Here we discuss the Ampere’s law and Biot-Savart law for the magnetic field arising
from electric currents. These laws can be derived from the vector potential 4, which is
related to the magnetic field B as B=Vx A . For the gauge transformation such that
A'=A+Vy, one can get the same B, where y is arbitrary scalar function. So A cannot
be determined uniquely. In the Aharonov-Bohm effect (quantum mechanics), we realize
that the vector potential A4 is more essential to the magnetism compared with magnetic field
B.

The Aharonov—Bohm effect is important conceptually because it bears on three issues
apparent in the recasting of (Maxwell's) classical electromagnetic theory as a gauge theory,
which before the advent of quantum mechanics could be argued to be a mathematical
reformulation with no physical consequences. The Aharonov—Bohm thought experiments
and their experimental realization imply that the issues were not just philosophical.

1. Biot Savart law
The magnetic field B is given by the integral of the contribution dB to from a length ds
of a current /,

J‘dsxf _yol.[dsxr

P 47 e
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where r is the displacement vector from the current element to the point P. o is a
permeability of free space.

ty =4xx107 N/ A* =4xx107"Tm/ A
1T=1N/(Am)=10* Gauss

((Note))
& 1s the permittivity constant.

& = 8.854187817x10712 C*/(N m?).

The derivation of the formula of Biot Savart law will be derived later using the vector
potential.


Rectangle


The contribution dB is in the direction dsxdr , by the right-hand rule, this is
perpendicularly out of the plane of paper for the point P.

2. Magnetic field at the center point from a circular loop current
We apply the Biot-Savart law to find the magnetic field at the center point P of a
circular loop of radius ». The direction of B is perpendicular to the plane containing the

loop and its center.
A
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((Right-hand rule))
Grasp the wire in the right hand with the thumb pointing along the direction of the
current. The fingers will then circle the wire in the sense of the direction of the B field.



3. Magnetic field from a finite straight current wire

FY0;

B (out of page)

4

ds

- L

We apply the Biot-Savart’s law to a finite length of straight current wire to find the
magnitude at the point P (see Fig.). Note that ds x r points out of the page. The magnitude
of ds x r is given by

rdssin ¢ = rds sin(6 + %) =rdscos@

There are geometrical relations given by

z
rcos@=z, or r=
cosd
s=ztan @
ds = zsec’ d6

The magnetic field at the point P is
B Uyl ?‘ dsrcos @
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or

I . .
B=1o (sing, —sinb,)
4drz

Note: in this figure, 61> and <0.
When 61 = 7/2 and 6 = -7/2 in the above equation, we have

p ol
2z

This formula can be derived from the Ampere’s law (later). In other words, the Ampere’s
law can be derived from the Biot-Savart law.

4. Magnetic field at the center of the square loop current
The magnitude and direction of magnetic field due to a square current (side a).

When 6, = 7/4, 6 = -7/4, and z = a/2, we have

B=4’u—(sm0 —sinf) = 4'”015 'qu[I
4r(al?2) ma

S Magnetic field at a point on the axis of a circular current loop of radius R.
We consider a point P on the axis of a circular current loop.






By the symmetry, only the z component of the magnetic field due to a segment ds of the
loop contributes to the net magnetic field.
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((Note))

The point z/R = " is the point of inflection at which the curvature changes,
0°B./0z" =0 atz/R = Y.

In the limit of z>>R,

2
5, < tl B
2 z
or

B ~ luOIﬂ.R2 — IUOm
2w 2%




where m is the magnetic moment, m = I(zR*).

((Note))
From the Bio-Savart law, the magnetic field at the origin (x = y = z =0) arising from

the circulating current / around the z axis is

_ Ml A pp
" 2R 2RA 27R°

where 4 =7r> and u=IA (magnetic moment).

6. The magnetic field at a focal point of the parabola-shaped current path

We consider a magnetic field at the focal point (a, 0), when the current / flows on the
parabola ()* = 4ax). From the Biot-Savart law, the magnetic field at the focal point is
along the out-of-page direction.

B =,uOIJ-m’Ssin¢ Mol J-dé? ,uOI 1 J-(l cosO)do = yol 1 jd& yo

° 4rx P 4dr J r

We note that rd0 = dssing and r = (from the definition of the parabola,

1-coséd
rcos@+2a=r),

rd®




Fig. The parabola-shaped current path with * = 4ax in the x-scale, where a = 1.
From the definition of the parabola, we have the lengths, PQ = PF. F is the
focal point at (a, 0).

