
unit vector u = u,i + u,j is the number Figure 3.9.

)

(df> . f(xp + 55Uy, Yo + suz) — (X0, 5)
— = lim
ds/up, 0 s

provide the limit exists.

The directional derivative is also denoted by (D, f)p, “the derivative of f at F, in the direction

”

of u”.

Examplel: Find the derivative of f(x,y) = x? + xy at P,(1,2) in the direction of the unit

vector u = (%)1 + (%) J.

Solution:
f<1+si 2+si)—f(12)
<df> T f(xo+Su1'yo+5u2)_f(x0'yo)_ . V2 ' V2 '
— = lim = lim
ds/up, -0 s 50 s
2
s s s
1+—> +(1+—)<2+—)— 12 +1(2
— i ( \?2 \V?2 V2 ( ())
= lim
s—0 S
2s 32)2 ( 3s sz) 5
1+2=+5) +(2+=+3%)-3 = 4
_.( V22 V2 2 _.\/25_. 5 5
= lim = lim =lim|—=+s)=—.
s-0 S s—0 S 520 \4/2 1/2
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Calculation and Gradients: We now develop an efficient formula to calculate the directional

derivative for a differentiable function f. We begin with the line

X =X, + Suq, y =Y, + su,
through parametrised with the arc length parameter s increasing in the direction of the unit
vector u = uyi + u,j. Then

df g)P dx+ (%) dy

(Puf e, = (E)U,Po - (ax ds * \ay)_ ds

-5, + ),

= [(%)PO i+ (%)PO i] Jugi +uyj] = [(%)Po i+ (%)PO i] [u];_:ejtl?_nzil

Gradient of f at P,

Gradient Vector: The gradient vector (gradient) of f(x,y) at a point P,(x,, y,) is the vector

of .  Of .
Vf—alﬁ'@

obtained by evaluating the partial derivatives of f at P,.

The notation is read “grad f” as well as “gradient of f” and “del f.” The symbol V by itself is

read “del.” Another notation for the gradient is grad f, read the way it is written.

The Directional Derivative Is a Dot Product: If f(x,y) is differentiable in an open region

containing P,, then

0, = (%) = @r,w,

Lo

the dot product of the gradient f at P, and u.

Example2: Find the derivative of f(x,y) = xe¥ + cos(xy) at the point (2,0) in the direction
of v = 3i — 4j.

Solution: The direction of v is the unit vector obtained by dividing v by its length:
v 3 4

U:ngl——].

The partial derivatives of f are everywhere continuous and at (2, 0) are given by
£:(2,0) = (e” — ysin(xy))z0) =€° — 0 =1
fy(2,0) = (xe¥ — x sin(xy)) 20y = 2€° — 2(0) = 2.
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The gradient of f at (2,0) is
Vil = f:(2,0i+ £,(2,0) = i+ 2j.

The derivative of f at (2,0) in the direction of v is therefore

. ~ (3. 4, 3 8
(Duf)Pol(Z'O)=Vf|(2,0)'u=(1+2])'<§ —§])=§—§=—1.

Evaluating the dot product in the formula

Dyf =Vf-u=|Vf||lu|lcos@ = |Vf|cos@,

where 6 is the angle between the vectors u and Vf reveals the following properties.
Properties of the Directional Derivative:

1. The function f increases most rapidly when cos & = 1 or when u is the direction of Vf.
That is, at each point P in its domain, f increases most rapidly in the direction of the gradient

vector Vf at P. The derivative in this direction is

Dyf = |Vflcos(0) = |Vf].
2. Similarly, f decreases most rapidly in the direction of —|Vf|. The derivative in this direction
is

Dyf = |Vflcos(m) = —|Vf]
3. Any direction u orthogonal to a gradient Vf =+ 0 is a direction of zero change in f because

6 then equals /2 and
Dyf = |Vflcos(m/2) = |Vf|(0) = 0.
As we discuss later, these properties hold in three dimensions as well as two.

Example3: Find the directions in which

o= (5)+(2)

(a) Increases most rapidly at the point (1,1)
(b) Decreases most rapidly at (1, 1).

