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1. Definition of magnetic field 

We define the magnetic field B, in the following way, based on the observations 

 

( )q F v B  (1) 

 
Right-hand rule 

Use the right-hand rule to find the direction of F, as follows: Point your right fingers 

along v. Curl your fingers toward B. Your right thumb will point along F. 

 

A particle with a positive charge q moving with velocity v through a magnetic field B 

experiences a magnetic detecting force F. 

 

Eq.(1) serves as the definition of B. 

 

The direction of magnetic field: 
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Motion of electron (-e) and positron (+e). 

 

2. Unit of B 

 

F = qvB 

 

[N]=[C][m/s][B] 

 

or 
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Note that [A] = [C/s] 

 

1T = 104 gauss 

1 gauss = 1 Oe. 

 

((Nikola Tesla)) 

Nikola Tesla (Serbian Cyrillic: Никола Тесла) (10 July 1856 – 7 January 1943) was an 

inventor, physicist, mechanical engineer, and electrical engineer. Tesla is best known for 

his many revolutionary contributions to the discipline of electricity and magnetism in the 

late 19th and early 20th century. Tesla's patents and theoretical work formed the basis of 

modern alternating current electric power (AC) systems, including the polyphase power 

distribution systems and the AC motor, with which he helped usher in the Second Industrial 

Revolution. Contemporary biographers of Tesla have deemed him "the man who invented 

the twentieth century" and "the patron saint of modern electricity."  

 

The SI unit measuring the magnetic field B, the tesla, was named in his honour (at the 

Conférence Générale des Poids et Mesures, Paris, 1960). 

 



 
 

 

3. Typical values of B 

 

Surface of a neutron star 108 T 

Pulsed magnet 300 T (6 s) 

Hybrid magnet 30 – 45 T 

Superconducting magnet 5 – 20 T (steady magnetic field) 

Large electromagnet 2 T 

Small bar magnet 10-2 T = 100 Oe 

Binghamton, NY, U.S.A. 3x10-5 T = 0.3 Oe 

(Earth field) 

In a magnetically shielded room 10-14 T 

 

4. Circular motion in a uniform magnetic field 

4.1 Cyclotron frequency 

Suppose that a particle (mass m and charge q) moves perpendicular to a uniform 

magnetic field; F = qvB. This force will provide the centripetal force to make the particle 

move in a circle of radius, R. 
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The cyclotron radius R is given by 
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The period T is given by 
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The cyclotron frequency fc is obtained as 
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((Note)) c is independent of v, or the kinetic energy of the particle. 

 

4.2 Helical path 

A charged particle having a velocity vector with a component parallel to a uniform 

magnetic field moves in a helical path.  

The radius r  of the helical path is related to the velocity perpendicular to B as 
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The parallel component (v//) determines the pitch p of the helical path,  
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where T is the period of the helical motion, 
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Fig. helical path which is drawn using ParametricPlot of the Mathematica. The particle 

has both the velocity parallel to B and the velocity perpendicular to B. 

 

4.3 Mass spectrometer 

The mass spectrometer is an instrument which can measure the masses and relative 

concentrations of atoms and molecules. It makes use of the basic magnetic force on a 

moving charged particle. 

 
 

In this configuration, we have 
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with 



 

2r x . 

 

Then the mass m is derived as 
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B can be varied to cause different masses to hit the detector. 

 

4.4 Cyclotron 

 



 
 

A cyclotron is a device that can accelerate charged particles to very high speeds. The 

energetic particles produced are used to bombard atomic nuclei and thereby produce 

reactions. D1 and D2 are called dees because of their shape. A high frequency alternating 

potential is applied to the dees. A uniform magnetic field is perpendicular to them. A 

positive ion is released near the center and moves in a semicircular path. The potential 

difference is adjusted so that the polarity of the dees is reversed in the same time interval 

as the particle travels around one dee. This ensures the kinetic energy of the particle 

increases each trip. 