7. Force between current wires
7.1  Force between parallel currents

A force between parallel currents is attractive. The proof is as follows. The magnetic
field due to the current /; is

B — ;uoll

2md

Then the force per unit length of the wire flowing the current />, is given by
Mol 1, :
=[,B=""1= attractive force
S=hB=""" ( )

following the right-hand rule.

C_F//

7.2.  Force between antiparallel current wires
Force between antiparallel currents is the same magnitude but repulsive in
comparison with the parallel case.



A

8. The Biot-Savart law (general expression)
8.1 Expression for the 3D system
The magnetic field due to the current density J can be expressed as follows.

From the Bio-Savart law, we have

B(r )_ZJ;J-Idsx(r—r')

3
jr=r
with
lds = J(r")da,ds =e J(r")da dl = J(r')dr'

where J (current per unit area) is the current density, da, is the cross section of the
system, and ds = e dl . Then we have

B(r)= H I Md (3D expression)

[r=rt



where § is the unit vector along the direction of's.

8.2 Expression for the 2D system
The current / flowing the cross section (area = dl 0 ) is expressed by

[ =J(dl,5)=(J8)dl, = Kdl,

where d'is the thickness, K (= J0) is the surface current density (A/m), and J is the current
density (A/m?)

di

K: surface current densit
J: current density

Fig. surface current density K. The direction of dl, is perpendicular to that of ds.

The magnetic field due to the surface current density is expressed by

B(r)= £ J K(r)x(r=r ')da ! (2D expression)

47 |r—r'|3

with

Ids = (Kdl )ds = K(r")da'
where da'=dl ds, K is the surface current density (current per unit length).

9. Ampere’s law
9.1 Ampere’s law: simple case

We find a magnetic field outside of a long current wire (current /). The magnetic field
lines of B go around the wire in closed circle is

Hol
B-ds= 27R) = 1,1
¢ AR =i



using the Bio-Savart law. Since the final result does not depend on the radius of the circle,
we surmise that the result is independent of the exact shape of the path used in going around
the wire. The expression

cﬁB -ds =yl (Ampere’s law)

is, in fact, a general theorem that holds true regardless of the exact path of integration. This
theorem is called Ampere’s law. Note that 7 is the current enclosed by the path.

I1 12 |
A n

qSB : ds = luOIenclosed = luO z Ik
k=1

9.2 Example-: map of magnetic field

-
N




Using the Ampere’s law, we can directly calculate the magnetic field around a
circular path (radius r) surrounding an infinitely long wire carrying the current /.

Cj}B -ds =B(2xr) =yl

or

Bl
27

We can write this equation in vector form. Remembering that B is at right angles both
to I and to r, we have

_ My Ixe, py 2Ixe, 1 2IXe,
2 r dr r dre,c’ v

B

where ¢ =——— and ! =107 (SI units)

e dre,c’

((Mathematica))
We use the VectorFieldPlot of Mathematica for the map of the magnetic field produced by

a long straight current wire (flowing out of page).
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((Feynman))



It is worth remembering that it is exactly 10”7, since this equation is used to define the
unit of current, the ampere (A). At one meter from a current of 1 A the magnetic field is
2x107 Wb/m? = 2x107 T = 2.0 mGauss = 2.0 mOe.

9.3 Example: map of magnetic field

This figure shows the VectorFieldPlot of the magnetic field produced by two long wires
carrying equal currents in opposite directions. The magnetic field lines always form closed
loops. In other words, magnetic field lines never have end points
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9.4  Ampere’s law in differential form
Using the Stoke’s theorem, the Ampere’s law can be rewritten as

@B-ds:qS(VxB)'dazyol=,uq->(J.da)
or

VxB = uJ



da
rotB

o

ds

This expression is one of the Maxwell’s equations.

10.  Magnetic field inside a long straight wire with current

A long, straight wire of radius R carries a steady current / that is uniformly distributed
through the cross-section of the wire. Find the magnetic field a distance » from the center
of the wire in the regions >R and »<R.