(c) What are the directions of zero change in f at (1,1)?
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Solution: (a) The function increases most rapidly in the direction of at (1,1).
The gradient thereis (Vf) 1) = (xi+yj)qy =i+]j.

i+j i+j 1. 1.

il Jre e V2 V2

(b) The function decreases most rapidly in the direction of —Vf at (1, 1), which is

Its directionis u =

1. 1

TR TR

(c) The directions of zero change at (1, 1) are the directions orthogonal to Vf:
1. 1. 1. 1.

n=—51+ﬁ] and —n=ﬁl—ﬁ].

Gradients and Tangents to Level Curves: If a differentiable function f (x, y) has a constant
value ¢ along a smooth curve r = g(t)i + h(t)j (making the curve a level curve of f), then

f(g(t),h(t)) = c. Differentiating both sides of this equation with respect to t leads to the

equations
d d
dt f(g(t), h(t)) = at (c) The level curve f(x, ¥) = f(xq, Vo)
df dg N df dh
Ox dt Oydt o v0)
af . of \ (dg. dh. /
<51+@’)'<E'+E') =0 Vi(xp. vo)
Vf dr

at
This equation says that Vf is normal to the
tangent vector dr/dt so it is normal to the Figure 3.10.

curve.

At every point (x,,y,) in the domain of a differentiable function f(x,y), the gradient of f is

normal to the level curve through (x,,y,) (Figure 3.10).

This enables us to find equations for tangent lines to level curves. They are the lines normal
to the gradients. The line through a point P,(x,,y,) normal to a vector N = Ai + Bj has the
equation

Ax —x,) +B(y —y,) =0
If N is the gradient (Vf)(x, ) = fx(X0, ¥o)i + f,(x,,¥,)], the equation is the tangent line given
by

fx(xo' yo)(x - xo) + fy(xo,yo)(y - yo) = 0.
22
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Example4: Find an equation for the tangent to the ellipse
J”
x? 1
Z+y2=2 V=2, 1) = —i + 2j x—2y=-4
(Figure 3.11) at the point (-2, 1). V&) x? +y2=2

4
_ 1
Solution: The ellipse is a level curve of the =2, 1 \
function ' ' X
-2 -1 0
x*
foy)=—F+y

The gradient of f at (—2,1) is Figure 3.11.

Pl = (Git2yi)  =—i+2]
' 2 (-2,1)
The tangent is the line

—-1(x+2)+2(y—1)=0 = x—2y=—4.
Algebra Rules for Gradients:

If we know the gradients of two functions f and g, we automatically know the gradients of
their constant multiples, sum, difference, product, and quotient. Notice that these rules have

the same form as the corresponding rules for derivatives of single-variable functions.

1. Constant Multiple Rule:  V(kf) = kVf (any number k)
2.  Sum Rule: V(if +g) =Vf+ Vg
3. Difference Rule: Vif —g) =Vf— Vg
4. Product Rule: V(fg) = fVg + gVf
Vf - fV
5. Quotient Rule: V(f) = gVS ~ IVe
g gz
Example5: We illustrate the rules with
fy)=x—-y = Vf=i-j, gx,y)=3y = Vf=3j

We have

1. V(2f) =V(2x — 2y) = 2i — 2j = 2Vf

2.V(f+9)=V(x+2y)=i+2j=Vf+Vg
23
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BV(f—g)=Vx—4y)=i—4j=Vf-Vyg
4.V(fg) = V(3xy — 3y?) = 3yi + (3x — 6y)j
= 3y(i—j) +3yj + (3x — 6y)j
=3y(i—1j)+ (Bx —3y)j
=3y(i—j) + (x—y)3j=gVf +fVg

5.9(5) =7 (597 (5-3)

1. x
_3yl 3y2]
_3yi—-3x 3y(i—j)—Bx—3y)j
9y? 9y?
_ 3y i)~ (x—»3j _gVf ~fVg
9y? g? '

Functions of Three Variables:

For a differentiable function f(x,y,z) and a unit vector u = u;i + u,j + ugk in space, we

have
_of . of  Of
Vf = 6xl+6yl+ aZk
and
B _af af af
Duf—Vf u—au1+@u2 +£u3

The directional derivative can once again be written in the form
Dof =Vf-u=|Vf|-|ulcosf = |Vf|cosO

so the properties listed earlier for functions of two variables continue to hold. At any given
point, f increases most rapidly in the direction ofVf and decreases most rapidly in the

direction of —V£. In any direction orthogonal to Vf the derivative is zero.
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Example6: (a) Find the derivative of f(x,y,z) = x®> — xy? — z at P,(1, 1, 0) in the direction od
v = 2i — 3j + 6k.

