Calculus Ill, Year 2
Dr. Abdullah Al-Ani
2020-2021

University of Anbar
College of Engineering
Electrical Engineering Dept.

Chapter Four: Multiple Integrals

In this chapter we consider the integral of a function of two variables f(x,y) over a region in

the plane and the integral of a function of three variables f(x, y, z) over a region in space.

4.1 Double Integrals

Double Integral Over Rectangular Regions (First Form — Fubini’s Theorem): If f(x,y)

is continuous throughout the rectangular region R:a < x < b, c <y <d, then

d b b d
[[rawas=|[ranaray = [ rwyayar.
R c a a ¢
Fubini’'s Theorem says that double integrals over rectangles can be calculated as iterated
integrals. Thus, we can evaluate a double integral by integrating with respect to one variable

at a time.

Calculating Double Integrals: Suppose that we wish to calculate the volume under the

plane z = 4 — x — y over the rectangular region R:0 < x <2, 0 <y <1 in the xy-plane. If

we apply the method of slicing, with slices perpendicular to the x-axis (Figure 4.1), then the

z

volume is

xX=2

f A(x) dx,

x=0 z=4—-x—y

where A(x) is the cross-sectional area at x. For each

value of x, we may calculate A(x) as the integral

y=1
Ax) = j (4-x—y)dy,
y=0

which is the area under the curve 4 — x — y in the plane 2 \

. . . y =1
of the cross-section at x. In calculating A(x), x is held . A :f.:o @ —x—y)dy
fixed and the integration takes place with respect to y. Figure 4.1.

Combining Equations above, we see that the volume of
the entire solid is



University of Anbar
College of Engineering

Calculus Ill, Year 2
Dr. Abdullah Al-Ani

Electrical Engineering Dept. 2020-2021
x=2 x=2 )2 y=1
Volume = f A(x) dx = f Xy - dx
x=0 x=0 y=0 y=0

x=2

If we just wanted to write a formula for the volume, without carrying out any of the

integrations, we could write
21

Volume=ff(4—x—y)dydx.
00

The expression on the right, called an iterated or repeated integral, says that the volume is
obtained by integrating 4 — x — y with respect to y from y = 0 to y = 1 holding x fixed, and
then integrating the resulting expression in x with respect to x from x = 0 to x = 2. The limits
of integration 0 and 1 are associated with y, so they are placed on the integral closest to dy.
The other limits of integration, 0 and 2, are associated with the variable x, so they are placed

on the outside integral symbol that is paired with dx.

What would have happened if we had calculated the volume by slicing with planes

perpendicular to the y-axis (Figure 4.2)? As a function of y, the typical cross-sectional area

is
x=2 02 x=2
Aly) = f 4-—x—-y)dx = [4x———xyl
e 2 x=0 z=4—-—x—y
=6—2y.

The volume of the entire solid is therefore

y=1 y=1
volume = [ 4G dy= [ (6-2y)dy = [6y-y"1

y=0 y=0

T ¥

in agreement with our earlier calculation. \
= x=2
Again, we may give a formula for the volume as an  ~* A0) :L:O 4 —x—y)dx
iterated integral by writing Figure 4.2.
1 2

Volume=ff(4—x—y)dxdy.
00

2
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The expression on the right says we can find the volume by integrating 4 — x —y with
respect to x from x = 0 to x = 2 and integrating the result with respect to y from y =0 to
y = 1. In this iterated integral, the order of integration is first x and then y, the reverse of the

order in the previous case.

Fubini’s Theorem also says that we may calculate the double integral by integrating in either
order, as we see in Example 1. When we calculate a volume by slicing, we may use either

planes perpendicular to the x-axis or planes perpendicular to the y-axis.

Examplel: Calculate [f, f(x,y) dA for
f,y)=1-6x%y, R0<x<2 —-1<y<l1.

Solution: By Fubini’s Theorem,

1 2 1 1
f fy) dA = f f (1 - 6x2y) dx dy = f [x — 223y dy = f (2 - 16y) dy
R 10 1 1

=[2y — 8y?]L, = 4.

Reversing the order of integration gives the same answer:

2 1 2 2 2

| Ja-ewndyar=[ly-3x2y B dx = 10 =369 = (-1-36) da = [ 24

0 -1 0 0 0
=4,

Double Integrals over Bounded Nonrectangular Regions (Stronger Form — Fubini’s

Theorem): Let f(x,y) be continuous on a region R.

1. If Risdefinedbya <x <b,g,(x) <y < g,(x), with g; and g, continuous on [a, b], then

b g2(x)
]f(x,y)dA=J f f(x,v) dy dx.
R a gi1(x)

2. 1f Risdefined by c <y < d,h(y) < x < h,(y), with h; and h, continuous on [c, d], then

d h2(y)
[[ranaa=[ | reyaxay
R c hi(y)

3
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Example2: Find the volume of the prism whose base is the triangle in the xy-plane bounded

by the x-axis and the lines y = x and y = 1 and whose top lies in the plane

z=fxy)=3-x-y.

Solution: See Figure 4.3. For any x between 0 and 1, y may vary fromy = 0 to y = x (Figure
4.3b). .