The cyclotron’s operation is based on the fact that T is independent of the speed of the 

particles and of the radius of their path. When the energy of the ions in a cyclotron exceeds 

about 20 MeV, relativistic effects come into play. 
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((Note)) Principle of cyclotron 

We start with the Newton’s second law for a circular motion of a particle with charge 

q and mass m in the presence of a constant magnetic field along the z axis, 
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The radius r is obtained as 
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The angular frequency is 
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which depends only on the magnetic field B. 

We consider that the particle had negligibly small (almost zero) kinetic energy at the 

beginning. The kinetic energy that the particle with the charge q gains energy 2qV, during 

the acceleration by the voltage of two Dees. The particle has to get through the two Dees, 

N times to reach the required kinetic energy K. 

 

(2 )K N qV  

 

In this case, the velocity of the particle will be 
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And the radius becomes 
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((Example)) 

 

For proton (q = e, m = 3.3435 x 10-27 kg), 

 

K = 16 MeV, B = 1.5 T,  R = 38.5 cm, and f = 22.87 MHz. 

 

K = 1 MeV, B = 1.0 T,  R = 14.45 cm, and f = 15.25 MHz. 

 

For electron (q = e, m = 9.10938 x 10-31 kg), K = 0.5 MeV, 
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 4.1938 x 108 m/s > c. 

 

See the Appendix for the relativistic case (synchrotron). 

 

5. Kinetic energy of electrons in the presence of fields 

5.1 E = 0 and B ≠ 0 



When a particle of charge q and mass m moves in a static magnetic field B, then its 

kinetic energy is constant in time. The proof is given as follows. From the work energy 

theorem, 

 

K W   F r  

 

or 
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where K is the kinetic energy, W is the work done, F is the force and defined by 

 

( )q F v B  

 

By the definition of a cross product, the vector (v x B) is at right angle to v. Then we have 
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or K is constant in time. In other words, the kinetic energy is conserved.  

 

((Note)) 

In the quantum mechanics, this is not true since the Hamiltonian is given by the 

Zeeman energy. This is related to the origin of magnetism, which arises from the 

quantum mechanics.  

 

5.2 E ≠ 0 and B ≠ 0 
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Then the kinetic energy changes with time in the presence of the electric field E. 

 

6. Motion in the presence of B and E which are perpendicular to each other 

 

6.1 General case 

 

( )q  F E v B   Lorentz force in the presence of both E and B 

 



 
 

The equation of motion for the particle with charge q and mass m, is given by 

 

( )m q q   F r r B Eɺɺ ɺ  

 

Here B = (B, 0, 0) and E = (0, 0, E). 
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where 
m

qB
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6.2 Drift velocity 

The particle moves in the y direction with a constant velocity (drift velocity). 
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When the force due to the electric field E is equal but opposite to the force due to the 

magnetic field B , the particle moves in a straight line; v = E/B. 

 

Velocity selector: 

Only those particles with the given speed (v = E/B) will pass through the two fields 

undeflected. The magnetic force exerted on particles moving at speed greater than this is 

stronger than the electric field and the particles will be deflected upward. Those moving 

more slowly will be deflected downward. 

 

6.3 Cycloid motion 

We use the following initial conditions at t = 0, 

 

0,0,0  zyx ɺɺɺ , 0,0,0  zyx  

 

Form the equation of motion, we have 

 

0xɺ . 

 

since 0xɺɺ . The time depenence of y and z can be solved by using Mathematica. It 

follows that the motion shows a cycloid motion. 
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((Mathematica)) 

 

 
 

7. Hall efect 

The standard geometry for the Hall effect, rod-shaped specimen of rectangular cross-

section is placed in a magnetic field B (//z). An electric field E (//x), applied across the end 

electrodes causes an electric current density Jx, to flow down the rod. The drift velocity, of 

the negatively charges electrons immediately after the electric field is applied. The 

deflection in the y direction is caused by the magnetic field. Electrons accumulate on one 

face of the rod and a positive ion excess is established on the opposite face until the 

transverse electric field (Hall field) just cancels the Lorentz force due to the magnetic field. 