(b) In what directions does f change most rapidly at P, and what are the rates of change in

these directions?

Solution: (a) The direction of v is obtained by dividing v by its length:
vl =V(@2+(-3)2+ (6)2=V49 =7

_v_2. 3 6
YEN T T Ty

The partial derivatives of f at P, are
fx = (3x% — 3’2)(1,1,0) =2, fy = _Zx}’|(1,1,0) = -2, fz = _1|(1,1,0) =-1.
The gradient of f at P, is
vf|(1,1,o) =2i-2j -k

The derivative of f at in the direction of v is therefore

o 2 3. 6\ 4 6 6 4
(Duf)(1,1,o)=Vf|(1,1,o)'ll=(Zl—zl—k)'<7l—7l+7k)=7+7—7=;-

(b) The function increases most rapidly in the direction of Vf = 2i — 3j — k and decreases

most rapidly in the direction of —Vf The rates of change in the directions are, respectively,

VAl =/(2)2+(=2)2+ (-1)2=+/9=3 and —|Vf] = -3.

3.6 Tangent Planes

In this section we define the tangent plane at a point on a smooth surface in space. We
calculate an equation of the tangent plane from the partial derivatives of the function defining
the surface. This idea is similar to the definition of the tangent line at a point on a curve in
the coordinate plane for single-variable functions. We then study the total differential of

functions of several variables.

Tangent Planes and Normal Lines: If r = g(t)i + h(t)j + k(t)k is a smooth curve on the
level surface f(x,y,z) =c of a differentiable function f, then f(g(t),h(t), k(t)) =c.

Differentiating both sides of this equation with respect to t leads to
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d d
(9O, h(0), k(D) = —c

of dg  of dhof dk _
dxdt dydt dzdt

Of O OF ) (da dhy iy
(E'J’E’Jrazk) (dtl+dt]+dtk =0

vf dr/dt

At every point along the curve, Vf is orthogonal to the curve’s velocity vector.

Now let us restrict our attention to the curves that pass through P, (Figure 3.12). All the
velocity vectors at P, are orthogonal to Vf at
P,, so the curves’ tangent lines all lie in the
plane through P, normal to Vf. We call this

plane the tangent plane of the surface at P,.

The line through P, perpendicular to the plane — ) fx,y,2) =c

is the surface’s normal line at P,.
. oL Figure 3.12.
Tangent Plane, Normal Line (Definition)

The tangent plane at the point P,(x,,v,,z,) on the level surface f(x,y,z) =c of a

differentiable function f is the plane through P, normal to Vf|p, .
The normal line of the surface at P, is the line through F, parallel to Vf|p .
Thus, the tangent plane and normal line have the following equations:
Tangent Plane to f(x,y,z) = c at P,(x,, Vo, Zo)
fe(Bo)(x = x0) + f,(B) (Y = ¥o) + f2(Po)(z —2,) = 0

Normal Line to f(x,y,z) = c at P,(x,, Yo, Zo)

x=xo+(B)t,  y=Y+ P z=12,+ f(B)t
Examplel: Find the tangent plane and normal line of the surface

f,y,z2)=x*+y*+2z-9=0

at the point P, (1, 2,4).
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Solution: The surface is shown in Figure 3.13. 2
The surface

ey [ 2 +y24+2z-9=0
perpendicular to the gradient of f at P,. The = ~ /

gradient is

The tangent plane is the plane through P,

Normal line

Vilp, = 2xi+ 2yj + K)(124) = 2 + 4j + K.