H y x=1
ence,
0,03 [y
|
|
|
| z :f(xay) y=x
B~ =3-x-y AN
|
|
|
} R
|
> X
(1,0,2) Y 0 =0 1

N _x=1
R
0 1 T
() . ()
Figure 4.3.
1 1 - 1 -
V—ffx(3 )dd—f3 s —fs 37N e = [P )
= x—y)dydx = y =Xy =5 X = X == x == 5
00 0 y=0 0 *=0
V=1

When the order of integration is reversed (Figure 4.3c), the integral for the volume is

=1

11 1 X2 x 1 y2
V=jj(B—x—y)dxdy=f[3x—7—xyl dy=J<3—§—y—3}’+7+y2>dy
0y 0 x=y 0
1 —_
5 3 5 el .
:f(§_4y+5y2) dy = Ey—2yz+7 =1. The two integrals are equal.
0 y=0

4
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Example3: Calculate

sinx
dA,
b
R

where R is the triangle in the xy-plane bounded by the x-axis, the line y = x, and the line

x = 1.

Solution: The region of integration is shown in Figure 4.4. If we integrate first with respect

to y and then with respect to x, we find Y r=1

1/ x 1 y 1 %21‘
sinx sin x1”~ _ 1

.f dy dx—f y— dxzfsmx dx

0 ¥ ly=o 0

0

=—cos(1)+1 = 0.46. R
> X
If we reverse the order of integration and attempt to calculate 0 I
L Figure 4.4.
sinx
f f dx dy, we run into a problem.
0y

Finding Limits of Integration: We now give a procedure for finding limits of integration that
applies for many regions in the plane. Regions that are more complicated, and for which this
procedure fails, can often be split up into pieces on which the procedure works.

When faced with evaluating integrating [f. f(x,y) dA, first with respect to y and then with

respect to x, do the following:

1. Sketch: Sketch the region of integration and label the bounding curves.
y

1 x2+y3=1
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2. Find the y-limits of integration: Imagine a vertical line L cutting through R in the direction
of increasing y. Mark the y-values where L enters and leaves. These are the y-limits of
integration and are usually functions of x (instead of constants).

%,,

h

Leaves at
/y =V1-x?

|
? Enters at
y=1-x

L

0 by 1

3. Find the x-limits of integration: Choose x-limits that include all the vertical lines through

i i Y Leaves at
R. The integral shown here is y eaves a
yv=VI-— x2
1
x=1y=V1-x? Y Enters at
ff(x’y)dA= J f f(x,y) dy dx. y=1l-x
R x=0 y=1-x I
X
0 X 1
/
To evaluate the same double integral as an iterated integral Smallest x Largest x
isx=0 isx=1

with the order of integration reversed, use horizontal lines

instead of vertical lines in Steps 2 and 3. The integral is

Largest y Y
is yg: 1J I Enters at
~o 1 x=1—-y
1-y2

ﬂf(x,y) dA =J J f(x,y)dxdy.

R 0 1-y y \ .
Smallest y eaves at
isy=0 x=V1-,?

\“ .
Example4: Sketch the region of integration for 0 ] x
the integral
2 2x
J j(4x+2) dy dx
0 x2

and write an equivalent integral with the order of integration reversed.

6
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v /
Solution: The region of y

integration is given by the 4r (2, 4) 4
inequalities x* <y < 2x
and 0<x<2. It is

therefore the region y=x

bounded by the curves
y=x? and y=2x

between x = 0 and x = 2

(Figure 4.5a). 0 é D '2 > X

, - (a) (b)
To find limits for Figure 4.5.
integrating in the reverse

order, we imagine a horizontal line passing from left to right through the region. It enters at
x =y/2 and leaves at x = \/y. To include all such lines, we let y run fromy =0 to y = 4

(Figure 4.5b). The integral is
4 VY

f f(4x+2)dxdy.
0 y/2

The common value of these integrals is 8.

Properties of Double Integrals: Like single integrals, double integrals of continuous

functions have algebraic properties that are useful in computations and applications.
If f(x,y) and g(x,y) are continuous, then

1. Constant Multiple.‘f/cf(x,y) d4 = c[/f(x,y) dA  (any number ¢)
R R

2.  Sum and Difference:

(HWwHﬂmWMiﬂwwMiﬂgwm4
R R R

3. Domination:

(a) /]f(x,y) d4 =0 if f(x,y) = 0onR
R

(Wﬂmwm;ﬂmwm i f(ny) = gl,) on R
R R

7
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& Additvity: f/ Fx, ) dd = f[ Fxy) dA + f[ fx,y) dd
R R, Ry

if R is the union of two nonoverlapping regions R; and R,.

4.2 Area

In this section, we show how to use double integrals to calculate the areas of bounded

regions in the plane.

Areas of Bounded Regions in the Plane: The area of a closed, bounded plane region R

= [fan

Examplel: Find the area of the region R bounded by y = x and y = x? in the first quadrant.

is

Solution: We sketch the region (Figure 4.6), noting where Y

the two curves intersect, and calculate the area as

1 x 1 1 1
x?  x3
a=[ [avar= [piar= [a-sa=[5-5
0 x? 0 0 0 y
A—l
6
I X
0 1
Figure 4.6.

Example2: Find the area of the region R enclosed by the

parabola y = x2 and the line y = x + 2.