 
 

 
 

 



Consider a rectangular rod carrying an electric current. The rod is immersed in a uniform 

magnetic field B perpendicular to the current. The magnetic force qvB diverts the moving 

charges within the rod to one side. Since the current is confined to the rod, the diverted 

charges built up at one side and are depleted from the other side until such charges produce 

a transverse electric force that exactly balances the magnetic force. If we let denote the 

corresponding electric field, in the direction perpendicular to the current, equilibrium 

implies 

 

qvBqEy   

 

If the width of the rod is d, the transverse electric field produces a potential difference 

between the sides of the rod known as the Hall voltage VH, where 
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The current density Jx is given by 
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The ratio Ey/Jx is expressed by 
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where A = td, and t is the thickness of the rod. Note that the Hall coefficient is defined by 
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which depend on the sign of charge (q = -e for the electron and q = +e for hole) and the 

carrier density n. 

 

((Wikipedia)) 

One very important feature of the Hall effect is that it differentiates between positive 

charges moving in one direction and negative charges moving in the opposite. The Hall 

effect offered the first real proof that electric currents in metals are carried by moving 

electrons, not by protons. The Hall effect also showed that in some substances (especially 

semiconductors), it is more appropriate to think of the current as positive "holes" moving 

rather than negative electrons. 



 

Quantum Hall effect 

Hall probe (magnetic field sensor) 

 

8. Current and current density 

 

dt

dQ
I   charge per unit time (C/s) 

 

Charge q 

Carrier density n 

In a time interval t, 

 

 
 

In a time interval t, the amount of charges passing through the area a, 

 

volume = tAv  

 

total charge = )( tAvqnQ   

 

The total current 
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The current density (or volume current density) is defined by 
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where  is the charge density. 

 

9 The magnetic force on a current 

 

q f v B   per particle 

 

n nq   F f v B  per unit volume 

 



where n is the carrier number per unit volume. Since nq  J v v , we have 

 

  F J B   per unit volume 

 

where  = nq is the volume charge density. The total force F is given by 

 
3 ( )d F r J B  

 

where 3d dVr  is the volume element.  

 

We now consider the system of cylinder with length dL and the circular area A. The 

volume d  is equal to 3d Adlr . 

 

( )( ) ( ) ( ) ( )d AdL dL A dL I d       F J B J B I B L B  

 

or 

 

( )d I d F L B  

 

since dL IdI L . The direction of I is the same as that of dL. This formula is basic for 

calculating the magnetic force on a wire that carriers a current. 

 

 
 

If the wire is straight and in a uniform field B, we have 

 

( )L F I B  

 

The magnitude of F is  

 

sinLIBF  . 

 



where q is the angle between vectors I and B. The direction of F is perpendicular to the 

plane made by vectors B and I, following the right-hand rule. 

 

 
 

((Note)) The method used by Walter Lewin 
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((Example)) 

A semi-circular loop of radius r carries current I. A uniform magnetic field B is present 

perpendicular to the plane of the circle. What is the force exerted on the wire? 

 
 

A circular loop of radius r wire carries constant current I. A uniform magnetic field B 

is applied into the page. We calculate the force applied on the current 

From the symmetry, the x component of the force is zero. The y component of the 

force is given by 
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where we consider the contribution of the force from the current elements ( –  + d) (in 

pair) in both sides symmetric with the y axis. 

 

10. Torque on a current loop in a uniform magnetic field 

10.1 Concept of the magnetic dipole moment (or magnetic moment) 

We consider a rectangular loop of wire which is carrying a current I in a 

counterclockwise. The magnetic field B lies in the plane of the loop. The length of the loop 

is b and its width is a. We now calculate the net force on the loop carrying the current due 

to the presence of B. 

 

(a) B //x 

 
 

 

No magnetic force acts on the sides 1 and 3 since the wires are parallel to B. Magnetic 

forces act on the sides 2 and 4; 

 

aIBFF  42  

 

since these sides are perpendicular to B. The direction of F2 is in the negative y axis, while 

the direction of F4 is in the positive y axis. Next figure shows the top view of the system. 