The tangent plane is therefore the plane \

\\\ Tangent plane
2x+4y +z =14 \
},r

The line normal to the surface at P, is %

2c—1)+4(y—-2)+(z—-4)=0 /

[§9]

Figure 3.13.
x =1+ 2¢, y =2+ 4t, z=4+t

Plane Tangent to a Surface: To find an equation for the plane tangent to a smooth surface
z = f(x,y) at a point P,(x,,V,,z,) Where z, = f(x,,y,), we first observe that the equation
z = f(x,y) is equivalentto f(x,y) —z = 0. The surface z = f(x, y) is therefore the zero level

surface of the function F(x,y,z) = f(x,y) — z The partial derivatives of F are

d
Fx:a(f(x:y)_z):fx_():fx

d
Fy=$(f(xd’)—2)=fy—0=fy

E=2(fey) - =0-1= -1
The formula
E(P)(x = x0) + B,(B) (Y = ¥o) + E,(P)(z = 2,) = 0
for the plane tangent to the level surface at P, therefore reduces to
fe (X0, ¥0) (x = x0) + £, (%0, Y)Y = ¥5) — (2 —2,) = 0
Plane Tangent to a Surface z = f(x, y) at (x, Yo, f (%0, ¥5))

The plane tangent to the surface z = f(x,y) of a differentiable function f at the point
Po (X0, Y01 20) = (Xo0) Yo, f (%o, ¥5)) IS

fx(xo'yo)(x - xo) + fy(xmyo)(y - yo) - (Z - Zo) =0.
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Example2: Find the plane tangent to the surface z = x cosy — ye* at (0,0, 0).

Solution: We calculate the partial derivatives of f(x,y) = x cosy — ye”* first.
£(0,0) = (cosy — ye¥) 0,0y = 1 - 0(1) = 1
fy(0,0) = (—xsiny —e*) oy =0—-1=-1

The tangent plane is therefore

MDxx-0)+-Dy-0)—-(=—-0=0 = x—y—z=0.

Example3: The surfaces f(x,y,z) = x*+y?—2=0and g(x,y,z) = x+z—4 = 0 meetin

z

an ellipse E (Figure 3.14). Find parametric The plane
c+z—4=0
equations for the line tangent to E at the point I

::: 3 g(x’ yv Z)
P,(1,1,3). ‘ .

Solution: The tangent line is orthogonal to both Vf

and Vg at P,, and therefore parallel to v = Vf x Vg.

The components of v and coordinates of P, give us

equations for the line. We have

Vfl13) = Qxi+ 2yj) 1,13 = 2i + 2j
Vgl = A+K)q3 =i+k

" The ellipse E
(1, 1,3)

N
i ] k VfXVg;
v=QRi+2))x({i+k)=1|2 2 0|=2i—-2j—-2k
1 0 1 ™

The tangent line is

x=1+2t, y=1-2t, z=3-2t. / \ \‘

" The cylinder
3.7 Extreme Values and Saddle X4y -2=0
f(x,»,2)
Points Figure 3.14.

Derivative Tests for Local Extreme Values: To find the local extreme values of a function
of a single variable, we look for points where the graph has a horizontal tangent line. At such
points, we then look for local maxima, local minima, and points of inflection. For a function
f(x,y) of two variables, we look for points where the surface z = f(x,y) has a horizontal
tangent plane. At such points, we then look for local maxima, local minima, and saddle

points.
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Local Maxima and Local Minima: Let f(x,y) be defined on a region R containing the point
(a,b). Then

1. f(a,b) is alocal maximum value of f if f(a,b) = f(x,y) for all domain points (x, y) in an

open disk centred at (a, b).

2. f(a,b) is alocal minimum value of f if f(a,b) < f(x,y) for all domain points (x,y) in an

open disk centred at (a, b).

Local maxima correspond to mountain peaks on the surface z = f(x,y) and local minima

correspond to valley bottoms (Figure 3.15). At such Local maxima

(no greater value of fnearby)
\

points the tangent planes, when they exist, are 5

horizontal. Local extrema are also called relative ® g
AN’
extrema.
First Derivative Test for Local Extreme Values: If
f(x,y) has a local maximum or minimum value at an —
interior point (a, b) of its domain and if the first partial Local minimum —*
o ] (no smaller value
derivatives exist there, then f,(a,b) =0 and of fnearby)
fy(a,b) = 0. Figure 3.15

Critical Point: An interior point of the domain of a function f(x,y) where both f, and f, are

zero or where one or both of £, and f,, do not exist is a critical point of f.