Solution: If we divide R into the regions R; and R, shown in Figure 4.7a, we may calculate

the area as
1 VY 4 VY
A=ffdA+ffdA=f fdxdy+f dx dy .
R, R, 0 —/y 1 y-2

On the other hand, reversing the order of integration (Figure 4.7b) gives

2 x+2

a= [ [ avas

-1 x2

8
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-1, 1) " -1, 1)
| LS
0 ) 0
@) Figure 4.7. (b)

This second result, which requires only one integral, is simpler. The area is

2 2 , 2 .
x x
A= f[y]x'z”dx= f(X+2—x2)dx= toax—=| =2,
* 2 3], 2
_1 —

-1

4.3 Double Integrals in Polar Form

Integrals are sometimes easier to evaluate if we change to polar coordinates. This section
shows how to accomplish the change and how to evaluate integrals over regions whose

boundaries are given by polar equations.

Integrals in Polar Coordinates: Suppose that a function f(r, 8) is defined over a region R

that is bounded by the rays 8 = @ and 6 =  and by the continuous curves r = g,(6) and
r = g,(0).

0= r=g,(6)
J f(r,0)dA = J J f(r,0)rdrdé.
R O=a r=g1(6)

Finding Limits of Integration: The procedure for finding limits of integration in rectangular

coordinates also works for polar coordinates. To evaluate [f, f(r,8) dA over a region R in

polar coordinates, integrating first with respect to r and then with respect to 8 take the

following steps.
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1. Sketch: Sketch the region and label the bounding curves. ¥
2 2+ y2 =4
NG L
2 y = V2 (\/i \6)

0
2. Find the r-limits of integration: Imagine a ray L from the origin cutting through R in the
direction of increasing r. Mark the r-values where L enters and leaves R. These are the r-
limits of integration. They usually depend on the angle 6 that L makes with the positive x-

axis.

Leavesatr = 2

L
Sy

R
1'sin6:y:\/§ \

or
r=\V2csch Enters at 7 = V2 csc 0

A

0
3. Find the @-limits of integration: Find the smallest and largest 6-values that bound R.

These are the 6-limits of integration.
y

A

- Largest 6 is 72—T

L
2’ //y:x
V2

7/
4 Smallest 0 is Z—T

N

> X

The integral is

6=7T/2 r=2

f f(r,0) rdrdb.

0=m/4 r=+2csc@

10
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Examplel: Find the limits of integration for integrating f(r,8) over the region R that lies

inside the cardioid r = 1 + cos @ and outside the circle r = 1.

Solution:
1. We first sketch the region and label the bounding curves (Figure 4.8).
),:
2. Next we find the r-limits of integration. A typical ray =75 r =1+ cos 0
from the origin enters R where r = 1 and leaves where
r =1+ cosé.
N - 2 .,
3. Finally we find the 6-limits of integration. The rays /
from the origin that intersect R run from 6 = —m/2 to
0 = /2. The integral is 7 L
g=-T Enters Leaves at
9=TL’/2 1+cos @ 2 at r=1 + cos 9
=1
F(r,0)rdrdo. !
Figure 4.8.

6=—m/2 1

If £(r,8) is the constant function whose value is 1, then the integral of f over R is the area

of R.

Area in Polar Coordinates: The area of a closed and bounded region R in the polar

=ffrdrd9.
R

Example2: Find the area enclosed by the lemniscate 72 = 4 cos 20 .

coordinate plane is

Solution: We graph the lemniscate to determine the limits of integration (Figure 4.9) and
see from the symmetry of the region that the total area is 4 times the first-quadrant portion.

¥y Leaves at

= V4 cos 26
9 E
5

/

Enters at N r2 =4 cos 26
=20

>

/4 V4 cos 20 /4 lr_m

s=ef [ rara=af [

/4
=4j 2cos260 df = 4sin260]7* = 4.
0

Figure 4.9.

11
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Changing Cartesian Integrals into Polar Integrals: The procedure for changing a

Cartesian integral || fR f(x,y) dx dy into a polar integral has two steps. Firstly, substitute

x =rcosf and y =rsin@, and replace dx dy by r dr df in the Cartesian integral. Then

supply polar limits of integration for the boundary of R. The Cartesian integral then becomes

lff(x'y) dxdy:lff(rcos@,rsin@)rdrde,

where G denotes the region of integration in polar coordinates.

Example3: Find the polar moment of inertia about the origin of a thin plate bounded by the

quarter circle x? + y2 = 1 in the first quadrant.

Solution: We sketch the plate to determine the limits of integration (Figure 4.10). In
Cartesian coordinates, the polar moment is the value of the integral
1V1—x2 \
g="
f f (x?2 +y?) dydx. =2
0 0]

Integration with respect to y gives

1 3
1—x%)2
f xlel—x2+(T) dx, 9—0
0 0 1
an integral difficult to evaluate without tables. Figure 4.10.

It will be much easier if we change the original integral to polar coordinates. Substituting
x =rcosf,y =rsinf and replacing dx dy by r dr d6, we get
Vi—x2 T/2 1 1 /2

Ojoj (x? +y2)dydx—]j(r2)rdrd9—J l4lr d9=ojid9=g.

Example4: Evaluate

24,2 y=VI - x?
ffex " dy dx, 1 R
B /
where R is the semi-circular region bounded by the x-
0= =20
axis and the curve y = V1 — x? (Figure 4.11). . G X

Figure 4.11.

12
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Solution: In Cartesian coordinates, the integral in question is a nonelementary integral and

there is no direct way to integrate e**+¥* with respect to either x or y. Yet this integral and
others like it are important in mathematics—in statistics, for example—and we need to find
a way to evaluate it. Polar coordinates save the day. Substituting x = r cos 6,y = rsin8 and

replacing dy dx by r dr df enables us to evaluate the integral as

T 1 T 1 1 ”1
Uex2+y2 dydx=ffer2rdrd0=f[zer2] d9=fz(€—1)d9=g(e—1)-
R 00 0 0 0

4.4 Triple Integrals in Rectangular Coordinates

We use triple integrals to calculate the volumes of three-dimensional shapes.

