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Chapter Three: Partial Derivatives 

In this chapter, we will discuss the functions of several variables and the derivates of 

functions of several variables. 

3.1 Functions of Several Variables 

Function of 𝒏 Independent Variables:  Suppose 𝐷 is a set of ordered pairs of real numbers 

(𝑥1, 𝑥2, … , 𝑥𝑛). A real-valued function 𝑓 on 𝐷 is a rule that assigns a unique (single) real 

number 

𝑤 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 

to each element in 𝐷. The set 𝐷 is the function’s domain. The set of 𝑤-values taken on by 

𝑓 is the function’s range. The symbol 𝑤 is the dependent variable of 𝑓, and 𝑓 is said to be 

a function of the 𝑛 independent variables 𝑥1to 𝑥𝑛. We also call the 𝑥𝑗 ’s the function’s input 

variables and call 𝑤 the function’s output variable. 

If 𝑓 is a function of two independent variables, we usually call the independent variables 𝑥 

and 𝑦 and picture the domain of 𝑓 as a region in the 𝑥𝑦-plane. If 𝑓 is a function of three 

independent variables, we call the variables 𝑥, 𝑦, and 𝑧 and picture the domain as a region 

in space. 

As usual, we evaluate functions defined by formulas by substituting the values of the 

independent variables in the formula and calculating the corresponding value of the 

dependent variable. 

Example1: Evaluate the value of 𝑓(𝑥, 𝑦, 𝑧) = √𝑥2 + 𝑦2 + 𝑧2 at the point (3, 0, 4). 

Solution: 𝑓(3, 0, 4) = √(3)2 + (0)2 + (4)2 = √25 = 5. 

Domains and Ranges: In defining a function of more than one variable, we follow the usual 

practice of excluding inputs that lead to complex numbers or division by zero. If 𝑓(𝑥, 𝑦) =

√𝑦 − 𝑥2, 𝑦 cannot be less than 𝑥2. If 𝑓(𝑥, 𝑦) = 1/𝑥𝑦, 𝑥𝑦 cannot be zero. The domain of a 

function is assumed to be the largest set for which the defining rule generates real numbers. 

The range consists of the set of output values for the dependent variable. 
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Example2: (a) Functions of two variables 

Function Domain Range 

𝑤 = √𝑦 − 𝑥2 𝑦 ≥ 𝑥2 [0,∞) 

𝑤 =
1

𝑥𝑦
 𝑥𝑦 ≠ 0 (−∞, 0) ∪ (0,∞) 

𝑤 = sin 𝑥𝑦 Entire plane [−1, 1] 

 

(b) Functions of three variables 

Function Domain Range 

𝑤 = √𝑥2 + 𝑦2 + 𝑧2 Entire space [0,∞) 

𝑤 =
1

𝑥2 + 𝑦2 + 𝑧2
 (𝑥, 𝑦, 𝑧) ≠ 0 (0,∞) 

𝑤 = 𝑥𝑦 ln 𝑧 Half-space 𝑧 > 0 (−∞,∞) 

 

Functions of two variables: Regions in the plane can have interior points and boundary 

points just like intervals on the real line. Closed intervals [𝑎, 𝑏] include their boundary points, 

open intervals (𝑎, 𝑏) do not include their boundary points, and intervals such as [𝑎, 𝑏) are 

neither open nor closed. 

A point (𝑥𝑜 , 𝑦𝑜) in a region (set) 𝑅 in the 𝑥𝑦-plane is an interior point of 𝑅 if it is the centre 

of a disk of positive radius that lies entirely in 𝑅 (Figure 3.1). A point (𝑥𝑜 , 𝑦𝑜) is a boundary 

point of 𝑅 if every disk centred at (𝑥𝑜 , 𝑦𝑜) contains points that lie outside of 𝑅 as well as 

points that lie in 𝑅. 

The interior points of a region, as 

a set, make up the interior of the 

region. The region’s boundary 

points make up its boundary. A 

region is open if it consists entirely 

of interior points. A region is 

closed if it contains all its 

boundary points (Figure 3.2). 

(b) Boundary point. (a) Interior point. 

Figure 3.1. 
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A region in the plane is bounded if it lies inside a disk of fixed radius. A region is unbounded 

if it is not bounded. 

Examples of bounded sets in the plane include line segments, triangles, interiors of triangles, 

rectangles, circles, and disks. Examples of unbounded sets in the plane include lines, 

coordinate axes, the graphs of functions defined on infinite intervals, quadrants, half-planes, 

and the plane itself. 

Example3: Describe the domain of the function 𝑓(𝑥, 𝑦) = √𝑦 − 𝑥2. 

Solution: Since 𝑓 is defined only where        

𝑦 − 𝑥2 ≥ 0, the domain is the closed, 

unbounded region shown in Figure 3.3. The 

parabola  𝑦 = 𝑥2 is the boundary of the 

domain. The points above the parabola make 

up the domain’s interior. 

 

 

 

Graphs, Level Curves, and Contours of Functions of Two Variables: There are two 

ways to picture the values of a function 𝑓(𝑥, 𝑦). One is to draw and label curves in the domain 

on which 𝑓 has a constant value. The other is to sketch the surface 𝑧 = 𝑓(𝑥, 𝑦) in space. 

Figure 3.3. 

Figure 3.2. 

ሼ(𝑥, 𝑦) ȁ 𝑥2 + 𝑦2 < 1}  

Open unit disk. 

Every point an 

interior point. 

ሼ(𝑥, 𝑦) ȁ 𝑥2 + 𝑦2 = 1}  

Boundary of unit 

disk. (The unit 

circle.) 

ሼ(𝑥, 𝑦) ȁ 𝑥2 + 𝑦2 ≤ 1}  

Closed unit disk. 

Contains all 

boundary points. 
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The set of points in the plane where a function 𝑓(𝑥, 𝑦) has a constant value 𝑓(𝑥, 𝑦) = 𝑐 is 

called a level curve of 𝑓. The set of all points (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) in space, for (𝑥, 𝑦) in the domain 

of 𝑓, is called the graph of 𝑓. The graph of 𝑓 is also called the surface 𝑧 = 𝑓(𝑥, 𝑦). 

Example4: Graph 𝑓(𝑥, 𝑦) = 100 − 𝑥2 − 𝑦2 and plot the level curves 𝑓(𝑥, 𝑦) = 0, 𝑓(𝑥, 𝑦) = 51 

and 𝑓(𝑥, 𝑦) = 75 in the domain of 𝑓 in the plane. 

Solution: The domain of 𝑓 is the entire 𝑥𝑦-plane, 

and the range of 𝑓 is the set of real numbers less 

than or equal to 100. The graph is the paraboloid 

𝑧 = 100 − 𝑥2 − 𝑦2, a portion of which is shown in 

Figure 3.4. 

The level curve 𝑓(𝑥, 𝑦) = 0 is the set of points in 

the 𝑥𝑦-plane at which 

𝑓(𝑥, 𝑦) = 100 − 𝑥2 − 𝑦2 = 0, or  𝑥2 + 𝑦2 = 100,  

which is the circle of radius 10 centred at the 

origin. Similarly, the level curves 𝑓(𝑥, 𝑦) = 51 and 𝑓(𝑥, 𝑦) = 75 (Figure 3.4) are the circles 

𝑓(𝑥, 𝑦) = 100 − 𝑥2 − 𝑦2 = 51, or  𝑥2 + 𝑦2 = 49, 

𝑓(𝑥, 𝑦) = 100 − 𝑥2 − 𝑦2 = 75, or  𝑥2 + 𝑦2 = 25, 

 

The curve in space in which the plane 𝑧 = 𝑐 cuts a 

surface 𝑧 = 𝑓(𝑥, 𝑦) is made up of the points that 

represent the function value 𝑓(𝑥, 𝑦) = 𝑐. It is called 

the contour curve in the domain of 𝑓. Figure 3.5 

shows the contour curve 𝑓(𝑥, 𝑦) = 75 on the 

surface 𝑧 = 100 − 𝑥2 − 𝑦2 defined by the function 

𝑓(𝑥, 𝑦) = 100 − 𝑥2 − 𝑦2. The contour curve lies 

directly above the circle 𝑥2 + 𝑦2 = 25 which is the 

level curve 𝑓(𝑥, 𝑦) = 75  in the function’s domain. 

 

 

Figure 3.4. 

Figure 3.5. Figure 3.5. 
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Functions of Three Variables: In the plane, the points where a function of two independent 

variables has a constant value 𝑓(𝑥, 𝑦) = 𝑐 make a curve in the function’s domain. In space, 

the points where a function of three independent variables has a constant value     

𝑓(𝑥, 𝑦, 𝑧) = 𝑐 make a surface in the function’s domain. 

The set of points (𝑥, 𝑦, 𝑧) in space where a function of three independent variables has a 

constant value 𝑓(𝑥, 𝑦, 𝑧) = 𝑐 is called a level surface of 𝑓. 

Since the graphs of functions of three variables consist of points (𝑥, 𝑦, 𝑧, 𝑓(𝑥, 𝑦, 𝑧)) lying in a 

four-dimensional space, we cannot sketch them effectively in our three-dimensional frame 

of reference. We can see how the function behaves, however, by looking at its three-

dimensional level surfaces. 

Example5: Describe the level surfaces of the function 

𝑓(𝑥, 𝑦, 𝑧) = √𝑥2 + 𝑦2 + 𝑧2 . 

Solution: The value of 𝑓 is the distance from 

the origin to the point (𝑥, 𝑦, 𝑧). Each level 

surface √𝑥2 + 𝑦2 + 𝑧2 = 𝑐, 𝑐 > 0 is a sphere 

of radius 𝑐 centred at the origin. Figure 3.6 

shows a cutaway view of three of these 

spheres. The level surface √𝑥2 + 𝑦2 + 𝑧2 =

0 consists of the origin alone. 

We are not graphing the function here; we 

are looking at level surfaces in the function’s 

domain. The level surfaces show how the 

function’s values change as we move 

through its domain. If we remain on a sphere 

of radius 𝑐 centred at the origin, the function 

maintains a constant value 𝑐. If we move from one sphere to another, the function’s value 

changes. It increases if we move away from the origin and decreases if we move toward the 

origin. 

Figure 3.6. 
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The definitions of interior, boundary, open, closed, bounded, and unbounded for regions in 

space are similar to those for regions in the plane. To accommodate the extra dimension, 

we use solid balls of positive radius instead of disks. 

A point in a region 𝑅 in space is an interior point of 𝑅 if it is the centre of a solid ball that 

lies entirely in 𝑅 (Figure 3.7(a)). A point is a boundary point of 𝑅 if every sphere centred at 

encloses points that lie outside of 𝑅 as well as points that lie inside 𝑅 (Figure 3.7(b)). The 

interior of 𝑅 is the set of interior points of 𝑅. The boundary of 𝑅 is the set of boundary 

points of 𝑅. 

A region is open if it consists entirely of interior points. A region is closed if it contains its 

entire boundary. 

Examples of open sets in space include the 

interior of a sphere, the open half-space  

𝑧 > 0, the first octant (where 𝑥, 𝑦, and 𝑧 are 

all positive), and space itself.  

Examples of closed sets in space include 

lines, planes, the closed half-space 𝑧 ≥ 0 

the first octant together with its bounding 

planes, and space itself (since it has no 

boundary points).  

A solid sphere with part of its boundary 

removed or a solid cube with a missing face, 

edge, or corner point would be neither open 

nor closed.  

Functions of more than three independent 

variables are also important. For example, 

the temperature on a surface in space may 

depend not only on the location of the point 

𝑃(𝑥, 𝑦, 𝑧) on the surface, but also on time 𝑡 when it is visited, so we would write 

𝑇 = 𝑓(𝑥, 𝑦, 𝑧, 𝑡) . 

 

Figure 3.7. 
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3.2 Limits and Continuity in Higher Dimensions 

Limits: We say that a function 𝑓(𝑥, 𝑦) approaches the limit 𝐿 as (𝑥, 𝑦) approaches (𝑥𝑜 , 𝑦𝑜) 

and write 

lim
(𝑥,𝑦)→(𝑥𝑜,𝑦𝑜)

𝑓(𝑥, 𝑦) = 𝐿 

if, for every number 𝜖 > 0 there exists a corresponding number 𝛿 > 0 such that for all (𝑥, 𝑦) 

in the domain of 𝑓, 

ȁ𝑓(𝑥, 𝑦) − 𝐿ȁ < 𝜖    whenever    0 < √(𝑥 − 𝑥𝑜)2 + (𝑦 − 𝑦𝑜)2 < 𝛿. 