(a) For >R,

BQm)=pl,or  B=toL
2mr

(b) For <R,
The current I’ passes through the plane of the circle (r<R).
I' » 7
"R

I R

Using the Ampere’s law, we have



2

. r
BQ2mr) = py,l'= ,uolﬁ, or

Bz/(101/27R)
1.0}

0.8
0.6
Out[4]=

0.4F

0.2

. . . . R
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11. The magnetic field of a solenoid
The magnetic field is produced by the current in a infinitely long, tightly wound helical
coil of wire (called solenoid) is obtained using the Ampere’s law;

Cﬁ B ’ ds = ILIOIenclased
or
Bl = py(nll), or B = punl

where 7 is the number of turns per unit length.

3
Y

8 0000000000080000088 0000

Next figure shows the field lines associated with the current in an ordinary solenoid. Note
that there is an outward leakage of field lines between the wires, and that in the region near
the center the field lines tends to be parallel to the axis.



((Link))

Scientific visualization and graphics with Mathematica. Magnetic field of solenoid
calculated using Mathematica
http://members.wri.com/jeftb/visualization/solenoid.shtml

Magnetic Field of a Solenoid

by Paul Nylander, bugman123.com



12. Magnetic field of a toroid
A toroid is a solenoid that is curved until two ends meet, forming a sort of hollow
solenoid. Using the Ampere’s law, we can calculate the magnetic field inside the toroid,

§ B-ds =27rB = y,(NT)
or

B — ILIONI
27mr

where N is the total number of turns.

Note that the magnetic field is dependent on r.

13. A current-carrying coil as a magnetic dipole
The magnetic field on the axis of a circular loop current (N/) is approximated by

B o~ HNLR® i NLAR®  py NIA g
: 2z 2r 22 2m 22 2wz

where 4 = zR” is the area of the circle and iz = NIA is the magnetic dipole moment.



14.  Vector potential 4 and scalar potential ¢
We introduce the vector potential A:

B=VxA (=rot4 = curl A)

since V- B=0 (=divB)

VXE = —%B = —%V x A (Faraday’s law, see Chapter 30))
or
0
Vx(E+—A)=0
ot
or
E +£A =-V¢
ot

where ¢ is a scalar potential.
Then we have

E=—%A—V¢ and B=VxA

In the simple case, we have

VxB=Vx(VxA)=V(V-A)-V’A=pJ

V-(—%A—V;ﬁ):ﬁ

2

15. Gauge transformation
We have a gauge transformation

A'=A+Vy,
N 1
¢_¢ ata

where



E:—gA—Vqﬁ and B=VxA

Let us calculate

0 5 oy. o4
9 v = A -vi-Xy = 4 E
ot p=—p ATV D=5V

VxA'=Vx(A+Vy)=Vx A
Therefore (A',¢") and (A4,¢) gives the same expression for E and B.

16. Coulomb gauge
Here we use the Coulomb gauge such that

V-A4=0

Then we have

ViA=—uJ
and
vig=-L
¢ ;

The solutions of 4 and ¢ are obtained by

A(I’)Z&I J(r) dal", ¢(I‘)= 1 p(r) d3rv
4z | r—r'| drey Y |r—r'|

Here we use the Green function such that
A= IyOJ(r NG(r,r"\d’r'
Note that

VA= IuOJ(r W G(r,r")dr'

= —J- S (r"o(r —r"ydr'
=—,J(r)



where
VG(r,r'y=—-6(r—r")

G(r,r')= R (Green function)
4 |r —r '|

((Note-2)) Green function method
The above formula can be derived using the Green function method.

Vi) =—f(r)

The solution of this equation is given by
(1) = [ G, £ (),

where G(r,,r,) is the Green function defined by

Vi G(r,r)==6(r—r,)

or
1
Gr,p)=——.
4 |r1 - r2|
17. The expression of the vector potential

The vector potential is expressed by

J(r'")

3.0
|r—r'|d r

A(r)zf—;j

J(r")dr'=J(r'Ydadl, = I(rdl, (3D case)



I(r)dl, = K(rdl,dl, = K(r')da

di,

Hy I(r')dl' dl’
A(r )— I |r—r | in -[|r r | (1D case)
or
A(r) = ”0 j K(rda’ (2D case)
jr—=r

18.  Derivation of Ampere’s law from the vector potential
We now consider the derivation of 4 for the one-dimensional system (current wire
along the z axis).