Triple Integrals: If F(x,y, z) is a function defined on a closed bounded region D in space,
such as the region occupied by a solid ball, then the integral of F over D may be defined in

the following way.

jﬂF(x,y,z) dV=fﬂF(x,y,z) dx dy dz .

Volume of a Region in Space: If F is the constant function whose value is 1, then the

volume of a close, bonded region D in space is

V=j! av .

Finding Limits of Integration: We evaluate a triple integral by applying a three-dimensional
version of Fubini’s Theorem (Section 4.1) to evaluate it by three repeated single integrations.
As with double integrals, there is a geometric procedure for finding the limits of integration

for these single integrals.

To evaluate

Uj F(x,y,z)dV

over a region D, integrate first with respect to z, then with respect to y, finally with x.

13
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1. Sketch: Sketch the region D along with its “shadow” R (vertical projection) in the xy-plane.
Label the upper and lower bounding surfaces of D and the upper and lower bounding curves
of R.

—_—> N

z=folxy)

e

R y=g(x)

2. Find the z-limits of integration: Draw a line M passing through a typical point (x,y) in
R parallel to the z-axis. As z increases, M enters D at z = f;(x,y) and leaves at z = f,(x, y).

These are the z-limits of integration.

— N

M Leaves at
~ 2~ S, »)
D
— _—Enters at
z = fi(x, )
\\‘\»y
y= gl(x\) —
x Yy =gx)

R @

3. Find the y-limits of integration: Draw a line L through (x,y) parallel to the y-axis. As
yincreases, L enters R at y = g,(x) and leaves at y = g,(x). These are the y-limits of

integration.

14
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Leaves at
¥ =gsx)

4. Find the x-limits of integration: Choose x-limits that include all lines through R parallel
to the y-axis (x = a and x = b in the preceding figure). These are the x-limits of integration.

The integral is

x=b ¥=92(x) z=f2(x,y)
f f j F(x,y,z)dzdy dx .

x=a y=g1(x) z=f1(x,y)
Follow similar procedures if you change the order of integration. The “shadow” of region D
lies in the plane of the last two variables with respect to which the iterated integration takes

place.

Examplel: Find the volume of the region D enclosed by the surfaces z = x? + 3y? and

z=8-—x?—y2

Solution: The volume is

szf dz dy dx,
D

To find the limits of integration for evaluating the integral, we first sketch the region. The
surfaces (Figure 4.12) intersect on the elliptical cylinder x2? +3y?=8—x2—vy?% or
x% + 2y%? = 4,z > 0. The boundary of the region R, the projection of D onto the xy-plane, is

an ellipse with the same equation: x? + 2y? = 4. The “upper” boundary of R is the curve

y = /(4 —x?)/2. The lower boundary is the curve y = —/(4 — x2)/2.

15
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Now we find the z-limits of Mtz
. . . . Leaves at
integration. The line M passing ro 8 x?_y
z = 8—x —}’2

through a typical point (x,y) in
R parallel to the z-axis enters D
at z =x%+ 3y? and leaves at

z=8-—x%—1y2%

Next we find the y-limits of
integration. The line L through

(x,y) parallel to the y-axis

enters R at y = — /(4 —x2)/2
(4 —x?)/2.

and leaves aty =

Finally we find the x-limits of

integration. As L sweeps

across R, the value of x varies

y==-V@&-x»)2

(2,0,4)
Enters at
z=x%+ 3?

Enters at

(2,0,0)

Leaves at

=V@-x%)/2
Figure 4.12.

fromx = -2 at (—2,0,0) tox = 2 at (2,0,0). The volume of D is

2 V(@—x2)/2 8—x2-y? 2

o~ ffawe-] |

-2 _[(4—x2)/2 x?+3y?

y=
(8 - 2x7)y - —y |
y=

2T 3
84—x22 8
2 3

4 — x?
2

=V (4-x%)/2

- (4-x2)/2

3
2
) dx =

(4-x?)/2

P

The curve of intersection

~2,0,4)

z=x2+3y?

(2,0,0)

x2+2y2=4

j dz dy dx = j J (8 —2x? —4y?) dy dx

-2 - [(a-x?)/2
2

dx=J 2(8 — 2x?)

4 — x2
2

8

3

2
42
— j(4 —x2)3/2 dx = 8nV/2.
22

After
integration with
the substitution

x = 2sinu.

Example2: Each of the following integrals gives the volume of the solid shown in Figure

4.13.

1 l—z 2
(a) / / / dx dy dz
0 Jo 0
1 2 pl—:z
() [ f f dy dx dz
0 .Jo Jo
1 2 rl—y
(e) / / f dz dx dy
o Jo Jo

1 1=y f2
(b) [ / / dx dz dy
0 .Jo 0
2 rl pfl—z
(d) / / f dy dz dx
0.Jo Jo
2 1 rl—y
§3) ] f / dz dy dx
0o Jo Jo
16
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We work out the integrals in parts (b) and (c):

-y 11-y

11 2 1
V=ff fdxdzdy=ff 2dzdy=f221ydy
00 0 00 0

- f 2(1 - y)dy = [2y —y*I} = 1.
0

Also,

-z 1 2

dydxdz=ff(1—z)dxdz

00

4

O\”“

/|

[x — xz]3dz = f(Z —2z)dz =[2z - z%]} = 1.