 



 
 

Fig. The direction of the torque vector is in the positive z direction (out of page). The 

current on the side 2 flows into the page, while the current on the side 4 flows out 

of page. 

 

The forces are equal and in opposite directions, but not along the same line of action. The 

forces produce a torque around the point O. The magnitude of the net torque is given by 
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The counter-clock wise direction of torque implies that the direction of the torque vector  
is along the positive z direction. 

Here we define the magnetic dipole moment (magnetic moment)  of the current loop 

to be a vector directed along the direction perpendicular to the current loop and to have the 

magnitude of IA; 

 

 = Iab = IA= (current) x (area). 

 

The direction of the magnetic moment follows the right-hand rule. In the present case, the 

direction of the magnetic moment is the negative y direction. Then the magnitude of  is 

expressed by 

 

B   

 

(b) The magnetic field in the xy plane 

Next we assume that the magnetic field B makes an angle of (</2) with the x axis. 

The magnetic field B is in the x-y plane. The forces on the sides 1 and 3 are no longer equal 

to zero because of the y component of the magnetic field B. 

 



 
 

The net torque around the point O is  

 

 
 

Fig. JOK =  and JOH =  =  +/2. The magnetic moment is directed along the 

negative y axis. The direction of the torque vector  is along the positive z axis. 

 

The forces on the sides 1 and 3 are no longer equal to zero: The force on the side 1 (F1) is 

equal and opposite to the force on the side 3 (F3): F1 = F3 = IbBy. The direction of F1 is in 

the negative z direction, while the direction of F3 is the positive z direction. Since the arm’s 

length for F1 and F3 is equal to zero, there is no contribution of these forces to the net 

torque. Then the torque around the origin is 
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where JOK = , JOH =  =  +/2, and F = aIB. The counter-clock wise direction of 

the net torque implies that the direction of the torque vector  is along the positive z axis.  

 

 τ μ B  

 

where A is the area of current loop, I is the current. 

 

 
 

 

This formula is analogous to the formula for the torque acting on an electric dipole p in an 

electric field E,  

 

 τ p E  

 

10.2 Unit of the magnetic dipole moment (magnetic moment) 

In general, the magnetic moment of a current loop of any shape is defined as 

 

IA  



 
 

where A is the area enclosed by the loop and I the current. The direction of the magnetic 

moment is perpendicular to the plane of the current loop, following the right-hand rule.  

 

 
Figure The right-hand rule for the magnetic moment 

 

The unit of the magnetic moment is as follows. 

 

TJmA /][ 2   

 

J = N m = C (m/s) T m = A m2 T 

 

where 

 

N = C (m/s) T from the formula F = q (v x B)] 

A = C/s from the formula I = dQ/dt 

 

10.3 Examples of the magnetic moments 

The magnetic moments:  

Earth   8.017 x 1022 A m2 

Jupiter   1.4 x 1027 A m2 



Electronic Bohr magneton  9.28476377 x 10-24 A m2 

 

Suppose that the equivalent current IE flows at the equator of the Earth, giving rise to the 

magnetic moment of the Earth. Then we have 
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 6.29 x 108 A, 

 

where E (= 8.017 x 1022 A m2) is the magnetic moment of the Earth and RE (=6.372 x 106 

m ) is the radius of the Earth. Note that the magnitude of the magnetic moment of the Earth 

gradually decreases with increasing time. 

 

10.4 Simple harmonic oscillation of magnetic dipole moment with the moment of 

inertia (Junior Lab, BU Physis Department) 

 

 
 

Suppose that the magnet with magnetic dipole moment  (in the x y plane) is installed 

in the cue ball. The magnetic field B is applied along the y axis. Then the cue ball, which 

is supported by the air bearing, acts like a spherical physical pendulum. A magnetic dipole 

moment  in the presence of B along the y axis will experience the torque, 

 

sin zB    μ B e  

 

where  is the angle between  and B. If the cue ball is free to rotate, its response to the 

torque  will be a change in its angular momentum at the rate dL/dt; 
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Here we note that 
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Here I is the moment of inertia of the dipole about the z axis, and I is given by  
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where M is the mass of cue ball and R is the radius of sphere. Then we find that the cue 

ball undergoes a simple harmonic oscillation in the limit of small . 
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Here  is the angular frequency given by 
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The period T is obtained as 
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((Note)) In the Junior laboratory (Phys.327), we use the Magnetic Torque (Teachspin),  

 

11. Potential energy 

11.1 Definition 



 
 

0
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The negative sign arises from the direction of the torque. Note that (  ) is the torque in 

the counter-clockwise (+z axis). Since WU  , we have the expression of the potential 

energy, 

 

U   μ B . 