Properties of Limits of Functions of Two Variables: 

The following rules hold if 𝐿,𝑀, and 𝑘 are real numbers and 

 

Example1: Calculate the limits: 

(a) lim
(𝑥,𝑦)→(0,1)

𝑥 − 𝑥𝑦 + 3

𝑥2𝑦 + 5𝑥𝑦 − 𝑦3
 ;  (b)  lim

(𝑥,𝑦)→(3,−4)
√𝑥2 + 𝑦2 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: (a) lim
(𝑥,𝑦)→(0,1)

𝑥 − 𝑥𝑦 + 3

𝑥2𝑦 + 5𝑥𝑦 − 𝑦3
=

0 − (0)(1) + 3

(0)2(1) + 5(0)(1) − (1)3
= −3 

(b) lim
(𝑥,𝑦)→(3,−4)

√𝑥2 + 𝑦2 = √(3)2 + (−4)2 = √25 = 5. 
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Example2: Find 

lim
(𝑥,𝑦)→(0,0)

𝑥2 − 𝑥𝑦

√𝑥 − √𝑦
 . 

Solution:  

lim
(𝑥,𝑦)→(0,0)

𝑥2 − 𝑥𝑦

√𝑥 − √𝑦
= lim
(𝑥,𝑦)→(0,0)

(𝑥2 − 𝑥𝑦)(√𝑥 + √𝑦)

(√𝑥 − √𝑦)(√𝑥 + √𝑦)
= lim
(𝑥,𝑦)→(0,0)

𝑥(𝑥 − 𝑦)(√𝑥 + √𝑦)

𝑥 − 𝑦
 

lim
(𝑥,𝑦)→(0,0)

𝑥(√𝑥 + √𝑦) = 0(√0 + √0) = 0. 

Continuity: A function 𝑓(𝑥, 𝑦) is continuous at the point (𝑥𝑜 , 𝑦𝑜) if 

1. 𝑓 defined at (𝑥𝑜 , 𝑦𝑜), 

2. lim
(𝑥,𝑦)→(𝑥𝑜,𝑦0)

𝑓(𝑥, 𝑦) exists,  

3. lim
(𝑥,𝑦)→(𝑥𝑜,𝑦0)

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦𝑜). 

A function is continuous if it is continuous at every point of its domain. 

Example3: Find the points at which the function is continuous 

𝑓(𝑥, 𝑦) =
2𝑥2 + 𝑦

sin(𝑥𝑦)
 . 

Solution: 𝑓(𝑥, 𝑦) is continuous when sin(𝑥𝑦) ≠ 0, that is, 𝑥𝑦 ≠ 𝑛𝜋, 𝑛 = 0,±1,±2,… . 

Functions of More Than Two Variables: The definitions of limit and continuity for functions 

of two variables and the conclusions about limits and continuity for sums, products, 

quotients, powers, and composites all extend to functions of three or more variables. 

Functions like 

ln(𝑥 + 𝑦 + 𝑧)    and   
𝑦 sin 𝑧

𝑥 − 1
 

are continuous throughout their domains, and limits like 

lim
𝑃→(1,0,−1)

𝑒𝑥+𝑧

𝑧2 + cos√𝑥𝑦
=

𝑒1−1

(−1)2 + cos 0
=
1

2
 , 

where 𝑃 denotes the point (𝑥, 𝑦, 𝑧), may be found by direct substitution. 

 



University of Anbar 
College of Engineering 

Electrical Engineering Dept. 

 Calculus III, Year 2 
Dr. Abdullah Al-Ani 

2020-2021 

 

9 
 

3.3 Partial Derivatives 

Partial Derivatives of a Function of Two Variables: The partial derivative of 𝑓(𝑥, 𝑦) with 

respect to 𝑥 at the point (𝑥𝑜 , 𝑦𝑜) is 

𝜕𝑓

𝜕𝑥
|
(𝑥𝑜,𝑦𝑜)

=
𝑑

𝑑𝑥
𝑓(𝑥, 𝑦𝑜)|

𝑥=𝑥𝑜

= lim
ℎ→0

𝑓(𝑥𝑜 + ℎ, 𝑦𝑜) − 𝑓(𝑥𝑜 , 𝑦𝑜)

ℎ
 , 

provided the limit exists. 

The notation for a partial derivative of the surface 𝑧 = 𝑓(𝑥, 𝑦): 

𝑓𝑥,
𝜕𝑓

𝜕𝑥
 , 𝑧𝑥, or 

𝜕𝑧

𝜕𝑥
  

“Partial derivative of 𝑓 (or 𝑧) with respect to 𝑥.” 

The partial derivative of 𝑓(𝑥, 𝑦) with respect to 𝑦 at the point (𝑥𝑜 , 𝑦𝑜) is 

𝜕𝑓

𝜕𝑦
|
(𝑥𝑜,𝑦𝑜)

=
𝑑

𝑑𝑦
𝑓(𝑥𝑜 , 𝑦)|

𝑦=𝑦𝑜

= lim
ℎ→0

𝑓(𝑥𝑜 , 𝑦𝑜 + ℎ) − 𝑓(𝑥𝑜 , 𝑦𝑜)

ℎ
 , 

provided the limit exists. 

The notation for a partial derivative of the surface 𝑧 = 𝑓(𝑥, 𝑦): 

𝑓𝑦 ,
𝜕𝑓

𝜕𝑦
 , 𝑧𝑦, or 

𝜕𝑧

𝜕𝑦
  

“Partial derivative of 𝑓 (or 𝑧) with respect to 𝑦.” 

Calculation: The definitions of 𝜕𝑓/𝜕𝑥 and 𝜕𝑓/𝜕𝑦 give us two different ways of differentiating 

𝑓 at a point: with respect to 𝑥 in the usual way while treating 𝑦 as a constant and with respect 

to 𝑦 in the usual way while treating 𝑥 as constant. As the following examples show, the 

values of these partial derivatives are usually different at a given point (𝑥𝑜 , 𝑦𝑜). 

Example1: Find the values of 𝜕𝑓/𝜕𝑥 and 𝜕𝑓/𝜕𝑦 at the point (4, −5) if 

𝑓(𝑥, 𝑦) = 𝑥2 + 3𝑥𝑦 + 𝑦 − 1 . 

Solution: To find 𝜕𝑓/𝜕𝑥 we treat 𝑦 as a constant and differentiate with respect to 𝑥: 

𝜕𝑓

𝜕𝑥
=
𝜕

𝜕𝑥
(𝑥2 + 3𝑥𝑦 + 𝑦 − 1) = 2𝑥 + 3𝑦 + 0 − 0 = 2𝑥 + 3𝑦 .  

𝜕𝑓

𝜕𝑥
|
(4,−5)

= 2(4) + 3(−5) = −7 . 
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To find 𝜕𝑓/𝜕𝑦 we treat 𝑥 as a constant and differentiate with respect to 𝑦: 

𝜕𝑓

𝜕𝑦
=
𝜕

𝜕𝑦
(𝑥2 + 3𝑥𝑦 + 𝑦 − 1) = 0 + 3𝑥 + 1 − 0 = 3𝑥 + 1 .  

𝜕𝑓

𝜕𝑦
|
(4,−5)

= 3(4) + 1 = 13 . 

Example2: Find 𝜕𝑓/𝜕𝑦 if 𝑓(𝑥, 𝑦) = 𝑦 sin 𝑥𝑦. 

Solution: We treat 𝑥 as a constant and 𝑓 as a product of 𝑦 and sin 𝑥𝑦: 

𝜕𝑓

𝜕𝑦
=
𝜕

𝜕𝑦
(𝑦 sin 𝑥𝑦) = 𝑦

𝜕

𝜕𝑦
sin 𝑥𝑦 + (sin 𝑥𝑦)

𝜕

𝜕𝑦
(𝑦) = (𝑦 cos 𝑥𝑦)

𝜕

𝜕𝑦
(𝑥𝑦) + sin 𝑥𝑦 

      = 𝑥𝑦 cos 𝑥𝑦 + sin 𝑥𝑦 . 

Example3: Find 𝑓𝑥 and 𝑓𝑦 if  

𝑓(𝑥, 𝑦) =
2𝑦

𝑦 + cos 𝑥
 . 

Solution: We treat 𝑓 as a quotient. With 𝑦 held constant, we get 

𝑓𝑥 =
𝜕

𝜕𝑥
(

2𝑦

𝑦 + cos 𝑥
) =

(𝑦 + cos 𝑥)
𝜕
𝜕𝑥
(2𝑦) − 2𝑦

𝜕
𝜕𝑥
(𝑦 + cos 𝑥)

(𝑦 + cos 𝑥)2
=
(𝑦 + cos 𝑥)(0) − 2𝑦(− sin 𝑥)

(𝑦 + cos 𝑥)2
 

     =
2𝑦 sin 𝑥

(𝑦 + cos 𝑥)2
 . 

With 𝑥 held constant, we get 

𝑓𝑦 =
𝜕

𝜕𝑦
(

2𝑦

𝑦 + cos 𝑥
) =

(𝑦 + cos 𝑥)
𝜕
𝜕𝑦
(2𝑦) − 2𝑦

𝜕
𝜕𝑦
(𝑦 + cos 𝑥)

(𝑦 + cos 𝑥)2
=
(𝑦 + cos 𝑥)(2) − 2𝑦(1)

(𝑦 + cos 𝑥)2
 

     =
2 cos 𝑥

(𝑦 + cos 𝑥)2
 . 

Implicit Partial Differentiation: Implicit differentiation works for partial derivatives the way 

it works for ordinary derivatives, as the next example illustrates. 

Example4: Find 𝜕𝑧/𝜕𝑥 if the equation 𝑦𝑧 − ln 𝑧 = 𝑥 + 𝑦 defines 𝑧 as a function of the two 

independent variables 𝑥 and 𝑦 and the partial derivative exists. 
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Solution: We differentiate both sides of the equation with respect to 𝑥, holding 𝑦 constant 

and treating 𝑧 as a differentiable function of 𝑥: 

𝜕

𝜕𝑥
(𝑦𝑧) −

𝜕

𝜕𝑥
ln 𝑧 =

𝜕𝑥

𝜕𝑥
+
𝜕𝑦

𝜕𝑥
 

𝑦
𝜕𝑧

𝜕𝑥
−
1

𝑧

𝜕𝑧

𝜕𝑥
= 1 + 0 

(𝑦 −
1

𝑧
)
𝜕𝑧

𝜕𝑥
= 1 

𝜕𝑧

𝜕𝑥
=

𝑧

𝑦𝑧 − 1
 . 

Example5: The plane 𝑥 = 1 intersects the paraboloid 𝑧 = 𝑥2 + 𝑦2 in a parabola. Find the 

slope of the tangent to the parabola at 

(1, 2, 5) (Figure 3.8). 

Solution: The slope is the value of the 

partial derivative 𝜕𝑧/𝜕𝑦 at (1, 2): 

𝜕𝑧

𝜕𝑦
|
(1,2)

=
𝜕

𝜕𝑦
(𝑥2 + 𝑦2)|

(1,2)

= 2𝑦ȁ(1,2) 

               = 2(2) = 4 . 

As a check, we can treat the parabola 

as the graph of the single-variable 

function 𝑧 = (1)2 + 𝑦2 = 1 + 𝑦2 in the 

plane 𝑥 = 1 and ask for the slope at 𝑦 =

2. The slope, calculated now as an 

ordinary derivative, is 

𝑑𝑧

𝑑𝑦
|
𝑦=2

=
𝑑

𝑑𝑦
(1 + 𝑦2)|

𝑦=2

= 2𝑦ȁ𝑦=2 = 4 . 

Functions of More Than Two Variables: The definitions of the partial derivatives of 

functions of more than two independent variables are like the definitions for functions of two 

variables. They are ordinary derivatives with respect to one variable, taken while the other 

independent variables are held constant. 

Figure 3.8. 
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Example6: If 𝑥, 𝑦, and 𝑧 are independent variables and 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 sin(𝑦 + 3𝑧), find 𝜕𝑓/𝜕𝑧. 

Solution:  

𝜕𝑓

𝜕𝑧
=
𝜕

𝜕𝑧
[𝑥 sin(𝑦 + 3𝑧)] = 𝑥

𝜕

𝜕𝑧
sin(𝑦 + 3𝑧) = 𝑥 cos(𝑦 + 3𝑧)

𝜕

𝜕𝑧
(𝑦 + 3𝑧) = 3𝑥 cos(𝑦 + 3𝑧) . 

Second-Order Partial Derivatives: When we differentiate a function 𝑓(𝑥, 𝑦) twice, we 

produce its second-order derivatives. These derivatives are usually denoted by 

𝜕2𝑓

𝜕𝑥2
 or 𝑓𝑥𝑥 

The defining equations are 

𝜕2𝑓

𝜕𝑥2
=
𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑥
) ,   

𝜕2𝑓

𝜕𝑥𝜕𝑦
=
𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑦
) , 

and so on. 