Saddle Point: A differentiable function f(x,y) has a saddle point at a critical point (a, b) if
in every open disk centred at (a, b) there are domain points (x,y) where f(x,y) > f(a,b)
and domain points (x,y)
where  f(x,y) < f(a,b).
The corresponding point
(a,b,f(a,b)) on the

surface z=f(x,y) is

2500 X

SIS

ot
|1

S
111 % ” \“
!

called a saddle point of

the surface (Figure 3.16).

Figure 3.16.
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Examplel: Find the local extreme values of f(x,y) = x% + y2.

Solution: The domain of f is the entire plane (so there are no boundary points) and the
partial derivatives f, = 2x and f, = 2y exist

everywhere. Therefore, local extreme values

can occur only where

N\ §
=2x= =2y = NN (S
fr=2x=0, f,=2y=0. \\\\\\\\\‘\\“““““‘\"”.\‘ -
\\Q\\\\:“\‘\‘“"@Q’Q.Q 00‘0’0 I"l 7,
The only possibility is the origin, where the \\“\‘\“{‘\‘“3@;{@@%‘.‘@%’;;;’?;’
' \\§\\\ \‘ 9 "‘xll,. //’

NS

value of f is zero. Since f is never negative,
we see that the origin gives a local minimum

(Figure 3.17). Figure 3.17. 7
Example2: Find the local extreme values of f(x,y) = y? — x2.

Solution: The domain of f is the entire plane (so there are no boundary points) and the

partial derivatives f, = —2x and f, = 2y exist

everywhere. Therefore, local extrema can occur z =y —x?

only at the origin (0, 0). Along the positive x-axis, H /

however, f has the value f(x,0) = —x2 < O0;

along the positive y-axis, f has the value \ y

£(0,y) = y? > 0. Therefore, every open disk in
the xy-plane centred at (0,0) contains points
where the function is positive and points where Figure 3.18.
it is negative. The function has a saddle point at the origin (Figure 3.18) instead of a local

extreme value. We conclude that the function has no local extreme values.

Second Derivative Test for Local Extreme Values: Suppose that f(x,y) and its first and

second partial derivatives are continuous throughout a disk centred at (a,b) and that
fr(x,¥) = f,(x,y) = 0. Then

1. f has a local maximum at (a, b) if f,, <0 and fi.fyy — fi5 > 0 at (a, b).
2. f has alocal minimum at (a, b) if fox >0 and fi.fyy — fi5 > 0 at (a, b).
3. f has a saddle point at (a,b) if fixfyy — fi5, < 0 at (a,b).

4. The test is inconclusive at (a, b) if fixfy,y — f5 = 0 at (a, b).
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The expression fi.fyy — f5 is called the discriminant of f. It is sometimes easier to

remember it in determinant form,

f;cx fxy

fxxfyy - fxzy = fxy fyy

Second Derivative Test says that if the discriminant is positive at the point (a, b), then the
surface curves the same way in all directions: downward if f,, < 0 giving rise to a local
maximum, and upward if f, > 0 giving a local minimum. On the other hand, if the
discriminant is negative at (a, b), then the surface curves up in some directions and down in

others, so we have a saddle point.
Example3: Find the local extreme values of the function
f,y)=xy—x?>—y2=2x—2y +4.

Solution: The function is defined and differentiable for all x and y and its domain has no
boundary points. The function therefore has extreme values only at the points where f, and

f, are simultaneously zero. This leads to
fi=y—2x-2=0, f,=x-2y-2=0
solving both equations to find x and y
xX=y=-2.

Therefore, the point (—2,—2) is the only point where f may take on an extreme value. To

see if it does so, we calculate
fex =72, fyy=-2  fiy=1.
The discriminant of f at (a,b) = (—2,—-2) is
fecfyy — fiy = (=2)(=2) - (1)* =4-1=3.
The combination

fxx <0 and fxxfyy - fxzy >0

tells us that f has a local maximum at (—2,—2). The value of f at this pointis f(—2,—-2) =
8.
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Example4: Find the local extreme values of f(x,y) = xy.