 

The potential energy is minimum when  and B are parallel. The potential energy is 

maximum when  and B are antiparallel. The potential energy is called a Zeeman energy. 

 

( ) cosU B       



 
 

We make a plot of ( ) cosU B       as a function of  (the angle between B and the 

magnetic dipole moment . 

x

z

B



 
 

Fig. ( ) cosU B      . U has a minimum at 0   (parallel), while it has a 

maximum at    (antiparallel), 

 

 

11.2 Force: Stern-Gerlach experiment 

The force exerted on the magnetic moment  due to the inhomogeneous external force 

B (dependent on r) is given by 

 

[ ( )]U    F μ B r . 

 

When zz zB erB )()(  (the magnetic is applied along the z axis) and Bz depends on z, the 

force along the z direction is given by 
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An important experiment performed by Stern and Gerlach in 1921 demonstrated the fact 

that individual atoms posses magnetic moments. In their experiment, Stern and Gerlach 

heated silver (Ag) in an oven until it vaporized. A beam of silver atoms passes through an 

inhomogeneous magnetic field and were ultimately detected by a photographic plate. They 

found that the beam of Ag atoms was indeed deviated by the magnetic field, but that instead 

of a broadened trace on the plane, the beam had split up into two parts. One of the parts 

corresponded to the alignment of m in the positive z direction, the other to its anti-

alignment. This phenomenon, called space quantization, is one of the most significant in 

atomic physics. 
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12. Orbital magnetic moment 

We consider an electron which undergoes an orbital motion [radius r, mass m, and 

charge (-e); e>0].  

 
 

From the definition, the magnetic moment orb due to the orbital motion is given by 
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where A is the area, 2rA  . I is the current and is given by
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Note that the direction of the current is opposite to the direction of velocity of electron 

because the charge is negative. 
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where Lz (= mvr) is the z component of the orbital angular momentum. The Bohr magneton 

B  is defined as 
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In a vector form, we have the orbital magnetic moment is related to the orbital angular 

momentum, 
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((Note)) The Bohr magneton B in the units of c.g.s. is expressed by 
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2

ℏ
 = 9.27400915 x 10-21 emu [ = erg/G] 

1 emu = 1 erg/G = 10-7 J/10-4T = 10-3 J/T] 

 

((Note)) 

Gyromagnetic ratio  
In general the magnetic moment  is related to its angular momentum L through a 

gyromagnetic ratio  as 

 

μ L  

 

13. Magnetic moment of the rotating disk 

We consider the case when charge Q is uniformly distributed on the disk. Suppose that 

the disk is rotated at the angular frequency () around the center. What is the magnetic 

moment? 

 
 



The total charge (Q) in the region between r and r + dr, 

 

rdrQ 2  

 

When the disk rotates around the center axis with the angular velocity , the current arising 

from the charge Q, 

 

rdrrdrQKdrI 








2

2
2

 

 

The surface current density K is given by rK  . The magnetic moment of the rotating 

disk (radius R) 

 

drrrdrrIrd  322   

 

4

4

0

3 R
drr

R 
    

 

Since  2RQ  ,  can be rewritten as 

 

2

2

4

4

1

4
RQ

R

QR





   

 

14. Magnetic moment of the rotating spherical shell 

We consider the case when charge Q is uniformly distributed on the surface of the 

sphere. Suppose that the sphere is rotated at the angular frequency () around the axis 

passing through the center of the sphere. What is the magnetic moment? 