𝜕2𝑓

𝜕𝑦2
 or 𝑓𝑦𝑦 

𝜕2𝑓

𝜕𝑥𝜕𝑦
 or 𝑓𝑦𝑥 

𝜕2𝑓

𝜕𝑦𝜕𝑥
 or 𝑓𝑥𝑦 

 

Notice the order in which the derivatives are taken: 

𝜕2𝑓

𝜕𝑥𝜕𝑦
 Differentiate first with respect to 𝑦, then with respect to 𝑥. 

𝑓𝑦𝑥 = (𝑓𝑦)𝑥 Means the same thing. 

 

Example7: If 𝑓(𝑥, 𝑦) = 𝑥 cos 𝑦 + 𝑦𝑒𝑥, find  

𝜕2𝑓

𝜕𝑥2
 ,    

𝜕2𝑓

𝜕𝑦𝜕𝑥
 ,    
𝜕2𝑓

𝜕𝑦2
 , and    

𝜕2𝑓

𝜕𝑥𝜕𝑦
 . 

Solution:  

𝜕𝑓

𝜕𝑥
=
𝜕

𝜕𝑥
(𝑥 cos 𝑦 + 𝑦𝑒𝑥) = cos 𝑦 + 𝑦𝑒𝑥 

So 

𝜕2𝑓

𝜕𝑦𝜕𝑥
=
𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑥
) = − sin 𝑦 + 𝑒𝑥 

𝜕2𝑓

𝜕𝑥2
=
𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑥
) = 𝑦𝑒𝑥 . 

𝜕𝑓

𝜕𝑦
=
𝜕

𝜕𝑦
(𝑥 cos 𝑦 + 𝑦𝑒𝑥) = −𝑥 sin 𝑦 + 𝑒𝑥 

So 

𝜕2𝑓

𝜕𝑥𝜕𝑦
=
𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑦
) = −sin 𝑦 + 𝑒𝑥 

𝜕2𝑓

𝜕𝑦2
=
𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑦
) = −𝑥 cos 𝑦 . 
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The Mixed Derivative Theorem: If 𝑓(𝑥, 𝑦) and its partial derivatives 𝑓𝑥 , 𝑓𝑦, 𝑓𝑥𝑦 , and 𝑓𝑦𝑥 are 

defined throughout an open region containing a point (𝑎, 𝑏) and are all continuous at (𝑎, 𝑏), 

then 

𝑓𝑥𝑦(𝑎, 𝑏) = 𝑓𝑦𝑥(𝑎, 𝑏) . 

Example8: Find 𝜕2𝑤/𝜕𝑥𝜕𝑦 if 

𝑤 = 𝑥𝑦 +
𝑒𝑦

𝑦2 + 1
 . 

Solution: The symbol 𝜕2𝑤/𝜕𝑥𝜕𝑦 tells us to differentiate first with respect to 𝑦 and then with 

respect to 𝑥. If we postpone the differentiation with respect to 𝑦 and differentiate first with 

respect to 𝑥, however, we get the answer more quickly. In two steps, 

𝜕𝑤

𝜕𝑥
= 𝑦   𝑎𝑛𝑑  

𝜕2𝑤

𝜕𝑦𝜕𝑥
= 1 . 

If we differentiate first with respect to 𝑦, we obtain 𝜕2𝑤/𝜕𝑥𝜕𝑦 = 1 as well. 

Partial Derivatives of Still Higher Order: 

𝜕3𝑓

𝜕𝑥𝜕𝑦2
= 𝑓𝑦𝑦𝑥      ,      

𝜕4𝑓

𝜕𝑥2𝜕𝑦2
= 𝑓𝑦𝑦𝑥𝑥 . 

Example9: Find 𝑓𝑦𝑥𝑦𝑧 if 𝑓(𝑥, 𝑦, 𝑧) = 1 − 2𝑥𝑦
2𝑧 + 𝑥2𝑦 . 

Solution: We first differentiate with respect to the variable 𝑦, then 𝑥, then 𝑦 again, and finally 

with respect to 𝑧: 

𝑓𝑦 = −4𝑥𝑦𝑧 + 𝑥
2 

𝑓𝑦𝑥 = −4𝑦𝑧 + 2𝑥 

𝑓𝑦𝑥𝑦 = −4𝑧 

𝑓𝑦𝑥𝑦𝑧 = −4 . 
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3.4 The Chain Rule 

The Chain Rule for functions of a single variable said that when 𝑤 = 𝑓(𝑥) was a 

differentiable function of 𝑥 and 𝑥 = 𝑓(𝑡) was a differentiable function of 𝑡, 𝑤 became a 

differentiable function of 𝑡 and 𝑑𝑤/𝑑𝑡 could be calculated with the formula 

𝑑𝑤

𝑑𝑡
=
𝑑𝑤

𝑑𝑥

𝑑𝑥

𝑑𝑡
 . 

For functions of two or more variables the Chain Rule has several forms. The form depends 

on how many variables are involved but works like the Chain Rule in single variable functions 

once we account for the presence of additional variables. 

Functions of Two Variables: The Chain Rule formula for a function 𝑤 = 𝑓(𝑥, 𝑦) when      

𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡) are both differentiable functions of 𝑡 is given in the following theorem.   

Chain Rule Theorem for Functions of Two Independent Variables: If 𝑤 = 𝑓(𝑥, 𝑦) has 

continuous partial derivatives 𝑓𝑥 and 𝑓𝑦 and if 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) are differentiable functions 

of 𝑡, then the composite 𝑤 = 𝑓(𝑥(𝑡), 𝑦(𝑡)) is a differentiable function of 𝑡 and 

𝑑𝑤

𝑑𝑡
=
𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
 . 

The tree diagram provides a convenient way to remember the Chain Rule. To remember 

the Chain Rule picture the diagram below. To find 

𝑑𝑤/𝑑𝑡, start at 𝑤 and read down each route to 𝑡, 

multiplying derivatives along the way. Then add the 

products. 

Example1: Use the Chain Rule to find the derivative 

of 𝑤 = 𝑥𝑦 with respect to 𝑡 along the path                    

𝑥 = cos 𝑡 , 𝑦 = sin 𝑡. What is the derivative’s value at 

𝑡 = 𝜋/2? 

Solution: We apply the Chain Rule to find 𝑑𝑤/𝑑𝑡 as 

follows: 

𝑑𝑤

𝑑𝑡
=
𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
=
𝜕(𝑥𝑦)

𝜕𝑥

𝑑

𝑑𝑡
(cos 𝑡) +

𝜕(𝑥𝑦)

𝜕𝑦

𝑑

𝑑𝑡
(sin 𝑡) = (𝑦)(−sin 𝑡) + (𝑥)(cos 𝑡) 

= (sin 𝑡)(− sin 𝑡) + (cos 𝑡)(cos 𝑡) = −sin2 𝑡 + cos2 𝑡 = cos 2𝑡 . 

In this example, we can check the result with a more direct calculation. As a function of 𝑡, 

Chain Rule 
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𝑤 = 𝑥𝑦 = cos 𝑡 sin 𝑡 =
1

2
sin 2𝑡 , 

so 

𝑑𝑤

𝑑𝑡
=
𝑑

𝑑𝑡
(
1

2
sin 2𝑡) =

1

2
∙ 2 cos 2𝑡 = cos 2𝑡. 

In either case, at the given value of 𝑡, 

(
𝑑𝑤

𝑑𝑡
)
𝑡=𝜋/2

= cos (2 ∙
𝜋

2
) = cos 𝜋 = −1 . 

Functions of Three Variables: it only involves adding the expected third term to the two-

variable formula. 

Chain Rule Theorem for Functions of Three Independent Variables: If 𝑤 = 𝑓(𝑥, 𝑦, 𝑧) is 

differentiable and 𝑥, 𝑦, and 𝑧 are differentiable functions of 𝑡, then 𝑤 is a differentiable 

function of 𝑡 and 

𝑑𝑤

𝑑𝑡
=
𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
+
𝜕𝑓

𝜕𝑧

𝑑𝑧

𝑑𝑡
 . 

The diagram we use for remembering the new equation is similar to the previous one, with 

three routes from 𝑤 to 𝑡. Here we have three 

routes from 𝑤 to 𝑡 instead of two, but finding 

𝑑𝑤/𝑑𝑡 is still the same. Read down each 

route, multiplying derivatives along the way; 

then add. 

Example2: Find 𝑑𝑤/𝑑𝑡 if 

𝑤 = 𝑥𝑦 + 𝑧,   𝑥 = cos 𝑡 ,   𝑦 = sin 𝑡  ,   𝑧 = 𝑡 . 

What is the derivative’s value at 𝑡 = 0? 

Solution:  

𝑑𝑤

𝑑𝑡
=
𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
+
𝜕𝑓

𝜕𝑧

𝑑𝑧

𝑑𝑡
 

        = (𝑦)(−sin 𝑡) + (𝑥)(cos 𝑡) + (1)(1) = (sin 𝑡)(− sin 𝑡) + (cos 𝑡)(cos 𝑡) + 1 

        = −sin2 𝑡 + cos2 𝑡 + 1 = 1 + cos 2𝑡 . 

(
𝑑𝑤

𝑑𝑡
)
𝑡=0
= 1 + cos(0) = 2 . 

Chain Rule 
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Functions Defined on Surfaces: See the following theorem. 

Chain Rule Theorem for Two Independent Variables and Three Intermediate Variables: 

Suppose that 𝑤 = 𝑓(𝑥, 𝑦, 𝑧), 𝑥 = 𝑔(𝑟, 𝑠), 𝑦 = ℎ(𝑟, 𝑠), and 𝑧 = 𝑘(𝑟, 𝑠). If all four functions are 

differentiable, then 𝑤 has partial derivatives with respect to 𝑟 and 𝑠, given by the formulas 

𝜕𝑤

𝜕𝑟
=
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑟
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑟
+
𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑟
 

𝜕𝑤

𝜕𝑠
=
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑠
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑠
+
𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑠
 . 

The first of these equations can be derived from the Chain Rule in previous Theorem by 

holding 𝑠 fixed and treating 𝑟 as 𝑡. The second can be derived in the same way, holding 𝑟 

fixed and treating 𝑠 as 𝑡. The tree diagrams for both equations are shown in Figure below. 

 

Example3: Express 𝜕𝑤/𝜕𝑟 and 𝜕𝑤/𝜕𝑠 in terms of 𝑟 and 𝑠 if 

𝑤 = 𝑥 + 2𝑦 + 𝑧2 , 𝑥 =
𝑟

𝑠
 , 𝑦 = 𝑟2 + ln 𝑠  , 𝑧 = 2𝑟 . 

Solution:  

𝜕𝑤

𝜕𝑟
=
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑟
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑟
+
𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑟
= (1) (

1

𝑠
) + (2)(2𝑟) + (2𝑧)(2) =

1

𝑠
+ 4𝑟 + (4𝑟)(2) =

1

𝑠
+ 12𝑟 

𝜕𝑤

𝜕𝑠
=
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑠
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑠
+
𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑠
= (1) (−

𝑟

𝑠2
) + (2) (

1

𝑠
) + (2𝑧)(0) =

2

𝑠
−
𝑟

𝑠2
 . 
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If 𝑓 is a function of two variables instead of three, each equation in previous Theorem 

becomes correspondingly one term shorter.  

If 𝑤 = 𝑓(𝑥, 𝑦), 𝑥 = 𝑔(𝑟, 𝑠), and 𝑦 = ℎ(𝑟, 𝑠), then 

𝜕𝑤

𝜕𝑟
=
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑟
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑟
                                          and                                               

𝜕𝑤

𝜕𝑠
=
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑠
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑠
 . 

The tree diagram for the first of these equations. The diagram 

for the second equation is similar; just replace 𝑟 with 𝑠. 

Example4: Express 𝜕𝑤/𝜕𝑟 and 𝜕𝑤/𝜕𝑠 in terms of 𝑟 and 𝑠 if 

𝑤 = 𝑥2 + 𝑦2, 𝑥 = 𝑟 − 𝑠, 𝑦 = 𝑟 + 𝑠 . 

Solution:  

𝜕𝑤

𝜕𝑟
=
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑟
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑟
= (2𝑥)(1) + (2𝑦)(1) 

       = 2(𝑟 − 𝑠) + 2(𝑟 + 𝑠) = 4𝑟 . 

𝜕𝑤

𝜕𝑠
=
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑠
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑠
= (2𝑥)(−1) + (2𝑦)(1) 

       = −2(𝑟 − 𝑠) + 2(𝑟 + 𝑠) = 4𝑠 . 

If 𝑓 is a function of 𝑥 alone, our equations become even simpler. 

If 𝑤 = 𝑓(𝑥) and 𝑥 = 𝑔(𝑟, 𝑠), then 

𝜕𝑤

𝜕𝑟
=
𝑑𝑤

𝑑𝑥

𝜕𝑥

𝜕𝑟
      and      

𝜕𝑤

𝜕𝑠
=
𝑑𝑤

𝑑𝑥

𝜕𝑥

𝜕𝑠
 

In this case, we can use the ordinary (single-variable) derivative, 

𝑑𝑤/𝑑𝑥 as you can see in the tree diagram. 