Solution: Since f is differentiable everywhere (Figure 3.19), it can assume extreme values

only where
fx=y=0 and f,=x=0.

Thus, the origin is the only point where f might
have an extreme value. To see what happens

there, we calculate

The discriminant

fxxfyy - fxzy =-1, z=Xxy
Figure 3.19.

is negative. Therefore, the function has a saddle

point at (0,0). We conclude that f(x,y) = xy has no local extreme values.
Summary of Max-Min Tests:

The extreme values of f(x,y) can occur only at

1. boundary points of the domain of f

2. critical points (interior points where f, = f, = 0 or points where f, or f, fail to exist).

If the first- and second-order partial derivatives of f are continuous throughout a disk centred
at a point (a,b) and f,(a,b) = f,(a,b) = 0, the nature of f(a,b) can be tested with the

Second Derivative Test:

1. fex < 0and fiif,, — fi5 > 0 at(a,b) = local maximum
2. fux > 0and firfyy — f5 > 0at (a,b) = local minimum
3. fuxfyy — fiy <0 at(a,b) = saddle point

4. fuxfyy — fiy = 0 at (a,b) = testis inconclusive.
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Solved Problems:

3.1 Functions of Several Variables

Probl: Find the domain and the range of the function f(x,y) = /9 — x2 — y2.
Solution: Domain is all (x,y) satisfying x> + y?> <9, Range is 0 < z < 3.

Prob2: Find an equation for the level curve of the function f(x,y) = vx? — 1 that passes
through the given point (1, 0).

Solution: At (1,0) = z=vV12—-1=0 = x?—-1=0 = x=1lorx=-—1.

Prob3: Find an equation for the level surface of the function f(x,y,z) = In(x? + y? + z2)

through the given point (—1, 2, 1).

Solution:

At(-1,2,1) = w=In(1+2+1)=In4 = In4d=In(x?+y2+22) = x®2+y?+2z%2=4.
3.2 Limits and Continuity in Higher Dimensions

Prob1: Find the limit

lim nSecxtany.
(X;Y)_’(O'Z

/s
Solution: lim _ secxtany = (sec0) (tan—) =(1)(1) =1.
(x,y)—>(0,z 4

Prob2: Find the limit by rewriting the fraction first

o xt=y?
lim .
(xy)->(11) x—y
XEY

x% — y? x+y)(x —
lim Y _ lim >+ y)&-y) = lim (+y)=>0+1)=2.
(xy)->(11) x—y (xy)—(1,1) X—y (xy)-(1,1)
xX£y

Solution:

Prob3: Find the limit

lim ze %Ycos2x.
P—-(1m,0,3)

Solution: lim ze % cos2x = 3e 2 cos 2 = (3)(1)(1) = 3.
P-(m,0,3)
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Prob4: At what point (x, y) in the plane is the function continuous?
f(x,y) =sin(x +y).
Solution: All (x,y).
Prob5: At what point (x, y, z) in space is the function continuous?
foy2) = x> +y?—1.
Solution: All (x,y, z) except the interior of cylinder x? + y? = 1.
3.3 Partial Derivatives:
Probl: Find 0f /dx and df /dy of the function f(x,y) = e* Iny.
Solution:
% = exyaa—x(xy)lny =ye?Iny, % = exyaa—y(xy)lny + exyi =xe*Iny +%.

Prob2: Find f,, f,, and f, of the function f(x,y,z) = sinh(xy — z%).
Solution: f, = y cosh(xy — z?), f, = x cosh(xy — z%), f, = =2z cosh(xy — z%).
Prob3: Find the partial derivative of the function with respect to each variable

f(t, @) = cos(2nt — a).

0 0
Solution: —f = —2msin(2nt — a), —f = sin(2nt — a) .
dat da

Prob4: Find all the second-order partial derivatives of the function

f(x,y) = x*y + cosy + ysinx.