AN

J(r)dz_,:& Ids
47r |r—r'| 4z |r—r'|

A(r)=

ds=e dz

The vector potential A has only the z component.
ldz

4= 47r'[|r r'| 47['[~/r+z
_yolln[L+\/L2+r !
4r LN+
ol . (L+NLD +77)
= In[ 5 ]
4r r

AL n L —1nr)
2

1
o
27

Since Ao = 0 and Ay = 0, and A4 is only dependent on r,

104, o4 04 oA |
Vx A=t 0 .
A= T et T et [

in the cylindrical coordinates (usually we use ¥ = 0 and @ = ¢ ). Then we have



04,

B=VxA=(- Hol
or

e, = e, (Ampere’s law)
2nr

((Mathematica))

JL;EHZ J,"J,.F
i\[————-

r? 4+ z2
Simplify[#, {r>0, L> 0}] &

L+~L?+ 12

g 27
L+ VL% + r? '

((Mathematica))

<< "VectorAnalysis "

u0 I0
SetCoordinates[Cylindrical[r, ¢, z]]; A = { 0,0, - Log[r]};
27

Curl[a]

{O, IOuO’ O}
2nr

19. Derivation of the Biot-Savart law from the vector potential
We use the formula

luO
A r)=—-

J' Ids

[r—r']

to find the vector potential dA4 at point (r, ¢, 0) [cylindrical coordinate] from the small
segment of the current (/ds) pointing in the positive x axis at the origin (0, 0) [see Fig.].
Note that usually we use the notation » = p in the cylindrical coordinate.



dA

X

dAzﬁﬁe _ /Jolds(cos¢er_sm¢e¢)

4r r 4r r r

where
e, =cosge, —singe,
The magnetic field B is obtained as

dB =V xdd =4S sind , _ u Idsxe,

(Biot-Savart law)
4r r 4r r

where

((Mathematica))
<< "VectorAnalysis ™"

SetCoordinates[Cylindrical [r, ¢, 2]]; A= -

<
_ Sin[é] o}
r r

{ Cos[¢]
Curl[A]
{D, 0, Sin[ft':]}

rni.

20. Magnetic dipole moment (I)



In this Fig. the polar coordinate of the observation point P is (r, 6, 0). We assume that
the circular loop current is formed of the pair of current elements, C (a, 772, ¢) and D (a,
2, -@). The sum of vector potentials from these current elements has a direction of eg.

A=A,

e

— ~. A

/ \%R P(r,8,0)

21(adp)cosg

A /’IO I
\/r +a’ —2arcos(LCOP)

cos(£LCOP) = ocr_ (cos ¢,sin ¢,0) - (sin 8,0, cos @) = sin € cos ¢
a r

Then we have

_[ 21(adg)cosg
\/r +a” —2arcos(sindcosg)

A 11'10

Suppose that ¥>>a. We use the Legendre generating function



1 | |

\/r2 +a’ —2racos(sin 6 cos @) o \/

1+ (%) =2 % cos(sin Ocos )
r r
- lZPn (sin@cos ) (L)
 — r

= l[Po(sin dcosg) + EPl(sin Ocosg) + (E)ZPZ(sin fcosg) +...]
r r r

where Py(x) is the Legendre polynomial,

B(x)=1
R(x)=x

)
P(x)= %x(sz -3)
P,(x)= %x(35x4 —30x% +3)

P.(x)= %x(63x4 ~70x +15)

4, :'L;"—if'[dqﬁcosgﬁ[ﬂ)(sin@cosgﬁ)+%Pl(sin6‘cos¢)+(%)2Pz(sinl9cos¢)+...]
0

t,2la arsin® 3a’zsin€d 15a’zsin’ O
= ( - —+ 3 +...)
4mr 2r 4r 167
((Mathematica))
fl=
Cos[¢]

é ((;)l LegendreP[n, Sin[&] Ccs[:j;]]);

m
eql = J fld¢ // Expand
0

TSin[&]

%}

32°78in[8] amsin] 15 a

4 r3 Zr 16 r3 |

In the approximation up to 1/7, we have



pym’Ising _ ymsin®

2 2

2la arsin®
A¢:'“0 ( )=

4 2r A 4

where m = za’ Iz is the magnetic dipole moment (or simply magnetic moment) of circular
current loop.