Implicit Differentiation Revisited: The two-variable Chain 

Rule leads to a formula that takes most of the work out of implicit 

differentiation. Suppose that 

1. The function 𝐹(𝑥, 𝑦) is differentiable and 

2. The equation 𝐹(𝑥, 𝑦) = 0  defines 𝑦 implicitly as a 

differentiable function of 𝑥, say 𝑦 = ℎ(𝑥). 

Chain Rule 

Chain Rule 
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Since 𝑤 = 𝐹(𝑥, 𝑦) = 0 the derivative 𝑑𝑤/𝑑𝑥 must be 

zero. Computing the derivative from the Chain Rule (as 

shown in tree diagram), we find ( as before, but with   

 𝑡 = 𝑥 and 𝑓 = 𝐹) 

0 =
𝑑𝑤

𝑑𝑥
= 𝐹𝑥

𝑑𝑥

𝑑𝑥
+ 𝐹𝑦

𝑑𝑦

𝑑𝑥
= 𝐹𝑥 + 𝐹𝑦

𝑑𝑦

𝑑𝑥
 . 

If 𝐹𝑦 = 𝜕𝑤/𝜕𝑦 ≠ 0 we can solve this equation for 𝑑𝑦/𝑑𝑥 

to get 

𝑑𝑦

𝑑𝑥
= −

𝐹𝑥
𝐹𝑦
 . 

This relationship gives a surprisingly simple shortcut to finding derivatives of implicitly 

defined functions, which we state here. 

A Formula for Implicit Differentiation: Suppose that 𝐹(𝑥, 𝑦) is differentiable and that the 

equation 𝐹(𝑥, 𝑦) = 0 defines 𝑦 as differentiable function of 𝑥. Then at any point where        

𝐹𝑦 ≠ 0, 

𝑑𝑦

𝑑𝑥
= −

𝐹𝑥
𝐹𝑦
 . 

Example5: Find 𝑑𝑦/𝑑𝑥 if 𝑦2 − 𝑥2 − sin 𝑥𝑦 = 0 

Solution: Take 𝐹(𝑥, 𝑦) = 𝑦2 − 𝑥2 − sin 𝑥𝑦. Then  

𝑑𝑦

𝑑𝑥
= −

𝐹𝑥
𝐹𝑦
= −

−2𝑥 − 𝑦 cos 𝑥𝑦

2𝑦 − 𝑥 cos 𝑥𝑦
=
2𝑥 + 𝑦 cos 𝑥𝑦

2𝑦 − 𝑥 cos 𝑥𝑦
 . 

Functions of Many Variables: In general, suppose that 𝑤 = 𝑓(𝑥, 𝑦, … , 𝑣) is a differentiable 

function of the variables 𝑥, 𝑦, … , 𝑣 (a finite set) and 𝑥, 𝑦, … , 𝑣 the are differentiable functions 

of 𝑝, 𝑞, … , 𝑡 (another finite set). Then 𝑤 is a differentiable function of the variables 𝑝 through 

𝑡 and the partial derivatives of 𝑤 with respect to these variables are given by equations of 

the form 

𝜕𝑤

𝜕𝑝
=
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑝
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑝
+⋯+

𝜕𝑤

𝜕𝑣

𝜕𝑣

𝜕𝑝
 

The other equations are obtained by replacing 𝑝 by 𝑞, … , 𝑡 one at a time. 

(
𝜕𝑤

𝜕𝑥
,
𝜕𝑤

𝜕𝑦
,… ,

𝜕𝑤

𝜕𝑣
)

⏟          
Derivatives of 𝑤 with

respect to the
intermediate variables

          and     (
𝜕𝑥

𝜕𝑝
,
𝜕𝑦

𝜕𝑞
,… ,

𝜕𝑣

𝜕𝑡
)

⏟          
Derivatives of intermediate
variables with respect to the
selected independent variables

 
One way to remember this 

equation is to think of the right-

hand side as the dot product of 

two vectors with components 
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3.5 Directional Derivatives and Gradient Vectors 

Directional Derivatives in the Plane: Suppose that the function 𝑓(𝑥, 𝑦) is defined 

throughout a region 𝑅 in the 𝑥𝑦-plane, that 

𝑃𝑜(𝑥𝑜 , 𝑦𝑜) is a point in 𝑅, and that 𝐮 = 𝑢1𝐢 + 𝑢2𝐣 

is a unit vector. Then the equations 

𝑥 = 𝑥𝑜 + 𝑠𝑢1, 𝑦 = 𝑦𝑜 + 𝑠𝑢2 

parametrise the line through parallel to 𝐮. If the 

parameter 𝑠 measures arc length from 𝑃𝑜 in 

the direction of 𝐮, we find the rate of change of 

𝑓 at in the direction of 𝐮 by calculating 𝑑𝑓/𝑑𝑠 

at 𝑃𝑜 (Figure 3.9). 

So, the directional derivative can be defined: 

The derivative of 𝑓 at 𝑃𝑜 in the direction of the 

unit vector 𝐮 = 𝑢1𝐢 + 𝑢2𝐣 is the number 

(
𝑑𝑓

𝑑𝑠
)
𝐮,𝑃𝑜

= lim
𝑠→0

𝑓(𝑥𝑜 + 𝑠𝑢1, 𝑦𝑜 + 𝑠𝑢2) − 𝑓(𝑥𝑜 , 𝑦𝑜)

𝑠
, 

provide the limit exists.  

The directional derivative is also denoted by (𝐷𝐮𝑓)𝑃𝑜 “the derivative of 𝑓 at 𝑃𝑜 in the direction 

of 𝐮”. 

Example1: Find the derivative of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 at 𝑃𝑜(1, 2) in the direction of the unit 

vector 𝐮 = (
1

√2
) 𝐢 + (

1

√2
) 𝐣. 

Solution:  

(
𝑑𝑓

𝑑𝑠
)
𝐮,𝑃𝑜

= lim
𝑠→0

𝑓(𝑥𝑜 + 𝑠𝑢1, 𝑦𝑜 + 𝑠𝑢2) − 𝑓(𝑥𝑜 , 𝑦𝑜)

𝑠
= lim
𝑠→0

𝑓 (1 + 𝑠
1

√2
 , 2 + 𝑠

1

√2
) − 𝑓(1,2)

𝑠
 

                 = lim
𝑠→0

(1 +
𝑠

√2
 )
2

+ (1 +
𝑠

√2
 ) (2 +

𝑠

√2
 ) − (12 + 1(2)) 

𝑠
 

                 = lim
𝑠→0

(1 +
2𝑠

√2
+
𝑠2

2
)
2

+ (2 +
3𝑠

√2
+
𝑠2

2
) − 3

𝑠
= lim
𝑠→0

5𝑠

√2
+ 𝑠2

𝑠
= lim
𝑠→0
(
5

√2
+ 𝑠) =

5

√2
 . 

Figure 3.9. 
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Calculation and Gradients: We now develop an efficient formula to calculate the directional 

derivative for a differentiable function 𝑓. We begin with the line 

𝑥 = 𝑥𝑜 + 𝑠𝑢1, 𝑦 = 𝑦𝑜 + 𝑠𝑢2 

through parametrised with the arc length parameter 𝑠 increasing in the direction of the unit 

vector 𝐮 = 𝑢1𝐢 + 𝑢2𝐣. Then 

(𝐷𝐮𝑓)𝑃𝑜 = (
𝑑𝑓

𝑑𝑠
)
𝐮,𝑃𝑜

= (
𝜕𝑓

𝜕𝑥
)
𝑃𝑜

𝑑𝑥

𝑑𝑠
+ (

𝜕𝑓

𝜕𝑦
)
𝑃𝑜

𝑑𝑦

𝑑𝑠
 

                                     = (
𝜕𝑓

𝜕𝑥
)
𝑃𝑜

𝑢1 + (
𝜕𝑓

𝜕𝑦
)
𝑃𝑜

𝑢2 

                                     = [(
𝜕𝑓

𝜕𝑥
)
𝑃𝑜

𝐢 + (
𝜕𝑓

𝜕𝑦
)
𝑃𝑜

𝐣] ∙ [𝑢1𝐢 + 𝑢2𝐣 ] = [(
𝜕𝑓

𝜕𝑥
)
𝑃𝑜

𝐢 + (
𝜕𝑓

𝜕𝑦
)
𝑃𝑜

𝐣]
⏟              

Gradient of 𝑓 at 𝑃𝑜 

∙ [𝑢1𝐢 + 𝑢2𝐣 ]⏟      
Direction 𝐮

 . 

Gradient Vector: The gradient vector (gradient) of 𝑓(𝑥, 𝑦) at a point 𝑃𝑜(𝑥𝑜, 𝑦𝑜) is the vector 

∇𝑓 =
𝜕𝑓

𝜕𝑥
𝐢 +
𝜕𝑓

𝜕𝑦
𝐣 

obtained by evaluating the partial derivatives of 𝑓 at 𝑃𝑜. 

The notation is read “grad 𝑓” as well as “gradient of 𝑓” and “del 𝑓.” The symbol ∇ by itself is 

read “del.” Another notation for the gradient is grad 𝑓, read the way it is written. 

The Directional Derivative Is a Dot Product: If 𝑓(𝑥, 𝑦) is differentiable in an open region 

containing 𝑃𝑜, then 

(𝐷𝐮𝑓)𝑃𝑜 = (
𝑑𝑓

𝑑𝑠
)
𝐮,𝑃𝑜

= (∇𝑓)𝑃𝑜 ∙ 𝐮 , 

the dot product of the gradient 𝑓 at 𝑃𝑜 and 𝐮. 

Example2: Find the derivative of 𝑓(𝑥, 𝑦) = 𝑥𝑒𝑦 + cos(𝑥𝑦) at the point (2, 0) in the direction 

of 𝐯 = 3𝐢 − 4𝐣. 

Solution: The direction of 𝐯 is the unit vector obtained by dividing 𝐯 by its length: 

𝐮 =
𝐯

ȁ𝐯ȁ
=
3

5
𝐢 −
4

5
𝐣 . 

The partial derivatives of 𝑓 are everywhere continuous and at (2, 0) are given by 

𝑓𝑥(2, 0) = (𝑒
𝑦 − 𝑦 sin(𝑥𝑦))(2,0) = 𝑒

0 − 0 = 1 

𝑓𝑦(2, 0) = (𝑥𝑒
𝑦 − 𝑥 sin(𝑥𝑦))(2,0) = 2𝑒

0 − 2(0) = 2 . 
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The gradient of 𝑓 at (2, 0) is 

∇𝑓ȁ(2,0) = 𝑓𝑥(2, 0)𝐢 + 𝑓𝑦(2, 0)𝐣 = 𝐢 + 2𝐣. 

The derivative of 𝑓 at (2, 0) in the direction of 𝐯 is therefore 

(𝐷𝐮𝑓)𝑃𝑜|(2,0) = ∇𝑓
ȁ(2,0) ∙ 𝐮 = (𝐢 + 2𝐣) ∙ (

3

5
𝐢 −
4

5
𝐣) =

3

5
−
8

5
= −1 . 

Evaluating the dot product in the formula 

𝐷𝐮𝑓 = ∇𝑓 ∙ 𝐮 = ȁ∇𝑓ȁȁ𝐮ȁ cos 𝜃 = ȁ∇𝑓ȁ cos 𝜃 , 

where 𝜃 is the angle between the vectors 𝐮 and ∇𝑓 reveals the following properties. 

Properties of the Directional Derivative: 

1. The function 𝑓 increases most rapidly when cos 𝜃 = 1 or when 𝐮 is the direction of ∇𝑓. 

That is, at each point 𝑃 in its domain, 𝑓 increases most rapidly in the direction of the gradient 

vector ∇𝑓 at 𝑃. The derivative in this direction is  

𝐷𝐮𝑓 = ȁ∇𝑓ȁ cos(0) = ȁ∇𝑓ȁ . 

2. Similarly, 𝑓 decreases most rapidly in the direction of −ȁ∇𝑓ȁ. The derivative in this direction 

is 

𝐷𝐮𝑓 = ȁ∇𝑓ȁ cos(𝜋) = −ȁ∇𝑓ȁ 

3. Any direction 𝐮 orthogonal to a gradient ∇𝑓 ≠ 0 is a direction of zero change in 𝑓 because 

𝜃 then equals 𝜋/2 and  

𝐷𝐮𝑓 = ȁ∇𝑓ȁ cos(𝜋/2) = ȁ∇𝑓ȁ(0) = 0 . 

As we discuss later, these properties hold in three dimensions as well as two. 

Example3: Find the directions in which 

𝑓(𝑥, 𝑦) = (
𝑥2

2
) + (

𝑦2

2
) 

(a) Increases most rapidly at the point (1, 1) 

(b) Decreases most rapidly at (1, 1). 