Solution:

of o0y f _ o s O _ 0*f _

F xy +ycosx, ay—x siny + sinx, 3% y—ysinx, ayz_ cosy,
a%f a%f

axdy _ dyox X + cosx
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Prob5: Verify w,, = wy, forw = xy + xsiny + y sinx.
Solution: w, =y +siny + ycosx, wy, =x+xcosy + sinx,
Wyy =14+ cosy +cosx, Wy =1+ cosy+cosx.

Prob6: Find the value of 0z/dx at the point (1,1, 1) if the equation xy + z3x — 2yz = 0.

0z 0z 0z
. . 2 3 _ — 240 = _y — 3
Solution: y + (32 _6x> x+2z° =2y P 0 = (Bzx—-2y) I y =2z,

0z 0z
at(1,1,1) = (3—2)a=—1—1 = az—Z

3.4 The Chain Rule

Probl: Express dw/dt as a function of t, both by using the Chain Rule and by expressing

w in terms of t and differentiating directly with respect to t. Then evaluate dw/dt at the given

value of t.

w = 2ye* —Inz, x=In(t?+1), y=tan"1t, z=¢eb t=1.
Soluti _aw_z N aw_zx ow 1 dx 2t dy 1 dz
OMHOM Gy =98 3y =% 3,777 At e2+1 dt 2+l dt ¢

dw_awdx+awdy+awdz_
dt odxdt dydt odzdt

2ye* 2t + 2e* ! —let
t2+1 t2+1 z

4D)tanrt (t2+1) 2(t?+1) et
=( ) ( ) ( )——=4ttan‘1t+1;
t2+1 t2+1 et

— x _ — -1 2 _ d_W: 2 -1 _
w=2ye*—Inz=Qtan ' t)(t*+1)—-t = (t“+1)+Qtan " t)(2t) — 1

dt t2+1

dw t=1 dw T
_ -1 _ - _
dt—4ttan t+1 = dt(l)—(4)(1)(4)+1—n+1.

Prob2: Express ow/du and dw/dv as functions of u and v both by using the Chain Rule
and by expressing w directly in terms of u and v before differentiating. Then evaluate dw/ou

and dw/dv at the given point (u,y) = (1/2,1)

w=xy+yz+xz, xX=u-+v, y=u-u, Z=Uuv.
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Soluti _aw_awax+away+awaz_( LD + e+ D) + &+ 0w
o S T 9xau ayou dzou 7 xrz y XY

=x+y+2z+vx+y)=Ww+v)+ @w—v)+2(u) + v(2u) = 2u + 4uv;

ow Jdwadx OJdwdy OJdwoz
%—a%+5%+g%—(y+z)(1)+(x+z)(—1)+(y+x)(u)—y—x+u(x+y)
=@w—-v)— (u+v)+uCu) =—-2v+ 2u?;

w=xy+yz+xz=w+v)(u—7v)+ u—v)(uv) + (u+ v)(uv)

ow
w=w?—-v3)+ @W?>v—ur®) + Wv+uv?®) =u?—v?2+2u*v = Pl 2u + 4uv and

ow
— = —2v + 2u?.
Jv

a(3) 22 (s =3 ana 2o 2yez(l) =2

Prob3: Draw a tree diagram and write a Chain Rule formula for each derivative

aw aw

I and E for w = g(u,v), u=h(x,y), v=k(x,y).
Solution: 6W_6W6u+awav 6W_6W6u+awav
o oy T 9uax " vox’ dy odudy Odvay

Prob4: Assuming that the equation xe? + sinxy + y —In 2 = 0 defines y as a differentiable

function of x, find the value of dy/dx at the given point (0, n 2).
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Solution: Let F(x,y) = xe¥ +sinxy+y—In2=0 = F,=eY+ ycosxyand

E e +ycosx
F, = xe” + xcosxy +1 o Yo x__ Y Y
dx E, xeY +xcosxy +1

d
At (0,In2): d—z(o,m) —_(2+In2).