21. Magnetic field from the magnetic dipole moment (more simple method)
The magnetic vector potential A4 due to a localized current at large distance can be
evaluated relatively easily. We show that A is obtained as

mxr
3

A=
Ho drr

where m is the magnetic moment due to the small circular current and B=V x A4.

4

ma

Y

Here we use the formula

1 1 r-r
vz_+ 3
PEFT I

The expression for the vector potential A4 is applied to current circuit by making the
substitution: J(r’)d7 — Ids,

A(r) = /'lo¢

- S|d <Al 1ng+ - r-s)ds

The first integral vanishes. The second integrand is one term in the expansion



(sxds)yxr=—s(r-ds)+ds(r-s)
Here we use the relation
d[s(r-s)]=s(r-ds)+ds(r-s)

From the addition of these equations, we have
1 1
ds(r-s)= E(s xds)xr +5d[s(r -8)]
Since the last term is an exact differential, it contributes nothing to the second integral.
Hol 1
A(r)=—"——=[=-P(sxds)]xr
()= 5P sxds)]

or

A= tomxr
dr r

where
m= é(ﬁ (sxds)

The magnetic field can be calculated as

B=Vx4=th [3(m-r)r—mr*]
4

7"5

((Mathematica))



Clear["Gobal "]
Heeds["Vectorfnalysis "]
SetCoordinates [Cartesian[x, v, 2] ]

Cartesian[x, ¥, =]

m= {ml, m2, m3}

{ml, m2, m3}

r={x, v, 2}

(=, v, 2}

pl Cross[m, r]

4m {r.r}:""n‘"

r (-m3vyv+m2 =) 0

f - - n'.3.-"".-'r
4 (xS +ys+ES) 7T

4

m3 x -mlz) ul [-m2 x+ml v} w0 1

EYETEN 21372

&?T:::-::"+yﬂ"+z &?T:::-c""+y:"+z

B = Ccurl[A] // Simplify

- ::31{ (mZv +m3 z) +ml ::2 ®2-yZ-_z2)} uo

4

i g (2% +y? +zz: 52 '
3y (mlx +m3z)-m2 ::xz—z yz+zz: L0
g (2% +y? +zg:: 5z .
|13 (mlx+m2y) z-m3 (x*+y®-22%)) no,
4 (%2 +y?+22)%2 J
Diw[B] // Simplify
’ 1

If m = mz (along the z axis), in the Cartesian coordinate we have



_ 3mpyzx

B =
Y
3mu,yz
B =
B = m,u0(3z25— r?)
4rr

or in spherical coordinates, we have

B=Bi+B,0+B,g




r cosf

where

X =rsinfcos ¢
y =rsinfsin ¢

z=rcost

r sing do

-
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(b)

((Mathematica))
SetCoordinates[Sphericall[r, 8, ¢]]; M= {(mCos[8], -mSin[8], 0};

po
R={r, 0, 0}; A= Cross[M, R];
4 g 3
Curl[A]
{muO Cos [&] mulsinl[&] O}
2 mr? ' T '

((Mathematica)) VectorFieldPlot (zx plane) using the Mathematica
The map of he magnetic field produced by a magnetic dipole moment directed along the z

axis (x-z plane).
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We start with a vector potential given by
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Vector potential from magnetic moment (Mathematica)

where
r=(x,y,z), m =(0,0,m)
The vector potential:
_mH, _ —2y — 2x —.0)
Ar (X"+y +z)" (X +y +2z7)
o (-3,%,0)

- 47r(x2 + y2 + zz)



The magnetic field:

mi, 2, .2 2
B=VxA= 3zx,3yz,~(x" +y -2z
47r(x2 + y2 +zz)5/ 2 ( %, Y )

In the z-x plane (with y = 0),

- —47[();15)2 > ) > (3zx,0, -+ 222)

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

! SNV S s
N\ =
2 XN \\ / - .
111\\\\\‘\\&K f //ff///é;::?

L ANEESRN

= NS
NS
e NN
A VAR RA AN

((Note))

Experimental result: magnetic field distribution from a spherical magnet (dipole
field)
(from the book of O.D. Jefimenko, Electricity and Magnetism).



Fig. Magnetic field of a spherical magnet (dipole field).

23.  Magnetic scalar potential of magnetic moment
We note that VXB=4J . When J =0, Vx B =0. In this case B can be expressed
by the gradient of a scalar potential, such that

B=-uV¢ .
Since V-B=0, we have

V-B=—uV-V§ =—1,V’¢ =0



Thus @ , which is called the magnetic scalar potential, satisfies Laplace’s equation.