(c) What are the directions of zero change in 𝑓 at (1, 1)? 
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Solution: (a) The function increases most rapidly in the direction of at (1, 1). 

The gradient there is    (∇𝑓)(1,1) = (𝑥𝐢 + 𝑦𝐣)(1,1) = 𝐢 + 𝐣 . 

Its direction is     𝐮 =
𝐢 + 𝐣

ȁ𝐢 + 𝐣ȁ
=

𝐢 + 𝐣

√(1)2 + (1)2
=
1

√2
𝐢 +

1

√2
𝐣 . 

(b) The function decreases most rapidly in the direction of −∇𝑓 at (1, 1), which is 

−𝐮 = −
1

√2
𝐢 −

1

√2
𝐣 . 

(c) The directions of zero change at (1, 1) are the directions orthogonal to ∇𝑓: 

𝐧 = −
1

√2
𝐢 +

1

√2
𝐣         and      − 𝐧 =

1

√2
𝐢 −

1

√2
𝐣 . 

Gradients and Tangents to Level Curves: If a differentiable function 𝑓(𝑥, 𝑦) has a constant 

value 𝑐 along a smooth curve 𝐫 = 𝑔(𝑡)𝐢 + ℎ(𝑡)𝐣 (making the curve a level curve of 𝑓), then 

𝑓(𝑔(𝑡), ℎ(𝑡)) = 𝑐. Differentiating both sides of this equation with respect to 𝑡 leads to the 

equations 

                     
𝑑

𝑑𝑡
 𝑓(𝑔(𝑡), ℎ(𝑡)) =

𝑑

𝑑𝑡
(𝑐) 

                         
𝜕𝑓

𝜕𝑥

𝑑𝑔

𝑑𝑡
+
𝜕𝑓

𝜕𝑦

𝑑ℎ

𝑑𝑡
= 0 

(
𝜕𝑓

𝜕𝑥
𝐢 +
𝜕𝑓

𝜕𝑦
𝐣)

⏟        
∇𝑓

∙ (
𝑑𝑔

𝑑𝑡
𝐢 +
𝑑ℎ

𝑑𝑡
𝐣)

⏟        
𝑑𝐫
𝑑𝑡

= 0 

This equation says that ∇𝑓 is normal to the 

tangent vector 𝑑𝐫/𝑑𝑡 so it is normal to the 

curve. 

At every point (𝑥𝑜 , 𝑦𝑜) in the domain of a differentiable function 𝑓(𝑥, 𝑦), the gradient of 𝑓 is 

normal to the level curve through (𝑥𝑜 , 𝑦𝑜) (Figure 3.10). 

This enables us to find equations for tangent lines to level curves. They are the lines normal 

to the gradients. The line through a point 𝑃𝑜(𝑥𝑜 , 𝑦𝑜) normal to a vector 𝐍 = 𝐴𝐢 + 𝐵𝐣 has the 

equation 

𝐴(𝑥 − 𝑥𝑜) + 𝐵(𝑦 − 𝑦𝑜) = 0 

If 𝐍 is the gradient (∇𝑓)(𝑥𝑜,𝑦𝑜) = 𝑓𝑥(𝑥𝑜 , 𝑦𝑜)𝐢 + 𝑓𝑦(𝑥𝑜 , 𝑦𝑜)𝐣, the equation is the tangent line given 

by 

𝑓𝑥(𝑥𝑜 , 𝑦𝑜)(𝑥 − 𝑥𝑜) + 𝑓𝑦(𝑥𝑜 , 𝑦𝑜)(𝑦 − 𝑦𝑜) = 0. 

Figure 3.10. 
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Example4: Find an equation for the tangent to the ellipse 

𝑥2

4
+ 𝑦2 = 2 

(Figure 3.11) at the point (−2, 1). 

Solution: The ellipse is a level curve of the 
function 

𝑓(𝑥, 𝑦) =
𝑥2

4
+ 𝑦2 

The gradient of 𝑓 at (−2, 1) is 

(∇𝑓)ȁ(−2,1) = (
𝑥

2
𝐢 + 2𝑦𝐣)

(−2,1)
= −𝐢 + 2𝐣 

The tangent is the line 

−1(𝑥 + 2) + 2(𝑦 − 1) = 0  ⇒   𝑥 − 2𝑦 = −4 . 

Algebra Rules for Gradients: 

If we know the gradients of two functions 𝑓 and 𝑔, we automatically know the gradients of 

their constant multiples, sum, difference, product, and quotient. Notice that these rules have 

the same form as the corresponding rules for derivatives of single-variable functions. 

 

Example5: We illustrate the rules with 

𝑓(𝑥, 𝑦) = 𝑥 − 𝑦    ⇒    ∇𝑓 = 𝐢 − 𝐣 ,                              𝑔(𝑥, 𝑦) = 3𝑦     ⇒      ∇𝑓 = 3𝐣 

We have  

1. ∇(2𝑓) = ∇(2𝑥 − 2𝑦) = 2𝐢 − 2𝐣 = 2∇𝑓 

2. ∇(𝑓 + 𝑔) = ∇(𝑥 + 2𝑦) = 𝐢 + 2𝐣 = ∇𝑓 + ∇𝑔 

Figure 3.11. 
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3. ∇(𝑓 − 𝑔) = ∇(𝑥 − 4𝑦) = 𝐢 − 4𝐣 = ∇𝑓 − ∇𝑔 

4. ∇(𝑓𝑔) = ∇(3𝑥𝑦 − 3𝑦2) = 3𝑦𝐢 + (3𝑥 − 6𝑦)𝐣 

             = 3𝑦(𝐢 − 𝐣) + 3𝑦𝐣 + (3𝑥 − 6𝑦)𝐣 

             = 3𝑦(𝐢 − 𝐣) + (3𝑥 − 3𝑦)𝐣 

             = 3𝑦(𝐢 − 𝐣) + (𝑥 − 𝑦)3𝐣 = 𝑔∇𝑓 + 𝑓∇𝑔 

𝟓.  ∇ (
𝑓

𝑔
) = ∇(

𝑥 − 𝑦

3𝑦
) = ∇(

𝑥

3𝑦
−
1

3
) 

            =
1

3𝑦
𝐢 −

𝑥

3𝑦2
𝐣 

            =
3𝑦𝐢 − 3𝑥𝐣

9𝑦2
=
3𝑦(𝐢 − 𝐣) − (3𝑥 − 3𝑦)𝐣

9𝑦2
 

            =
3𝑦(𝐢 − 𝐣) − (𝑥 − 𝑦)3𝐣

9𝑦2
=
𝑔∇𝑓 − 𝑓∇𝑔

𝑔2
 . 

Functions of Three Variables: 

For a differentiable function 𝑓(𝑥, 𝑦, 𝑧) and a unit vector 𝐮 = 𝑢1𝐢 + 𝑢2𝐣 + 𝑢3𝐤 in space, we 

have 

∇𝑓 =
𝜕𝑓

𝜕𝑥
𝐢 +
𝜕𝑓

𝜕𝑦
𝐣 +
𝜕𝑓

𝜕𝑧
𝐤 

and 

𝐷𝐮𝑓 = ∇𝑓 ∙ 𝐮 =
𝜕𝑓

𝜕𝑥
𝑢1 +

𝜕𝑓

𝜕𝑦
𝑢2 +

𝜕𝑓

𝜕𝑧
𝑢3 

The directional derivative can once again be written in the form 

𝐷𝐮𝑓 = ∇𝑓 ∙ 𝐮 = ȁ∇𝑓ȁ ∙ ȁ𝐮ȁ cos 𝜃 = ȁ∇𝑓ȁ cos 𝜃 

so the properties listed earlier for functions of two variables continue to hold. At any given 

point, 𝑓 increases most rapidly in the direction of∇𝑓 and decreases most rapidly in the 

direction of −∇𝑓. In any direction orthogonal to ∇𝑓 the derivative is zero. 
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Example6: (a) Find the derivative of 𝑓(𝑥, 𝑦, 𝑧) = 𝑥3 − 𝑥𝑦2 − 𝑧 at 𝑃𝑜(1, 1, 0) in the direction od 

𝐯 = 2𝐢 − 3𝐣 + 6𝐤. 

(b) In what directions does 𝑓 change most rapidly at 𝑃𝑜 and what are the rates of change in 

these directions? 

Solution: (a) The direction of 𝐯 is obtained by dividing 𝐯 by its length: 

ȁ𝐯ȁ = √(2)2 + (−3)2 + (6)2 = √49 = 7 

𝐮 =
𝐯

ȁ𝐯ȁ
=
2

7
𝐢 −
3

7
𝐣 +
6

7
𝐤 

The partial derivatives of 𝑓 at 𝑃𝑜 are 

𝑓𝑥 = (3𝑥
2 − 𝑦2)(1,1,0) = 2, 𝑓𝑦 = −2𝑥𝑦ȁ(1,1,0) = −2, 𝑓𝑧 = −1ȁ(1,1,0) = −1 . 

The gradient of 𝑓 at 𝑃𝑜 is 

∇𝑓ȁ(1,1,0) = 2𝐢 − 2𝐣 − 𝐤. 

The derivative of 𝑓 at in the direction of 𝐯 is therefore 

(𝐷𝐮𝑓)(1,1,0) = ∇𝑓ȁ(1,1,0) ∙ 𝐮 = (2𝐢 − 2𝐣 − 𝐤) ∙ (
2

7
𝐢 −
3

7
𝐣 +
6

7
𝐤) =

4

7
+
6

7
−
6

7
=
4

7
 . 

(b) The function increases most rapidly in the direction of ∇𝑓 = 2𝐢 − 3𝐣 − 𝐤 and decreases 

most rapidly in the direction of −∇𝑓 The rates of change in the directions are, respectively, 

ȁ∇𝑓ȁ = √(2)2 + (−2)2 + (−1)2 = √9 = 3            and            −ȁ∇𝑓ȁ = −3. 

3.6 Tangent Planes 

In this section we define the tangent plane at a point on a smooth surface in space. We 

calculate an equation of the tangent plane from the partial derivatives of the function defining 

the surface. This idea is similar to the definition of the tangent line at a point on a curve in 

the coordinate plane for single-variable functions. We then study the total differential of 

functions of several variables. 

Tangent Planes and Normal Lines: If 𝐫 = 𝑔(𝑡)𝐢 + ℎ(𝑡)𝐣 + 𝑘(𝑡)𝐤 is a smooth curve on the 

level surface 𝑓(𝑥, 𝑦, 𝑧) = 𝑐 of a differentiable function 𝑓, then 𝑓(𝑔(𝑡), ℎ(𝑡), 𝑘(𝑡)) = 𝑐. 

Differentiating both sides of this equation with respect to 𝑡 leads to 
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𝑑

𝑑𝑡
𝑓(𝑔(𝑡), ℎ(𝑡), 𝑘(𝑡)) =

𝑑

𝑑𝑡
𝑐 

                                    
𝜕𝑓

𝜕𝑥

𝑑𝑔

𝑑𝑡
+
𝜕𝑓

𝜕𝑦

𝑑ℎ

𝑑𝑡
+
𝜕𝑓

𝜕𝑧

𝑑𝑘

𝑑𝑡
= 0 

(
𝜕𝑓

𝜕𝑥
𝐢 +
𝜕𝑓

𝜕𝑦
𝐣 +
𝜕𝑓

𝜕𝑧
𝐤)

⏟            
∇𝑓

∙ (
𝑑𝑔

𝑑𝑡
𝐢 +
𝑑ℎ

𝑑𝑡
𝐣 +
𝑑𝑘

𝑑𝑡
𝐤)

⏟            
𝑑𝐫/𝑑𝑡

= 0 

At every point along the curve, ∇𝑓 is orthogonal to the curve’s velocity vector. 

Now let us restrict our attention to the curves that pass through 𝑃𝑜 (Figure 3.12). All the 

velocity vectors at 𝑃𝑜 are orthogonal to ∇𝑓 at 

𝑃𝑜, so the curves’ tangent lines all lie in the 

plane through 𝑃𝑜 normal to ∇𝑓. We call this 

plane the tangent plane of the surface at 𝑃𝑜. 

The line through 𝑃𝑜 perpendicular to the plane 

is the surface’s normal line at 𝑃𝑜. 

Tangent Plane, Normal Line (Definition) 

The tangent plane at the point 𝑃𝑜(𝑥0, 𝑦𝑜 , 𝑧𝑜) on the level surface 𝑓(𝑥, 𝑦, 𝑧) = 𝑐 of a 

differentiable function 𝑓 is the plane through 𝑃𝑜 normal to ∇𝑓ȁ𝑃𝑜.  

The normal line of the surface at 𝑃𝑜 is the line through 𝑃𝑜 parallel to ∇𝑓ȁ𝑃𝑜. 