I
o\n—k

The integrals in parts (a), (d), (e), and (f) also give IV = 1.

Figure 4.13.

Properties of Triple integrals: If F = F(x,y,z) and G = G(x,y, z) are continuous, then

1. Constant Multiple: /// kF dV = k/ﬂFdV (any number k)
2. Sum and Difference: /]/F + G)dV = /I/FdV:i: /]]GdV

3. Domination:

(a)/[/FdVEO ifF=0onD
D
(b)/]deVE[[/GdV ifF=GonD
D D
4. Addiﬁvity."[//FdV— jﬂEdV—f— /]/FdV
D D D

if D is the union of two nonoverlapping regions and D; and D,.

4.5 Triple Integrals in Cylindrical and Spherical Coordinates

When a calculation in physics, engineering, or geometry involves a cylinder, cone, or sphere,

we can often simplify our work by using cylindrical or spherical coordinates, which are

introduced in this section. The procedure for transforming to these coordinates and

17
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evaluating the resulting triple integrals is similar to the transformation to polar coordinates in
the plane studied in Section 4.3.

Integration in Cylindrical Coordinates: We obtain cylindrical coordinates for space by
combining polar coordinates in the xy-plane with §
the usual z-axis. This assigns to every point in P(r,“e,z)
space one or more coordinate triples of the form

(r,8,z) as shown in Figure 4.14.

Cylindrical Coordinates: Cylindrical coordinates
represent a point P in space by ordered triples
(r, 8, z) in which

Figure 4.14.

1. r and @ are polar coordinates for the vertical

projection of P on the xy-plane
2. z is the rectangular vertical coordinate.

The values of x, y,r, and 6 in rectangular and cylindrical coordinates are related by the usual

equations.

Equations Relating Rectangular (x,y,z) and Cylindrical Coordinates:

X =rcosé, y =rsiné, z =2z, % =x% +y?, tan@zz
X

N

In cylindrical coordinates, the equation r = a

9 = 60,

describes not just a circle in the xy-plane but -
whereas  and z vary

an entire cylinder about the z-axis (Figure

Z= 2o
whereas 7 and 0 vary

|

4.15). The z-axis is given by r=0. The 4
equation 8 = 6, describes the plane that & '
0

contains the z-axis and makes an angle 6,

with the positive x-axis. And, just as in
. . a4 N—

rectangular coordinates, the equation z = z, 6 '\

describes a plane perpendicular to the z- |

axis. ‘

r=a,
whereas 6 and z vary

Cylindrical coordinates are good for

describing cylinders whose axes run along Figure 4.15.
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the z-axis and planes that either contain the z-axis or lie perpendicular to the z-axis. Surfaces

like these have equations of constant coordinate value:

r Cylinder, radius 4, axis the z-axis

4.

Vs .. .
0= 3 Plane containing the z-axis

2.

z Plane perpendicular to the z-axis

The triple integral of a function f over D is

ff de=ff fdzrdrdf.

Triple integrals in cylindrical coordinates are then evaluated as iterated integrals, as in the

following example.

Examplel: Find the limits of integration in cylindrical coordinates for integrating a function
f(r,0,z) over the region D bounded below by the plane z = 0, laterally by the circular

cylinder x2 + (y — 1)2 = 1, and above by the paraboloid z = x? + y?2.

Solution: The base of D is also the region’s projection R on the xy-plane. The boundary of

R is the circle x? + (y — 1)? = 1. Its polar coordinate equation is

X2+ @-Di=1=x*+y*-2y+1=1 Top o
Cartesian: z = x* + y~
Cylindrical: z = 2
r2—2rsin@=0 = r =2siné.

The region is sketched in Figure 4.16.

M D
We find the limits of integration, starting with the z-
limits. A line M through a typical point (r,6) in R
parallel to the z-axis enters D at z = 0 and leaves at
-
z=x%+y%2=r2 *0/ ,‘2
\
R / (. 0) > L
Next, we find the r-limits of integration. A ray L oL R
Cartesian: x“ + (y — 1)* =
through (r,0) from the origin enters R at r =0 and *  Polar:  r=2sinf
leaves at r = 2sin 6. Figure 4.16.

Finally, we find the 6-limits of integration. As L sweeps across R, the angle 6 it makes with
the positive x-axis runs from 8 = 0 to 6 = w. The integral is
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m2sin@ r2

fiﬂf(r'e'z)d":f f Off(r,e,z)dzrdrde.

0 o0

How to Integrate in Cylindrical Coordinates: To evaluate

.g f(r,6,z)dv

over a region D in space in cylindrical coordinates, integrating first with respect to z, then

with respect to r, and finally with respect to 8, take the following steps.

1. Sketch: Sketch the region D along with its projection R on the xy-plane. Label the

surfaces and curves that bound D and R.

z = gy(r, 0)

V4
D

) / Ty

r = h,(0)
2. Find the z-limits of integration: Draw a line M through a typical point (r, 8) of R parallel
to the z-axis. As z increases, M enters D at z = g,(r,0) and leaves at z = g,(r,0) These

are the z-limits of integration.

N

T M
~ Z= a,(r, 0)

N

D
r = hy(6) t _ =g, 0)
N AN

(r,0) e

:

/

= hy(6)
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3. Find the r-limits of integration: Draw a ray L through (r,8) from the origin. The ray

enters R at r = h,(6) and leaves at r = h,(6). These are the r-limits of integration.