The expression for the scalar potential of a magnetic dipole is particularly useful.

B) =7 27 ) B =-uV4
drr

Magnetic scalar potential

* _ m-r
Axr
B=VxA
A= f—om—fr (electric dipole moment)
Tor

Thus we have

B=VxA
=ﬂVx mxr
4 P

Ho r
=—"2(m-V—
47z( P
Hy r
—— Oy (m-—
47r( P
=_ILIOV¢*
with
*_m‘r
4rzr?

If the magnetic moment m is directed along the z axis,

. mz
47r()c2 + 2 )3/2

in the z-x plane (y = 0).
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Vector potential of the magnetic moment
The vector potential 4 is given by

Where

m=me_=m(cosf e.—sinb e,), r=re,

Then we have

4= s1n20 e,
dr r




in the spherical coordinates. The magnetic field B is evaluated from

B=VxA
e re, rsinfe,
__1 |9 & 9
r’sin@|or 06 L)
0 0 rsin€4,(r,0)
_ {e i[rsiné?A (r,0)]—e ri[rsinGA (r,)]}
r’sing " 90 o “ or e
= %%(er lisin2 0 —e,rsin’ Hil)
4z r°sin@ " r 060 orr
my, 2cosd sind
= e e
4z - 2
or
my, 2cos@ , . o
B=——"[———(sinfcospe, +sinfsinge, +cosbe.)
47 = r !
+ sm36’ (coscos pe, +cos@sin e, —sinbe._ )]
r
= 2% [12cos O(sin 0 in fsin e, + cos 0
g [2cosO(sin & cos pe, +sin Osinge, +cos be. )
+sin 6(cos f cos pe, +cosfsingpe —sinbe.)]
or

B = ZWOS [3sin @ cos O cos ge, +3sin O cos Osin e + (3cos’ 6 —1e_]
zr

with the use of the unit vectors of cartesian co-ordinate. When ¢ = 0 (in the z-x plane),
we have

B= m_,u()3[3 sin @ cos fe +(3cos’ @ —1)e.]

Ay
The torque is given by
2
m .
T=mxB=e, +3sinéfcosd
Arr

where



m=me, =m(cost e.—sind e,)

my, 2cosé sin @
B =
Az ( P %)
((Mathematica))

Clear["Gobal "];

m uo
Ag = Sin[e];
4 7 r?
B1 = Curl[{@, 0, Ap}, {r, 6, ¢}, "Spherical"] // Simplify

mud Cos[6] mudSin[O]
R ;9
271r 47r

Div[B1, {r, 6, ¢}, "Spherical"] // Simplify
0

25. Magnetic flux arising from the magnetic dipole moment
The magnetic flux is related to the vector potential 4 by

O=B-da=A-dl
da=e 271’ sin0d0

B-da=""*%
4
_my, 2cos0

(2080, SN0 ) e 22 sin0d0
r

e
3
"o

271 sin Od 0

4 P

= Gin(20)d6
2r

mu, ¢ .
= sin(26)d6 ,
S, Jsin20)

0

=0 11— cos(26,)]
4r



How about CﬁA-dl ?

mu, . T -
A=e, 4;;02 sing,. dl=edl=e,(2nrsing,)

mygy - my,
A-dl=e,——-sin0, -e dl = sin 0.d!
* 4rr? 0" 4rrt 0

4>A-dl=.|.%sin6’0dl
nr

mp,
4rr?

sin 6, (2zrsin 6,)
=20 11— cos(26,)]
4r
Using the above example, we show that
O=B-da=dA-dl

26.  Vector potential and magnetic field due to a straight infinitely long current
wire



—- I

We calculate the magnetic field due to an infinitely long electric wire in which the
current / flows.

We first calculate the vector potential,

A=t

JJ(r')d3r'
4

r=rf

e ﬂo[j' dz
2472'7L4’p2+22
,uOIL dz

:ez
2”0\/p2+22




or

A:,uolj- dz :,uolln(L+\/L2+p2)
: 2”0\/p2+22 27 Yo,

which depends only on p. The magnetic field B can be calculated using the formula

B=VxA
as
e, pe, e, e, pe, e,
B-vx4-1l0 0 0o 10 0 0
plop O 0z| plop Op Oz
4, pa, A [0 0 Al
or

1 0 0
B=——pe,— A (p)=—e,—A.(p)
p' " op " op

using the cylindrical coordinate. Noting that

ihl(LJm/L%rpz) L 1

op p oI +p* P
we get the final result

B=e, Al
27p

in the limit of L — 0.