Thus, the tangent plane and normal line have the following equations: 

Tangent Plane to 𝑓(𝑥, 𝑦, 𝑧) = 𝑐 at 𝑃𝑜(𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) 

𝑓𝑥(𝑃𝑜)(𝑥 − 𝑥𝑜) + 𝑓𝑦(𝑃𝑜)(𝑦 − 𝑦𝑜) + 𝑓𝑧(𝑃𝑜)(𝑧 − 𝑧𝑜) = 0 

Normal Line to 𝑓(𝑥, 𝑦, 𝑧) = 𝑐 at 𝑃𝑜(𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) 

𝑥 = 𝑥𝑜 + 𝑓𝑥(𝑃𝑜)𝑡, 𝑦 = 𝑦𝑜 + 𝑓𝑦(𝑃𝑜)𝑡, 𝑧 = 𝑧𝑜 + 𝑓𝑧(𝑃𝑜)𝑡 

Example1: Find the tangent plane and normal line of the surface 

𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧 − 9 = 0 

at the point 𝑃𝑜(1, 2, 4).  

Figure 3.12. 
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Solution: The surface is shown in Figure 3.13. 

The tangent plane is the plane through 𝑃𝑜 

perpendicular to the gradient of 𝑓 at 𝑃𝑜. The 

gradient is 

∇𝑓ȁ𝑃𝑜 = (2𝑥𝐢 + 2𝑦𝐣 + 𝐤)(1,2,4) = 2𝐢 + 4𝐣 + 𝐤 . 

The tangent plane is therefore the plane 

2(𝑥 − 1) + 4(𝑦 − 2) + (𝑧 − 4) = 0 

2𝑥 + 4𝑦 + 𝑧 = 14 

The line normal to the surface at 𝑃𝑜 is 

𝑥 = 1 + 2𝑡, 𝑦 = 2 + 4𝑡, 𝑧 = 4 + 𝑡 

Plane Tangent to a Surface: To find an equation for the plane tangent to a smooth surface 

𝑧 = 𝑓(𝑥, 𝑦) at a point 𝑃𝑜(𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) where 𝑧𝑜 = 𝑓(𝑥𝑜 , 𝑦𝑜), we first observe that the equation 

𝑧 = 𝑓(𝑥, 𝑦) is equivalent to 𝑓(𝑥, 𝑦) − 𝑧 = 0. The surface 𝑧 = 𝑓(𝑥, 𝑦) is therefore the zero level 

surface of the function 𝐹(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦) − 𝑧 The partial derivatives of 𝐹 are 

𝐹𝑥 =
𝜕

𝜕𝑥
(𝑓(𝑥, 𝑦) − 𝑧) = 𝑓𝑥 − 0 = 𝑓𝑥 

𝐹𝑦 =
𝜕

𝜕𝑦
(𝑓(𝑥, 𝑦) − 𝑧) = 𝑓𝑦 − 0 = 𝑓𝑦 

𝐹𝑧 =
𝜕

𝜕𝑧
(𝑓(𝑥, 𝑦) − 𝑧) = 0 − 1 = −1 

The formula 

𝐹𝑥(𝑃𝑜)(𝑥 − 𝑥𝑜) + 𝐹𝑦(𝑃𝑜)(𝑦 − 𝑦𝑜) + 𝐹𝑧(𝑃𝑜)(𝑧 − 𝑧𝑜) = 0 

for the plane tangent to the level surface at 𝑃𝑜 therefore reduces to 

𝑓𝑥(𝑥𝑜 , 𝑦𝑜)(𝑥 − 𝑥𝑜) + 𝑓𝑦(𝑥𝑜 , 𝑦𝑜)(𝑦 − 𝑦𝑜) − (𝑧 − 𝑧𝑜) = 0 

Plane Tangent to a Surface 𝑧 = 𝑓(𝑥, 𝑦) at (𝑥𝑜 , 𝑦𝑜 , 𝑓(𝑥𝑜 , 𝑦𝑜)) 

The plane tangent to the surface 𝑧 = 𝑓(𝑥, 𝑦)  of a differentiable function 𝑓 at the point 

𝑃𝑜(𝑥𝑜 , 𝑦𝑜, 𝑧𝑜) = (𝑥𝑜 , 𝑦𝑜 , 𝑓(𝑥𝑜 , 𝑦𝑜)) is  

𝑓𝑥(𝑥𝑜 , 𝑦𝑜)(𝑥 − 𝑥𝑜) + 𝑓𝑦(𝑥𝑜 , 𝑦𝑜)(𝑦 − 𝑦𝑜) − (𝑧 − 𝑧𝑜) = 0 . 

Figure 3.13. 
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Example2: Find the plane tangent to the surface 𝑧 = 𝑥 cos 𝑦 − 𝑦𝑒𝑥 at (0, 0, 0). 

Solution: We calculate the partial derivatives of 𝑓(𝑥, 𝑦) = 𝑥 cos 𝑦 − 𝑦𝑒𝑥 first. 

𝑓𝑥(0, 0) = (cos 𝑦 − 𝑦𝑒
𝑥)(0,0) = 1 − 0(1) = 1 

𝑓𝑦(0, 0) = (−𝑥 sin 𝑦 − 𝑒
𝑥)(0,0) = 0 − 1 = −1 

The tangent plane is therefore 

(1)(𝑥 − 0) + (−1)(𝑦 − 0) − (𝑧 − 0) = 0      ⇒      𝑥 − 𝑦 − 𝑧 = 0 . 

Example3: The surfaces 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 2 = 0 and 𝑔(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑧 − 4 = 0 meet in 

an ellipse 𝐸 (Figure 3.14). Find parametric 

equations for the line tangent to 𝐸 at the point 

𝑃𝑜(1, 1, 3).  

Solution: The tangent line is orthogonal to both ∇𝑓 

and ∇𝑔 at 𝑃𝑜, and therefore parallel to 𝐯 = ∇𝑓 × ∇𝑔. 

The components of 𝐯 and coordinates of 𝑃𝑜 give us 

equations for the line. We have 

∇𝑓ȁ(1,1,3) = (2𝑥𝐢 + 2𝑦𝐣)(1,1,3) = 2𝐢 + 2𝐣 

∇𝑔ȁ(1,1,3) = (𝐢 + 𝐤)(1,1,3) = 𝐢 + 𝐤 

𝐯 = (2𝐢 + 2𝐣) × (𝐢 + 𝐤) = |
𝐢 𝐣 𝐤
2 2 0
1 0 1

| = 2𝐢 − 2𝐣 − 2𝐤 

The tangent line is  

𝑥 = 1 + 2𝑡, 𝑦 = 1 − 2𝑡, 𝑧 = 3 − 2𝑡 . 

3.7 Extreme Values and Saddle 

Points 

Derivative Tests for Local Extreme Values: To find the local extreme values of a function 

of a single variable, we look for points where the graph has a horizontal tangent line. At such 

points, we then look for local maxima, local minima, and points of inflection. For a function 

𝑓(𝑥, 𝑦) of two variables, we look for points where the surface 𝑧 = 𝑓(𝑥, 𝑦) has a horizontal 

tangent plane. At such points, we then look for local maxima, local minima, and saddle 

points. 

Figure 3.14. 
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Local Maxima and Local Minima: Let 𝑓(𝑥, 𝑦) be defined on a region 𝑅 containing the point 

(𝑎, 𝑏). Then 

1. 𝑓(𝑎, 𝑏) is a local maximum value of 𝑓 if 𝑓(𝑎, 𝑏) ≥ 𝑓(𝑥, 𝑦) for all domain points (𝑥, 𝑦) in an 

open disk centred at (𝑎, 𝑏). 

2. 𝑓(𝑎, 𝑏) is a local minimum value of 𝑓 if 𝑓(𝑎, 𝑏) ≤ 𝑓(𝑥, 𝑦) for all domain points (𝑥, 𝑦) in an 

open disk centred at (𝑎, 𝑏). 

Local maxima correspond to mountain peaks on the surface 𝑧 = 𝑓(𝑥, 𝑦) and local minima 

correspond to valley bottoms (Figure 3.15). At such 

points the tangent planes, when they exist, are 

horizontal. Local extrema are also called relative 

extrema. 

First Derivative Test for Local Extreme Values: If 

𝑓(𝑥, 𝑦) has a local maximum or minimum value at an 

interior point (𝑎, 𝑏) of its domain and if the first partial 

derivatives exist there, then 𝑓𝑥(𝑎, 𝑏) = 0 and 

𝑓𝑦(𝑎, 𝑏) = 0. 

Critical Point: An interior point of the domain of a function 𝑓(𝑥, 𝑦) where both 𝑓𝑥 and 𝑓𝑦 are 

zero or where one or both of 𝑓𝑥 and 𝑓𝑦 do not exist is a critical point of 𝑓. 

Saddle Point: A differentiable function 𝑓(𝑥, 𝑦) has a saddle point at a critical point (𝑎, 𝑏) if 

in every open disk centred at (𝑎, 𝑏) there are domain points (𝑥, 𝑦) where 𝑓(𝑥, 𝑦) > 𝑓(𝑎, 𝑏) 

and domain points (𝑥, 𝑦) 

where 𝑓(𝑥, 𝑦) < 𝑓(𝑎, 𝑏). 

The corresponding point 

(𝑎, 𝑏, 𝑓(𝑎, 𝑏)) on the 

surface 𝑧 = 𝑓(𝑥, 𝑦) is 

called a saddle point of 

the surface (Figure 3.16). 

 

 

Figure 3.15 

Figure 3.16. 
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Example1: Find the local extreme values of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2. 

Solution: The domain of 𝑓 is the entire plane (so there are no boundary points) and the 

partial derivatives 𝑓𝑥 = 2𝑥 and 𝑓𝑦 = 2𝑦 exist 

everywhere. Therefore, local extreme values 

can occur only where 

𝑓𝑥 = 2𝑥 = 0,     𝑓𝑦 = 2𝑦 = 0. 

The only possibility is the origin, where the 

value of 𝑓 is zero. Since 𝑓 is never negative, 

we see that the origin gives a local minimum 

(Figure 3.17). 

Example2: Find the local extreme values of 𝑓(𝑥, 𝑦) = 𝑦2 − 𝑥2. 

Solution: The domain of 𝑓 is the entire plane (so there are no boundary points) and the 

partial derivatives 𝑓𝑥 = −2𝑥 and 𝑓𝑦 = 2𝑦 exist 

everywhere. Therefore, local extrema can occur 

only at the origin (0, 0). Along the positive 𝑥-axis, 

however, 𝑓 has the value 𝑓(𝑥, 0) = −𝑥2 < 0; 

along the positive 𝑦-axis, 𝑓 has the value 

𝑓(0, 𝑦) = 𝑦2 > 0. Therefore, every open disk in 

the 𝑥𝑦-plane centred at (0, 0) contains points 

where the function is positive and points where 

it is negative. The function has a saddle point at the origin (Figure 3.18) instead of a local 

extreme value. We conclude that the function has no local extreme values. 

Second Derivative Test for Local Extreme Values: Suppose that 𝑓(𝑥, 𝑦) and its first and 

second partial derivatives are continuous throughout a disk centred at (𝑎, 𝑏) and that 

𝑓𝑥(𝑥, 𝑦) = 𝑓𝑦(𝑥, 𝑦) = 0. Then 

1. 𝑓 has a local maximum at (𝑎, 𝑏) if 𝑓𝑥𝑥 < 0 and 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 > 0 at (𝑎, 𝑏).  

2. 𝑓 has a local minimum at (𝑎, 𝑏) if 𝑓𝑥𝑥 > 0  and 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 > 0 at (𝑎, 𝑏).  

3. 𝑓 has a saddle point at (𝑎, 𝑏) if 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 < 0  at (𝑎, 𝑏).  

4. The test is inconclusive at (𝑎, 𝑏) if 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 = 0  at (𝑎, 𝑏). 

Figure 3.17. 

Figure 3.18. 
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The expression 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2  is called the discriminant of 𝑓. It is sometimes easier to 

remember it in determinant form, 

𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 = |

𝑓𝑥𝑥 𝑓𝑥𝑦
𝑓𝑥𝑦 𝑓𝑦𝑦

| . 

Second Derivative Test says that if the discriminant is positive at the point (𝑎, 𝑏), then the 

surface curves the same way in all directions: downward if 𝑓𝑥𝑥 < 0 giving rise to a local 

maximum, and upward if 𝑓𝑥𝑥 > 0 giving a local minimum. On the other hand, if the 

discriminant is negative at (𝑎, 𝑏), then the surface curves up in some directions and down in 

others, so we have a saddle point. 

Example3: Find the local extreme values of the function 

𝑓(𝑥, 𝑦) = 𝑥𝑦 − 𝑥2 − 𝑦2 − 2𝑥 − 2𝑦 + 4 . 