4. Find the @-limits of integration: As L sweeps across R, the angle it makes with the
positive x-axis runs from 6 = a to 6 = . These are the 8-limits of integration. The integral
is

0= r=h,(0) z=g,(r,0)

_g f(r,6,z)dV = f f f f(r,0,z)dzr dr de.

6=a r=h.(0) z=g,(r,0)

Example2: Find limits of the integrations of the solid enclosed by the cylinder x% + y? = 4,

bounded above by the paraboloid z = x? + y?2, and bounded below by the xy-plane.

Solution: We sketch the solid, bounded above by the paraboloid z = r2 and below by the

plane z = 0 (Figure 4.17). Its base R is the disk 0 < r < 2 in the xy-plane.

To find the limits of integration, we continue with the four basic steps. We completed our

initial sketch. The remaining steps give the limits of integration.

The z-limits. A line M through a typical point (r,8) in the base parallel to the z-axis enters

the solid at z = 0 and leaves at z = r2.

The r-limits. A ray L through (r, 8) from the origin enters R at r = 0 and leaves at r = 2.
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2 .

The 6-limits. As L sweeps over the base like a z ;;7 M
clock hand, the angle 6 it makes with the positive /
x-axis runs from 8 = 0 to 6 = 2. 4l S

2w 2 r?

f ff f(r,0,z)dzr dr de.

0 00

Ccm. ¢
x24+y2=4

¥

- = A r =2

L
Figure 4.17.

Spherical Coordinates and Integration: Spherical coordinates locate points in space with

. . . Z
two angles and one distance, as shown in Figure

4.18. The first coordinate, p = |0P| is the point's Pp, b, 6)
b

distance from the origin. Unlike r, the variable p is

never negative. The second coordinate, ¢ is the

angle OP makes with the positive z-axis. It is
required to lie in the interval [0,7]. The third

coordinate is the angle 6 as measured in

cylindrical coordinates.

Figure 4.18.

Spherical Coordinates: Spherical coordinates

represents a point P in space by ordered triples in which

1. p is the distance from P to the origin.

2. ¢ is the angle OP makes with the positive z-axis (0 < ¢ < 7).

3. 8 is the angle from cylindrical coordinates.

The equation p = a describes the sphere of radius a centred at the origin (Figure 4.19). The
equation ¢ = ¢, describes a single cone whose vertex lies at the origin and whose axis lies
along the z-axis. (We broaden our interpretation to include the xy-plane as the cone ¢ =

n/2.) If ¢, is greater than /2 the cone ¢ = ¢, opens downward. The equation 8 = 6,
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describes the half-plane that contains the z-axisand 4 = ¢, whereas p

and 0 vary

makes an angle 6, with the positive x-axis. P(a, by, bp)

Equations Relating Spherical Coordinates to

Cartesian and Cylindrical Coordinates:
r=psin¢g, x=rcosf =psingcosb,

z=pcos¢p, y=rsinf =psingsinb,

p=+x2+y2+22=1/r2 422,

Example3: Find a spherical coordinate equation for p = a, whereas

and 6 vary
the sphere x2 + y? + (z — 1)? = 1. 6 = 6, whereas p
and ¢ vary
Solution: See Figure 4.20. Figure 4.19.

A

x2+y2+(z-1%*=1
24+ E=17%=1

p?sin? ¢ cos? B + p?sin? psin?O + (pcosgp —1)2 =1 p=2eoy
p?sin? ¢ (cos? 6 +sin? ) + p?cos?¢p —2pcosp+1 =1
1

2(cin? 2 —

p“(sin“ ¢ + cos“ ¢p) = 2pcos ¢
1

p? =2pcos¢ /‘ \y

— 2 B
p=2c059. Figure 4.20.

Example4: Find a spherical coordinate equation for the cone z = \/x? + y? (Figure 4.21).
Solution: z = \/x2 + y?
p cos ¢ =4/ p?sin? ¢

pcos¢p = psing

w
cos ¢ = sing ‘ 4

¢ =

N

Figure 4.21.
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Spherical coordinates are good for describing spheres centred at origin, half-planes hinged
along the z-axis, and cones whose vertices lie at the origin and whose axes lie along the z-

axis. Surfaces like these have equations of constant coordinate value:

p =4  Sphere, radius 4, centre at origin

s 7 Cone opening up from the origin, making an angle of /3 radians with positive
3 zaxis
0 7 Half-plane, hinged along the z-axis, making an angle of /3 radians with

3" positive x-axis

The triple integral of a function F over D is
||| Fo.g.00av = ||| F(o.0.6) 9% sing dp g ao.
D D

In spherical coordinates, we have
dV = p?sin¢ dp d¢ do.

To evaluate integrals in spherical coordinates, we usually integrate first with respect to p.
The procedure for finding the limits of integration is shown below. We restrict our attention
to integrating over domains that are solids of revolution about the z-axis (or portions thereof)

and for which the limits for 8 and ¢ are constant.

How to Integrate in Spherical Coordinates: To evaluate

fffF(p,d),H) dv
D

over a region D in space in spherical coordinates, integrating first with respect to p then with

respect to ¢ and finally with respect to 6 take the following steps.