3.5 Directional Derivatives and Gradient Vectors

Prob1: Find the gradient of the function f(x,y) =y — x? at the given point (—1,0). Then

sketch the gradient together with the level curve that passes through the point.

a a a i
Solution: o =-2x, = _f(_ll 0) =2, of -1, X Vf=2i+]j

Vf=2i+j; f(=1,0)=-1,
2 _
—1 =y — x? is the level curve. | [y —x=-1

(_1' O) ./1

v
=

Prob2: Find V£ at the given point (1, 1, 1) of the function f(x,y,z) = x? + y2 — 2z? + zInx.

solution: L=2x+%2 = L a11=3%22 o La11=2
°“'°“'ax_ x x ax 7 T oy Y ay T

of of .
—=—4z+Inx = —(1,1,1) = —4, thus Vf = 3i + 2i — 4k.
0z 0z

Prob3: Find the derivative of the function at P, in the direction of A

1
f(x,y,z) = cosxy + e¥* +Inxz, P0<1,0,§), A=i+2j+2k.

Soluti _A_i+2j+2k 1,2, Zk _ ] 1 101_1
outlon.u—m—m—§1+§]+§ ,fx——ysmxy—l—; = fx<, ,§>— ;

_ 1y 1 1 1
fy = —xsinxy + ze?” = fy(l,O,E):E;fZ:yeyz+E = fz(l,O,E):Z,

+ =2.

L
3

W =
W =

1
Vf=itzj+2k,  (Duf)p, =Vf us=
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Prob4: Find the direction in which the function increases and decreases most rapidly at P,.

Then find the derivative of the function in these directions

flx,y) =x% +xy +vy? P(-1,1).

Vf —1li+]j
Solution: Vf = 2x+y)i+ (x+2y)j = Vf(-1,1)=-1li+j = u= =
IVFl J(-1)% + 12
1'+1'f' t idly in the directi f 1'-f-l'
u=——i+—j; f increases mostrapidly in the direction ofu = ——i + —
1 1
and decreases most rapidly in the direction of —u = —i — —j.
pialy 2 \/fl

(Duf)p, = IVfl=V2 and (D_f)p, = —|Vf| = —V2.

Prob5: Sketch the curve f(x,y) = c together with Vf and the tangent line at the given point.

Then write an equation for the tangent line

fy)=x>+y>=4, (V2,V2). y Vf = 2V2i + 2V2j

Solution: Vf = 2xi +2yj = Vf(V2,v2) = 2v2i + 2v2j
\
Tangent line: 2v2(x —v2) + 2v2(y —v2) =0, 2
V2,V2
\/EX + \/Ey =4, CJZ( :)X
3.6 Tangent Planes x?+y?=4
y =—x+2V2

Probl: Find equations for the tangent plane and normal line at the point P, on the given
surface 2z —x2 =0, P,(2,0,2).

Solution: Vf = =2xi + 2k = Vf(2,0,2) = —4i + 2Kk,

Tangent plane: —4(x —2)+2(z—-2)=0 = —4x+2z+4=0 = —2x+z+2=0;
Normal line:x =2—4t, y=0, z=2+2t.

Prob2: Find an equation for the plane that is tangent to the given surface at the given point

z = 4x? +y?, (1,1,5).
Solution: z = f(x,y) =4x*+y* = f,=8x = f,(1,1)=8, f,=2y = f,(1,1)=2

Tangentplane: 8(x — 1) +2(y—-1)—-(z—-5)=0 = 8x+2y—z=5.
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Prob3: Find parametric equation for the line tangent to the curve of intersection of the

surfaces at the given point

Surfaces: x + y? + 2z = 4,x = 1. Point: (1,1, 1).

Solution: Vf =i+ 2yj+2k = Vf(1,1,1) =i+2j+2kandVg =i;v=Vf xVg

i j k
v=|1 2 2|=2j—2k = Tangentline:x=1, y=1+2t, z=1-2t.
1 0 O

3.7 Extreme Values and Saddle Points

Prob1: Find the local maxima, local minima, and saddle points of the function

(5,9) == +xy +=
floy) =< +xy "

1 1
Solution: fxz—x—2+y=0andfy=x—37=0 = x=1 and y=1,

2 2
the critical pointis (1,1); fiyx = pey yy = 7 oy = L (LD =2,£,(1,1)=2,f, = 1;

fexfyy —fiy=3>0 and f,, =2>0 = local minimumof f(1,1) =3.
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