Solution: The function is defined and differentiable for all 𝑥 and 𝑦 and its domain has no 

boundary points. The function therefore has extreme values only at the points where 𝑓𝑥 and 

𝑓𝑦 are simultaneously zero. This leads to 

𝑓𝑥 = 𝑦 − 2𝑥 − 2 = 0, 𝑓𝑦 = 𝑥 − 2𝑦 − 2 = 0 

solving both equations to find 𝑥 and 𝑦 

𝑥 = 𝑦 = −2 . 

Therefore, the point (−2,−2)  is the only point where 𝑓 may take on an extreme value. To 

see if it does so, we calculate 

𝑓𝑥𝑥 = −2, 𝑓𝑦𝑦 = −2, 𝑓𝑥𝑦 = 1 . 

The discriminant of 𝑓 at (𝑎, 𝑏) = (−2,−2) is 

𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 = (−2)(−2) − (1)2 = 4 − 1 = 3 . 

The combination  

𝑓𝑥𝑥 < 0       and      𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 > 0 

tells us that 𝑓 has a local maximum at (−2,−2). The value of 𝑓 at this point is 𝑓(−2,−2) =

8. 
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Example4: Find the local extreme values of 𝑓(𝑥, 𝑦) = 𝑥𝑦. 

Solution: Since 𝑓 is differentiable everywhere (Figure 3.19), it can assume extreme values 

only where 

𝑓𝑥 = 𝑦 = 0       and       𝑓𝑦 = 𝑥 = 0 . 

Thus, the origin is the only point where 𝑓 might 

have an extreme value. To see what happens 

there, we calculate 

𝑓𝑥𝑥 = 0, 𝑓𝑦𝑦 = 0, 𝑓𝑥𝑦 = 1 . 

The discriminant 

𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 = −1 , 

is negative. Therefore, the function has a saddle 

point at (0, 0). We conclude that 𝑓(𝑥, 𝑦) = 𝑥𝑦 has no local extreme values. 

Summary of Max-Min Tests: 

The extreme values of 𝑓(𝑥, 𝑦) can occur only at 

1. boundary points of the domain of 𝑓 

2. critical points (interior points where 𝑓𝑥 = 𝑓𝑦 = 0 or points where 𝑓𝑥 or 𝑓𝑦 fail to exist). 

If the first- and second-order partial derivatives of 𝑓 are continuous throughout a disk centred 

at a point (𝑎, 𝑏) and 𝑓𝑥(𝑎, 𝑏) = 𝑓𝑦(𝑎, 𝑏) = 0, the nature of 𝑓(𝑎, 𝑏) can be tested with the 

Second Derivative Test: 

1. 𝑓𝑥𝑥 < 0 and 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 > 0 at (𝑎, 𝑏)    ⇒   local maximum  

2. 𝑓𝑥𝑥 > 0 and 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 > 0 at (𝑎, 𝑏)    ⇒   local minimum 

3. 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 < 0 at (𝑎, 𝑏)    ⇒   saddle point 

4. 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 = 0 at (𝑎, 𝑏)   ⇒   test is inconclusive. 

Figure 3.19. 
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Solved Problems:  

3.1  Functions of Several Variables 

Prob1: Find the domain and the range of the function 𝑓(𝑥, 𝑦) = √9 − 𝑥2 − 𝑦2. 

Solution:  Domain is all (𝑥, 𝑦) satisfying 𝑥2 + 𝑦2 ≤ 9, Range is 0 ≤ 𝑧 ≤ 3. 

Prob2: Find an equation for the level curve of the function 𝑓(𝑥, 𝑦) = √𝑥2 − 1 that passes 

through the given point (1, 0). 

Solution: At (1, 0)    ⇒    𝑧 = √12 − 1 = 0   ⇒   𝑥2 − 1 = 0   ⇒    𝑥 = 1 or 𝑥 = −1. 

Prob3: Find an equation for the level surface of the function 𝑓(𝑥, 𝑦, 𝑧) = ln(𝑥2 + 𝑦2 + 𝑧2) 

through the given point (−1, 2, 1). 

Solution: 

At (−1, 2, 1)   ⇒   𝑤 = ln(1 + 2 + 1) = ln 4  ⇒  ln 4 = ln(𝑥2 + 𝑦2 + 𝑧2)    ⇒  𝑥2 + 𝑦2 + 𝑧2 = 4. 

3.2  Limits and Continuity in Higher Dimensions 

Prob1: Find the limit 

lim
(𝑥,𝑦)→(0,

𝜋
4
)
sec 𝑥 tan 𝑦 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  lim
(𝑥,𝑦)→(0,

𝜋
4
)
sec 𝑥 tan 𝑦 = (sec 0) (tan

𝜋

4
) = (1)(1) = 1 . 

Prob2: Find the limit by rewriting the fraction first 

lim
(𝑥,𝑦)→(1,1)

𝑥≠𝑦

𝑥2 − 𝑦2

𝑥 − 𝑦
 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  lim
(𝑥,𝑦)→(1,1)

𝑥≠𝑦

𝑥2 − 𝑦2

𝑥 − 𝑦
= lim
(𝑥,𝑦)→(1,1)

(𝑥 + 𝑦)(𝑥 − 𝑦)

𝑥 − 𝑦
= lim
(𝑥,𝑦)→(1,1)

(𝑥 + 𝑦) = (1 + 1) = 2 . 

Prob3: Find the limit 

lim
𝑃→(𝜋,0,3)

𝑧 𝑒−2𝑦 cos 2𝑥 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  lim
𝑃→(𝜋,0,3)

𝑧 𝑒−2𝑦 cos 2𝑥 = 3𝑒−2(0) cos 2𝜋 = (3)(1)(1) = 3 . 
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Prob4: At what point (𝑥, 𝑦) in the plane is the function continuous? 

𝑓(𝑥, 𝑦) = sin(𝑥 + 𝑦) . 

Solution: All (𝑥, 𝑦). 

Prob5: At what point (𝑥, 𝑦, 𝑧) in space is the function continuous? 

𝑓(𝑥, 𝑦, 𝑧) = √𝑥2 + 𝑦2 − 1 . 

Solution: All (𝑥, 𝑦, 𝑧) except the interior of cylinder 𝑥2 + 𝑦2 = 1. 

3.3  Partial Derivatives: 

Prob1: Find 𝜕𝑓/𝜕𝑥 and 𝜕𝑓/𝜕𝑦 of the function 𝑓(𝑥, 𝑦) = 𝑒𝑥𝑦 ln 𝑦. 

Solution: 

𝜕𝑓

𝜕𝑥
= 𝑒𝑥𝑦

𝜕

𝜕𝑥
(𝑥𝑦) ln 𝑦 = 𝑦 𝑒𝑥𝑦 ln 𝑦 ,

𝜕𝑓

𝜕𝑦
= 𝑒𝑥𝑦

𝜕

𝜕𝑦
(𝑥𝑦) ln 𝑦 + 𝑒𝑥𝑦

1

𝑦
= 𝑥𝑒𝑥𝑦 ln 𝑦 +

𝑒𝑥𝑦

𝑦
 . 

Prob2: Find 𝑓𝑥 , 𝑓𝑦, and 𝑓𝑧 of the function 𝑓(𝑥, 𝑦, 𝑧) = sinh(𝑥𝑦 − 𝑧2). 

Solution: 𝑓𝑥 = 𝑦 cosh(𝑥𝑦 − 𝑧
2) , 𝑓𝑦 = 𝑥 cosh(𝑥𝑦 − 𝑧

2) , 𝑓𝑧 = −2𝑧 cosh(𝑥𝑦 − 𝑧
2). 

Prob3: Find the partial derivative of the function with respect to each variable 

𝑓(𝑡, 𝛼) = cos(2𝜋𝑡 − 𝛼). 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 
𝜕𝑓

𝜕𝑡
= −2𝜋 sin(2𝜋𝑡 − 𝛼) ,

𝜕𝑓

𝜕𝛼
= sin(2𝜋𝑡 − 𝛼) . 

Prob4: Find all the second-order partial derivatives of the function 

𝑓(𝑥, 𝑦) = 𝑥2𝑦 + cos 𝑦 + 𝑦 sin 𝑥. 

Solution:  

𝜕𝑓

𝜕𝑥
= 2𝑥𝑦 + 𝑦 cos 𝑥 ,

𝜕𝑓

𝜕𝑦
= 𝑥2 − sin 𝑦 + sin 𝑥 ,

𝜕2𝑓

𝜕𝑥2
= 2𝑦 − 𝑦 sin 𝑥 ,

𝜕2𝑓

𝜕𝑦2
= −cos 𝑦, 

𝜕2𝑓

𝜕𝑥𝜕𝑦
=
𝜕2𝑓

𝜕𝑦𝜕𝑥
= 2𝑥 + cos 𝑥 . 
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Prob5: Verify 𝑤𝑥𝑦 = 𝑤𝑦𝑥 for 𝑤 = 𝑥𝑦 + 𝑥 sin 𝑦 + 𝑦 sin 𝑥. 

Solution: 𝑤𝑥 = 𝑦 + sin 𝑦 + 𝑦 cos 𝑥 ,    𝑤𝑦 = 𝑥 + 𝑥 cos 𝑦 + sin 𝑥,  

 𝑤𝑥𝑦 = 1 + cos 𝑦 + cos 𝑥 , 𝑤𝑦𝑥 = 1 + cos 𝑦 + cos 𝑥 . 

Prob6: Find the value of 𝜕𝑧/𝜕𝑥  at the point (1, 1, 1) if the equation 𝑥𝑦 + 𝑧3𝑥 − 2𝑦𝑧 = 0. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  𝑦 + (3𝑧2
𝜕𝑧

𝜕𝑥
) 𝑥 + 𝑧3 − 2𝑦

𝜕𝑧

𝜕𝑥
= 0   ⇒   (3𝑧2𝑥 − 2𝑦)

𝜕𝑧

𝜕𝑥
= −𝑦 − 𝑧3, 

   at (1, 1, 1)    ⇒   (3 − 2)
𝜕𝑧

𝜕𝑥
= −1 − 1   ⇒   

𝜕𝑧

𝜕𝑥
= −2 . 

3.4  The Chain Rule 

Prob1: Express 𝑑𝑤/𝑑𝑡 as a function of 𝑡, both by using the Chain Rule and by expressing 

𝑤 in terms of 𝑡 and differentiating directly with respect to 𝑡. Then evaluate 𝑑𝑤/𝑑𝑡 at the given 

value of 𝑡. 

𝑤 = 2𝑦𝑒𝑥 − ln 𝑧 , 𝑥 = ln(𝑡2 + 1) , 𝑦 = tan−1 𝑡 , 𝑧 = 𝑒𝑡;    𝑡 = 1 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 
𝜕𝑤

𝜕𝑥
= 2𝑦𝑒𝑥 ,   

𝜕𝑤

𝜕𝑦
= 2𝑒𝑥 ,   

𝜕𝑤

𝜕𝑧
= −

1

𝑧
 ,

𝑑𝑥

𝑑𝑡
=

2𝑡

𝑡2 + 1
,   
𝑑𝑦

𝑑𝑡
=

1

𝑡2 + 1
,    
𝑑𝑧

𝑑𝑡
= 𝑒𝑡 

𝑑𝑤

𝑑𝑡
=
𝜕𝑤

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑡
+
𝜕𝑤

𝜕𝑧

𝑑𝑧

𝑑𝑡
= 2𝑦𝑒𝑥

2𝑡

𝑡2 + 1
+ 2𝑒𝑥

1

𝑡2 + 1
−
1

𝑧
𝑒𝑡 

=
(4𝑡) tan−1 𝑡 (𝑡2 + 1)

𝑡2 + 1
+
2(𝑡2 + 1)

𝑡2 + 1
−
𝑒𝑡

𝑒𝑡
= 4𝑡 tan−1 𝑡 + 1 ; 

𝑤 = 2𝑦𝑒𝑥 − ln 𝑧 = (2 tan−1 𝑡)(𝑡2 + 1) − 𝑡   ⇒   
𝑑𝑤

𝑑𝑡
= (

2

𝑡2 + 1
) (𝑡2 + 1) + (2 tan−1 𝑡)(2𝑡) − 1 

𝑑𝑤

𝑑𝑡
= 4𝑡 tan−1 𝑡 + 1   

𝑡=1
⇒    

𝑑𝑤

𝑑𝑡
(1) = (4)(1) (

𝜋

4
) + 1 = 𝜋 + 1 . 