1. Sketch: Sketch the region D along with its projection R on the xy-plane. Label the

surfaces that bound D.
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p =g, 0)

2. Find the p-limits of integration: Draw a ray M from the origin through D making an angle
¢ with the positive z-axis. Also draw the projection of M on the xy-plane (call the projection
L). The ray L makes an angle 6 with the positive x-axis. As p increases, M enters D at

p = g.(¢,0) and leaves at p = g,(¢, 8). These are the p-limits of integration.

\j'/’,/\p _ ol((;b’ 9)

R S g _
0=a 0 \J’H -F
X L
3. Find the ¢-limits of integration: For any given 6, the angle ¢ that M makes with the z-

axis runs from ¢ = ¢,in t0 ¢ = Pax- These are ¢-limits the of integration.

4. Find the @-limits of integration: The ray L sweeps over R as 6 runs from « to . These
are the 6-limits of integration. The integral is
0= ¢max P=92(4.,0)

ﬂ f(p,¢.9)dV=f f f f(p, $,0) p?sing dp d¢o de.

0=a ¢min pP=91(¢.,0)
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Example5: Find the volume of the “ice cream cone” D cut from the solid sphere p < 1 by
the cone ¢ = /3. z

M

Solution: The volume is [ff, p?sing dp d¢ db, the 5 Sphere p = 1

integral of f(p, ¢$,0) = 1 over D.

To find the limits of integration for evaluating the

integral, we begin by sketching D and its projection R

on the xy-plane (Figure 4.22). ﬁ

The p-limits of integration. We draw a ray M from the \ :
origin through D making an angle ¢ with the positive Figure 4.22.

z-axis. We also draw L, the projection of M on the xy-plane, along with the angle 0 that L

makes with the positive x-axis. Ray M enters D at p = 0 and leaves at p = 1.

The ¢-limits of integration. The cone ¢ = /3 makes an angle of m/3 with the positive z-

axis. For any given 6, the angle ¢ can run from ¢ = 0to¢ = n/3.

The 6-limits of integration. The ray L sweeps over R as 6 runs from 0 to 2. The volume is

2n /3 1 2n /3

371
Vz.’:ﬂpzsind)dpdgde:ff fpzsinq.’)dpdqbdé':ff l%l sin¢g d¢ do
D 0 0 0 ) 0
2 /3 21 3 21
_le- dd@—j[l ]n/de—j( 1+1)d9—1(2)—"
= 3sm<1> ¢ do = 3cosqbo = 13 =7 T =3
0 0 0 0
Coordinate Conversion Formulas:
CYLINDRICAL TO SPHERICAL TO SPHERICAL TO
RECTANGULAR RECTANGULAR CYLINDRICAL
x = rcosb X = psin¢cosd ¥ = psing
y = rsinf y = psin¢sinf zZ = pcosd¢

z =z z = pcosd¢ 0=20
Corresponding formulas for dV in triple integrals:
dV = dxdydz
= dzrdrdf
= p’sin¢ dp d db
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Solved Problems:
4.1 Double Integrals
Prob1: Sketch the region of integration and evaluate the integral
T sinx
f f y dy dx.
T sinx 2 sinx 71'1
Solution: J.f ydydx—f =f§ sin? x dx VA
0
ZZ.l-(l—COSZX)dx y =sinx
3 1[ 1 ) ]” m
= 2 X 2SlIl X . = 4-- —
T X

Prob2: Integrate f over the given region. f(x,y) = x/y over the region in the first quadrant
bounded by the linesy = x,y = 2x,x = 1,x = 2.
2 2x 2
Solution: fj — dydx = f[x Iny]?*dx = (In2) f x dx = %mz
1
Prob3: Sketch the region of integration and write an equivalent double integral with the order
of integration reversed
2
f f 6x dy dx .
0 —\a_x2
2V4-y?
Solution: J J 6x dx dy .
0

Prob4: Sketch the region of integration, reverse the order of integration, and evaluate the

integral

3 1
f f e3’3dydx.
0

Vx/3
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3 13y? V4
Solution: f f eV’ dy dx = ff eV’ dx dy
0
) ) (3,1)
_ 2_y3 _ y3 1 — X
f3ye dy = [e ]0 e — 1. 72 3y oryz\/:
0 3
0 X

Prob5: Find the volume of the region bounded by the paraboloid z = x? + y? and below by

the triangle enclosed by lines y = x,x = 0, and x + y = 2 in the xy-plane.

X

12— 2—x
. y? (2 - x)
Solution: V = ff (x% +y?) dy dx —f x y+ dx —f 2x?
0 x x
Cex® 7t (2—x)41_(2 7 1) (0 . 16)_4
3 12 12 O_ 3 12 12 12/ 3°
4.2 Area

Prob1: Sketch the region bounded by the given lines and curves. Then express the region’s
area as an iterated double integral and evaluate the integral. The parabola x = y? — 1 and

x = 2y%—2.

1 y*-1 "1
Solution: j j dx dy
-1 2y2-2 x=2y%—2 1
Y

=f(y2—1—2y2+2)dy .

-1 -2 —1 0 xr

311 -1
y 4

= Ja-ma=p-5] =5

_ -1

Prob2: Sketch the region, label bounding curve with its equation, and give the coordinates

of the points where the curves intersect. Then find the area of the region.

2 y+2

[] v

-1 yZ
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Solution: yA
+2
¢ (4,2)
ff dxdy—f(y+2 y2) dy = l—+2y——l 11 x=y?
-1 y2
—(2+4+8> (1 2+1)—5 L2 0 x
- 3) 2 3)°°72° 72 @ -1)
—2Yy=x-2
/|

4.3 Double Integrals in Polar Form

Probl: Change the Cartesian integral into an equivalent polar integral. Then evaluate the

polar integral.