 
 



The charge inside the spherical shell between  and  + d,  

 

 RdRQ )sin2(  

 

The magnetic moment from this part rotating around the rotation axis (the z axis) at the 

angular frequency , 

 













dR

RdRRQR

34

2222

sin

)sin2()
2

)(sin()
2

)(sin(




 

 

or 

 




4

0

34

3

4
sin RdR    

 

Using the total charge Q (= 4R2) on the surface 

 

3

2QR
   

 

((Mathematica)) 

 

 
 

15. Typical examples 

15.1 Problem 28-16 (SP-28) 

Figure shows a metallic block, with its faces parallel to coordinate axes. The block is 

in a uniform magnetic field of magnitude 0.020 T. One edge of the block is 25 cm; the 

block is not drawn to scale. The block is moved at 3.0 m/s parallel to each axis, in turn, and 

the resulting potential difference V that appears across the block is measured. With the 

motion parallel to the y axis, V = 12 mV; with the motion parallel to the z axis, V = 18 mV; 

with the motion parallel to the x axis, V = 0. What are the block lengths (a) dx, (b) dy, and 

(c) dz? 



 
 

((My solution)) 

B // x 

dx = 25 cm 

B = 0.020 T 

v = 3.0 m/s 

 

For v // x, there is no force on charged particles because of v x B = 0. This leads to no 

voltage. 

 

For v // y, the voltage is generated along the z axis.  

 

zz vBdV   

 

or 

 

mVvBdz 12   cmd z 20
3020.0

1012 3









 

 

For v // z, the voltage is generated along the y axis, 

 

mVvBdV yy 18  cmd y 30
3020.0

1018 3









 

 

(a) dx = 25 cm 

(b) dy = 30 cm 

(c) dz = 20 cm 



 
 

 

15.2 Problem 28-27 (SP-28) 

An electron follows a helical path in a uniform magnetic field of magnitude 0.300 T. 

The pitch of the path is 6.00 m, and the magnitude of the magnetic force on the electron 

is 2.00 x 10-15 N. What is the electron’s speed? 

 

((Solution)) 



 
 

Helical path 

 

B = 0.3 T 

p = 6.00 m (pitch) 

F=2.00 x 10-15 N 

 

//

2

v

p

v

r
T 


 

 

where v is the in-plane velocity and v// is the velocity along the spiral axis. 

 

qBrmv

r

v
mqvBF




2

 

 

Then we have 

 

qB

m

v

r
T 


2

2
  

 

The in-plane velocity v is 

 

skm
qB

F
v /61.41  

 



The velocity along the spiral axis v// is 

 

skm
m

pqB

T

p
v /386.50

2
// 


 

 

The resultant velocity is 

 

skmvv /347.65
2

//

2   

 

15.3 Problem 28-45 (SP-28) 

A 1.0 kg copper rod rests on two horizontal rails 1.0 m apart and carriers a current of 

50 A from one rail to the other. The coefficient of static friction between rod and rails is 

0.60. What are the (a) magnitude and (b) angle (relative to the vertical) of the smallest 

magnetic field that puts the rod on the verge of sliding? 

 

((Solution)) 

m = 1.0 kg 

d = 1.0 m 

s = 0.60 

i = 50 A 

 
 

 

The force F is given by 

 

( ) 0 0 (0, , )

x y z

z y

x y z

d d I dI B B

B B B

    

e e e

F I B  

 

Equation of motion 
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mgdIBN

fdIB
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y
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0

0

 

 

or 

 

)( ysz dIBmgdIB    

 

Bx is independent of this inequality, We assume that Bx = 0. 

 

Bz = Bcos By = Bsin 
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with  

 





04.59

66667.1
6.0

11
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3






 

 

When ,  90  or  = 30.96°, the smallest magnetic field is 

 

T
dI

mg
B

s

s 10.0
1

2








 

 

 

15.4 Problem28-53 (SP-28) 

Figure shows a wood cylinder of mass m = 0.250 kg and length L = 0.100 m, with N = 

10.0 turns of wire wrapped around it longitudinally, so that the plane of the wire coil 

contains the long central axis of the cylinder. The cylinder is released on a plane inclined 

at an angle  to the horizontal, with the plane of the coil parallel to the incline plane. If 

there is a vertical uniform magnetic field of magnitude 0.500 T, what is the least current i 

through the coil that keeps the cylinder from rolling down the plane? 