Prob2: Express 𝜕𝑤/𝜕𝑢 and 𝜕𝑤/𝜕𝑣 as functions of 𝑢 and 𝑣 both by using the Chain Rule 

and by expressing 𝑤 directly in terms of 𝑢 and 𝑣 before differentiating. Then evaluate 𝜕𝑤/𝜕𝑢 

and 𝜕𝑤/𝜕𝑣 at the given point (𝑢, 𝑦) = (1/2, 1) 

𝑤 = 𝑥𝑦 + 𝑦𝑧 + 𝑥𝑧, 𝑥 = 𝑢 + 𝑣, 𝑦 = 𝑢 − 𝑣, 𝑧 = 𝑢𝑣 . 
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𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 
𝜕𝑤

𝜕𝑢
=
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑢
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑢
+
𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑢
= (𝑦 + 𝑧)(1) + (𝑥 + 𝑧)(1) + (𝑦 + 𝑥)(𝑣) 

= 𝑥 + 𝑦 + 2𝑧 + 𝑣(𝑥 + 𝑦) = (𝑢 + 𝑣) + (𝑢 − 𝑣) + 2(𝑢𝑣) + 𝑣(2𝑢) = 2𝑢 + 4𝑢𝑣 ; 

𝜕𝑤

𝜕𝑣
=
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑣
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑣
+
𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑣
= (𝑦 + 𝑧)(1) + (𝑥 + 𝑧)(−1) + (𝑦 + 𝑥)(𝑢) = 𝑦 − 𝑥 + 𝑢(𝑥 + 𝑦) 

= (𝑢 − 𝑣) − (𝑢 + 𝑣) + 𝑢(2𝑢) = −2𝑣 + 2𝑢2 ; 

𝑤 = 𝑥𝑦 + 𝑦𝑧 + 𝑥𝑧 = (𝑢 + 𝑣)(𝑢 − 𝑣) + (𝑢 − 𝑣)(𝑢𝑣) + (𝑢 + 𝑣)(𝑢𝑣) 

𝑤 = (𝑢2 − 𝑣2) + (𝑢2𝑣 − 𝑢𝑣2) + (𝑢2𝑣 + 𝑢𝑣2) = 𝑢2 − 𝑣2 + 2𝑢2𝑣   ⇒   
𝜕𝑤

𝜕𝑢
= 2𝑢 + 4𝑢𝑣   and 

𝜕𝑤

𝜕𝑣
= −2𝑣 + 2𝑢2 . 

At (
1

2
, 1): 

𝜕𝑤

𝜕𝑢
= 2 (

1

2
) + 4 (

1

2
) (1) = 3   and   

𝜕𝑤

𝜕𝑣
= −2(1) + 2 (

1

2
)
2

= −
3

2
 . 

Prob3: Draw a tree diagram and write a Chain Rule formula for each derivative 

𝜕𝑤

𝜕𝑥
  and 

𝜕𝑤

𝜕𝑦
  for  𝑤 = 𝑔(𝑢, 𝑣), 𝑢 = ℎ(𝑥, 𝑦), 𝑣 = 𝑘(𝑥, 𝑦) . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  
𝜕𝑤

𝜕𝑥
=
𝜕𝑤

𝜕𝑢

𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑣

𝜕𝑣

𝜕𝑥
 ,                  

𝜕𝑤

𝜕𝑦
=
𝜕𝑤

𝜕𝑢

𝜕𝑢

𝜕𝑦
+
𝜕𝑤

𝜕𝑣

𝜕𝑣

𝜕𝑦
 

 

Prob4: Assuming that the equation 𝑥𝑒𝑦 + sin 𝑥𝑦 + 𝑦 − ln 2 = 0 defines 𝑦 as a differentiable 

function of 𝑥, find the value of 𝑑𝑦/𝑑𝑥 at the given point (0, ln 2). 

 

𝑤 

𝑥 

𝜕𝑤

𝜕𝑢
 

𝜕𝑤

𝜕𝑣
 

𝑢 𝑣 

𝜕𝑢

𝜕𝑥
 

𝜕𝑣

𝜕𝑥
 

 

𝑦 

𝜕𝑤

𝜕𝑢
 

𝜕𝑤

𝜕𝑣
 

𝑢 𝑣 

𝜕𝑢

𝜕𝑦
 

 

𝜕𝑣

𝜕𝑦
 

𝑤 



University of Anbar 
College of Engineering 

Electrical Engineering Dept. 

 Calculus III, Year 2 
Dr. Abdullah Al-Ani 

2020-2021 

 

37 
 

Solution: Let 𝐹(𝑥, 𝑦) = 𝑥𝑒𝑦 + sin 𝑥𝑦 + 𝑦 − ln 2 = 0   ⇒   𝐹𝑥 = 𝑒
𝑦 + 𝑦 cos 𝑥𝑦 and  

𝐹𝑦 = 𝑥𝑒
𝑦 + 𝑥 cos 𝑥𝑦 + 1   ⇒  

𝑑𝑦

𝑑𝑥
= −

𝐹𝑥
𝐹𝑦
= −

𝑒𝑦 + 𝑦 cos 𝑥𝑦

𝑥𝑒𝑦 + 𝑥 cos 𝑥𝑦 + 1
 

At (0, ln 2):  
𝑑𝑦

𝑑𝑥
(0, ln 2) = −(2 + ln 2) . 

3.5  Directional Derivatives and Gradient Vectors 

Prob1: Find the gradient of the function 𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2 at the given point (−1, 0). Then 

sketch the gradient together with the level curve that passes through the point. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 
𝜕𝑓

𝜕𝑥
= −2𝑥,    ⇒    

𝜕𝑓

𝜕𝑥
(−1, 0) = 2,

𝜕𝑓

𝜕𝑦
= 1 , 

∇𝑓 = 2𝐢 + 𝐣 ;       𝑓(−1, 0) = −1, 

−1 = 𝑦 − 𝑥2 is the level curve.  

 

 

Prob2: Find ∇𝑓 at the given point (1, 1, 1) of the function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 − 2𝑧2 + 𝑧 ln 𝑥. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 
𝜕𝑓

𝜕𝑥
= 2𝑥 +

𝑧

𝑥
   ⇒   

𝜕𝑓

𝜕𝑥
(1, 1, 1) = 3; 

𝜕𝑓

𝜕𝑦
= 2𝑦   ⇒   

𝜕𝑓

𝜕𝑦
(1, 1, 1) = 2;  

𝜕𝑓

𝜕𝑧
= −4𝑧 + ln 𝑥    ⇒   

𝜕𝑓

𝜕𝑧
(1, 1, 1) = −4, thus  ∇𝑓 = 3𝐢 + 2𝐢 − 4𝐤 . 

Prob3: Find the derivative of the function at 𝑃𝑜 in the direction of 𝐀 

𝑓(𝑥, 𝑦, 𝑧) = cos 𝑥𝑦 + 𝑒𝑦𝑧 + ln 𝑥𝑧 , 𝑃𝑜 (1, 0,
1

2
) , 𝐀 = 𝐢 + 2𝐣 + 2𝐤 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  𝐮 =
𝐀

ȁ𝐀ȁ
=
𝐢 + 2𝐣 + 2𝐤 

√12 + 22 + 22
=
1

3
𝐢 +
2

3
𝐣 +
2

3
𝐤 , 𝑓𝑥 = −𝑦 sin 𝑥𝑦 +

1

𝑥
   ⇒   𝑓𝑥 (1, 0,

1

2
) = 1; 

𝑓𝑦 = −𝑥 sin 𝑥𝑦 + 𝑧𝑒
𝑦𝑧    ⇒   𝑓𝑦 (1, 0,

1

2
) =

1

2
; 𝑓𝑧 = 𝑦𝑒

𝑦𝑧 +
1

𝑧
   ⇒   𝑓𝑧 (1, 0,

1

2
) = 2 , 

∇𝑓 = 𝐢 +
1

2
𝐣 + 2𝐤 , (𝐷𝐮𝑓)𝑃𝑜 = ∇𝑓 ∙ 𝐮 =

1

3
+
1

3
+
4

3
= 2 . 

−1 

1 (−1, 0) 

∇𝑓 = 2𝐢 + 𝐣 

𝑥 

𝑦 

𝑦 − 𝑥2 = −1 
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Prob4: Find the direction in which the function increases and decreases most rapidly at 𝑃𝑜. 

Then find the derivative of the function in these directions 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2, 𝑃𝑜(−1, 1) . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  ∇𝑓 = (2𝑥 + 𝑦)𝐢 + (𝑥 + 2𝑦)𝐣  ⇒  ∇𝑓(−1, 1) = −1𝐢 + 𝐣  ⇒   𝐮 =
∇𝑓

ȁ∇𝑓ȁ
=

−1𝐢 + 𝐣

√(−1)2 + 12
 

𝐮 = −
1

√2
𝐢 +

1

√2
𝐣 ;   𝑓 increases most rapidly in the direction of 𝐮 = −

1

√2
𝐢 +

1

√2
𝐣  

and decreases most rapidly in the direction of − 𝐮 =
1

√2
𝐢 −

1

√2
𝐣 . 

(𝐷𝐮𝑓)𝑃𝑜 = ȁ∇𝑓ȁ = √2    and    (𝐷−𝐮𝑓)𝑃𝑜 = −ȁ∇𝑓ȁ = −√2 . 

Prob5: Sketch the curve 𝑓(𝑥, 𝑦) = 𝑐 together with ∇𝑓 and the tangent line at the given point. 

Then write an equation for the tangent line 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 = 4, (√2, √2) . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  ∇𝑓 = 2𝑥𝐢 + 2𝑦𝐣   ⇒   ∇𝑓(√2, √2) = 2√2𝐢 + 2√2𝐣 

Tangent line: 2√2(𝑥 − √2) + 2√2(𝑦 − √2) = 0, 

√2𝑥 + √2𝑦 = 4 . 

3.6  Tangent Planes 

Prob1: Find equations for the tangent plane and normal line at the point 𝑃𝑜 on the given 

surface 2𝑧 − 𝑥2 = 0,   𝑃𝑜(2, 0, 2). 

Solution: ∇𝑓 = −2𝑥𝐢 + 2𝐤   ⇒   ∇𝑓(2, 0, 2) = −4𝐢 + 2𝐤 , 

Tangent plane: −4(𝑥 − 2) + 2(𝑧 − 2) = 0   ⇒  −4𝑥 + 2𝑧 + 4 = 0   ⇒  −2𝑥 + 𝑧 + 2 = 0; 

Normal line: 𝑥 = 2 − 4𝑡,   𝑦 = 0,   𝑧 = 2 + 2𝑡 . 

Prob2: Find an equation for the plane that is tangent to the given surface at the given point 

𝑧 = 4𝑥2 + 𝑦2, (1, 1, 5). 

Solution: 𝑧 = 𝑓(𝑥, 𝑦) = 4𝑥2 + 𝑦2    ⇒   𝑓𝑥 = 8𝑥   ⇒   𝑓𝑥(1, 1) = 8, 𝑓𝑦 = 2𝑦   ⇒   𝑓𝑦(1, 1) = 2 

Tangent plane: 8(𝑥 − 1) + 2(𝑦 − 1) − (𝑧 − 5) = 0   ⇒     8𝑥 + 2𝑦 − 𝑧 = 5. 

2 

2 

(√2, √2) 

∇𝑓 = 2√2𝐢 + 2√2𝐣 

𝑥 

𝑦 

𝑥2 + 𝑦2 = 4 
𝑦 = −𝑥 + 2√2 
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Prob3: Find parametric equation for the line tangent to the curve of intersection of the 

surfaces at the given point 

Surfaces: 𝑥 + 𝑦2 + 2𝑧 = 4, 𝑥 = 1. Point: (1, 1, 1). 

Solution: ∇𝑓 = 𝐢 + 2𝑦𝐣 + 2𝐤   ⇒   ∇𝑓(1, 1, 1) = 𝐢 + 2𝐣 + 2𝐤 and ∇𝑔 = 𝐢 ; 𝐯 = ∇𝑓 × ∇𝑔 

𝐯 = |
𝐢 𝐣 𝐤
1 2 2
1 0 0

| = 2𝐣 − 2𝐤   ⇒   Tangent line: 𝑥 = 1, 𝑦 = 1 + 2𝑡, 𝑧 = 1 − 2𝑡 . 

3.7  Extreme Values and Saddle Points 

Prob1: Find the local maxima, local minima, and saddle points of the function 

𝑓(𝑥, 𝑦) =
1

𝑥
+ 𝑥𝑦 +

1

𝑦
 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧:  𝑓𝑥 = −
1

𝑥2
+ 𝑦 = 0 and 𝑓𝑦 = 𝑥 −

1

𝑦2
= 0   ⇒    𝑥 = 1   and   𝑦 = 1, 

the critical point is (1, 1); 𝑓𝑥𝑥 =
2

𝑥3
 , 𝑓𝑦𝑦 =

2

𝑦3
 , 𝑓𝑥𝑦 = 1; 𝑓𝑥𝑥(1, 1) = 2, 𝑓𝑦𝑦(1, 1) = 2, 𝑓𝑥𝑦 = 1; 

𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2 = 3 > 0   and   𝑓𝑥𝑥 = 2 > 0   ⇒   local minimum of 𝑓(1, 1) = 3 . 

 

 

 

 