1 Vi1-x2 5
dy dx .
f f (1 4+ x2% +y?)2 yax
“1 _Vicxz
= m/2 1 /2
Solution: f .f (1+x2+y2)2 dy dx = f f(1+ r2)2 drdf =4 f [ 1+r] do

=1 1-x2

/2

=2f do =m.
0

Prob2: Find the area of the region cut from the first quadrant by the cardioid » = 1 + sin 6.

/2 1+sin 0 /2

Soluti ] ] d de—lj (3+2 ino C0529>d9—3”+1
olution: Trar —2 2 Sin 2 —8 .
0

4.4 Triple Integrals in Rectangular Coordinates

Prob1: Let D be the region bounded by the paraboloid z = x? + y? and the plane z = 2y.
Write triple iterated integrals in the order dz dx dy and dz dy dx that give the volume of D.

Solution: The projection of D onto the xy-plane has the boundary
X +y?=2y = *+@-1D*=1,

which is a circle. Therefore, the two integrals are:

V2y-y? 2y 1+V1i—x2 2y

2 1
f f dzdxdy and f f dz dy dx .
0 _/2y—yZ x2+y2 -1 1-V1—x2 x%+y?
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Prob2: Evaluate the integral

11-x2%4-
0 0
1-x2 4—x%-y 11-x?

1
Solution: f f f xdzdy dx = f f x(1—x%—y)dydx
0 O 0 0

—x%-y
f xdzdydx.
3

1

= fx[u—xZ)z —%(1—x2)] dx = f%x(l —x*)* dx
0

0

1
1
_ _ 233 —_
[ SR ]0 12°
Prob3: Write the integral as iterated integral in the order (a) dz dy dx (b) dx dz dy of the

region shown in Figure below. z
11-y Top: y+z=1
Solution: (a) f j] dz dy dx . Side: : ""/\
y x~ = \
-1x%2 0

11-y V¥
b dxdzdy.
][ [ axasay

0 0 —/y

Prob4: Find the volume of the region in the first octant bounded by the coordinate planes,
Z

the plane x + y = 4, and the cylinder y? + 4z2? = 16.
) /T\
Solution: \
=
L (V1672) 124y s (V16-72)/2 \/\V
[ [ews=] [ o |
0 0 0 /

4 4 4
J16 —y2 1
=fT(4—y)dy=f2 16—y2dy—§fy\/16—y2dy
0 0 0

4 1 4
= [J’ 16 —y2 + 16sin™! X] + [— (16 — y2)3/2]
al, T l6 i

= 16(%)—%(16)%=8n—%.
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Prob5: Evaluate the integral by changing the order of integration in an appropriate way

11 1
fflexzezyzdydxdz.
00

x2

vy

11 1 11
Solution: ff f12 xzezyzdydx dzszf
00 00O

x2

11
12 xze®’ dx dy dz = f J 6yzezy2dy dz
00

I[Bezy dZ—Bf(e —z)dz = 3[e? — 1]} =3e — 6.

4.5 Triple Integrals in Cylindrical and Spherical Coordinates

Prob1l: Evaluate the cylindrical coordinate integral
2w 1V2-12

1
fff dzrdr do .
0 0 r
2T 1V2-12 2T 1 3

Solution: fflf dzrdrd@—ff[r(Z—rz)Z—r]drdB jl——(Z—rz)Z—% de
o0 r

T 2 oo (21
_j 3 3 3
0

Prob2: Set up the iterated integral for evaluating [ff, f(r,6,2) dzr dr d6 over the given

region D. D is the right circular cylinder whose base is circle

r = 2sin @ in the xy-plane and whose top lies in the plane z = 4 — y. pmdoy
m2sinf 4-rsinf
Solution: f f f f(r,0,z)dzrdrdb.
0 0
Prob3: Evaluate the spherical coordinate integral ¥
momzen® x/ b= 2sin0

ffbf p?sing dp de db .

T m2sing T
ffsin“q.’) do do
00
T

Solution: ff f p?singdp de do =
00
=§Ofn I sin ¢COS¢l +§fsin2¢ do | de

w| o

4
0 0
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m T Y Vs
_ sin2¢1"
=2ffsm2¢d¢d9=f[¢— 5 ] d9=f7td9=n2.
00 0 0 0
Prob4: Find the spherical coordinate limits for the integral that z

calculates the volume of the given solid and then evaluate the

integral. The solid between the sphere p = cos ¢ and hemisphere

p=2,z=0.
2 /2 2

Solution: J. f f p?sing dp do do x
0 0 cos¢

2m /2

fj(S—cos $)sing dp do = = fl 8 cos ¢ + 14¢:/2d9=%j”<8_%>d0

Prob5: Find the volume of the portion of the solid sphere p < a that lies between the cones

¢ =mn/3 and ¢ = 2m/3.

2m 27/3 q 2m 27/3

Solution: V = fffp smqbdpdgbd@—f f —smqbdqbdé?——f C05¢7211/Ts{3d9

0 m/3 0 0 m/3

2T
_a3 (1+1> de_Zna3
3 22 T3

0

Prob6: Find the volume of the solid z

/2 1 4—472

1
Solution:V=4fff dzrdr do
0 0

rt-1

/2 1 /2

5 1
=4j j(Sr—4r3—r5)drd9=4f (E_l_g

0 0 0
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