 



 
 

((Solution)) 

B = 0.500 T 

m = 0.25 kg 

L = 0.10 m 

N = 10 

 

 

 
 

 

The magnetic moment is given by 

 

LRNi )2(  

 

Equation of motion: 



 


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
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BfRI
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or 

 



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2mRI

RBmgR
a



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When a = 0, 

 

LBRNiBmgR )2(   

 

or 

 

A
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______________________________________________________________________ 

APPENDIX 

A. Synchrotron 

 

A.1 Lorentz force in the relativistic mechanics 

We notice that 

 

[ ( )]
d

q
dt

   
p

F E v B  

 

holds in an arbitrary frame S (see Chapters 37 and 37S). This expression is the correct 

relativistic form for Newton’s second law. The momentum form is more fundamental. The 

momentum p and the energy E are given by 
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E
m

c

c

 



v
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where 
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 
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Then we get the equation of motion as 

 
2

( )
dE c d

q
dt E dt

     
p p

v F v E  

 

((Note)) 

 
2 2 2 1/ 2( )E c m c  p  
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K is the kinetic energy: 
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A.2 Cyclotron motion: a particle in a uniform magnetic field along the z axis. 

We now consider the case of E = 0 (no electric field) 

 

( ) 0
dE

q
dt

  v E  

 

Thus we have 
22

2

1
( )

1

E

mc

c
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

v
v

 = constant (time independent) 

 

This means that p is just proportional to v since 

 



2

E

c
p v . 

 

The equation of motion can be rewritten as 

 
2
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or 
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For convenience, we use the complex plane for the solution. 

 
2
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where 

 
2 2

2

c qB c qB qB
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Then we have 
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or 



 
2 2 2

x yv v v  =constant 

 

1

1

)cos(

)sin(

yt
v

y

xt
v

x











 

 

This equation describes a cyclotron motion (circular motion with radius R). 

 
2

2 2

v vE vmc mv
R

c qB c qB qB

 


     

 

where  is the angular frequency, 

 
2c qB qB

E m



   

 

The angular frequency is no longer constant but now depends on the velocity v. The 

resonance between the circulating frequency and the oscillation frequency no longer occurs. 

As the energy of the particles (E) increase, the strength of B must be changed with each 

turn to keep the particles moving in the same ring. The change in B must be carefully 

synchronized to the change in energy, or the beam will be lost (hence the name 

"synchrotron"). The range of energies over which particles can be accelerated in a single 

ring is determined by the range of field strength available with high precision from a 

particular set of magnets.  

 

((Note)) 
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or 
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When 

 



2 ( 1)K mc     

 

we have 

 

2 2

(1 )mK
R

q B


  

 

where K is the kinetic energy. 

 

((Matheamtica)) For electron, K = 50 MeV, B = 1 T 

f = 283.2 MHz. T = 3.53 ns, R = 23.7 cm. 

 

 
 

B. Larmor precession for the angular momentum in the presence of magnetic 

field 

 

The magnetic moment  is related to the angular momentum as 

 

μ L  

K1 50 MeV; B1 1;

K1

me c2
1 . rule1
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qe B1

2 me
. rule1

2.83188 10
8

R1
2 K1 me 1

qe B1
. rule1

0.238264

T1 1 f1

3.53122 10
9



 

We now examine the motion of the angular momentum (or magnetic moment) in the 

presence of the magnetic field. The torque  acting on the magnetic moment is 

 

( )
d

dt
    

L
τ μ B L B  

 

The angular momentum L presses about the direction of B with a Larmor angular frequency  

 

B)(   

 

From the figure, we get 

 

( ) sin ( )d LB dt  L e  

 

where  is the angle between B and L, and e is the unit vector. The magnitude of dL is 

equal to )(sin  dL ; 

 

dtLBdL  sin)(sin   
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