27.  Vector potential for a solenoid
A solenoid has radius R, current /, and n turns per unit length. Given that the magnetic
field is B = uonl inside and B = 0 outside, find the vector potential A both inside and
outside. Do this in two ways as follows.
(a) Find the magnetic field inside and outside the solenoid using the Ampere’s law.
(b) Use the expression for the curl in cylindrical coordinates to find the forms of 4 that
yield the correct values of B =V x A4 in the two regions.



[Problem 6-18, E.M. Purcell and D.J. Morin, Electricity and Magnetism, 3"
edition (Cambridge, 2013))

Ahi y

There is a magnetic field due to the infinitely long solenoid (the flowing current is /).
The magnetic field inside the solenoid is

B =pynl
Outside the solenoid, there is no magnetic field; B=0.
O=B-da=A-dl

(1) p<R (inside)

2
B(mp*)=27pA,, A¢=B§”T’;)=B—2’O=%ﬂonlp

which is the same form as 4 = %B XF.
(i1) p>R (outside)

_B(zR) _BR* R*

B(rR*) =270A A
(TR”) =27pA,, o 2p 2p

¢

pond



X
We make a plotof 4,/ 4, =11
X

1.2 AglAg
10
0.8/
0.6
04/
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x=pIR
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Fig. Plotof ~* h K
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We now calculate the magnetic field using the formula:

e, pe, e, e, pe, e,

o)
poveq Lo 0 o1l o @
p Op 0z| pl|op op oz
A, pd, A4 0 p4,(p) O

g

S

or
1 @
B=—e¢ —[pA
pez o [pA4,(p)]

The magnetic field B can be calculated as

B {ezuonl (p<R)
0 (p>R)

We note that there is some arbitrariness in choosing the form of A¢



2

4, =—u0n]+£
2p p

as an addition of the form C/ p, where C is a constant, since

2

pA;= % tonl +C = constant
and

L 1pa(p]=0

op " 7

28.  Ampere’s law and vector potential
From the Ampere’s law, we have

1
By(27r) =] , B, = ;L
nr
From the relation B=VxA
e, pe, e,
B=VxA= l i i i
plop Op Oz
A4, pd4, A
0 1
B=—e¢,—A4 =e, £o°
op 2mp
0 ol
»
P 27p
or
4(p)=-*Lin p
2
29. Interaction between magnetic dipole moments.

We now consider the magnetic interaction between two magnetic moments m1 and mo.
The interaction is given by a Zeeman energy



U=-m, B,
where B is the magnetic field due to the moment m,

7
B =
nr

[3(’”1 ~r)r—m1r2]

Then we have the dipole-dipole interaction

U :ﬂ[ml '3m2 -3 (m1 'r)(5m2 r)]
4 r r

Two dipoles have an attractive force between them if they are arranged end to end a
repulsive force if they are oppositely arranged end to end. This result is the explanation of
the familiar result that like magnetic poles repel and unlike attract.

Dipole configuration (see the figure below)

(a)
(b)
U, = 2% (repulsive)
nr
(c)
U, = % (repulsive)
r
(d)



A
(@) - ~l

|
30. Torque due to the magnetic dipole moment
Here we show that the torque due to the magnetic moment m in the presence of a
uniform magnetic field is given by

T=mxB.

The force on an infinitesimal element of a charge-carrying conductor in the presence of a
magnetic field B is given by

dF =1Idsx B
The infinitesimal torque is
dr =rxdF

If the circuit in question is represented by the contour C, then the torque on a complete
closed circuit is

rzcﬁdrzl(j.)rx(dst)

Note that



rx(dsxB)+dsx(Bxr)+ Bx(rxds)=0, (formula)

But we have

dlrx(rxB)|=dsx(rxB)+rx(dsxB)=0
where B is constant and dr =ds.

rx(dsxB)=dsx(Bxr)
Then we have

rx(dst):—%Bx(rxds)
leading to

1

‘z'=I(j.)rx(dst)zaq.)(rxds)xB:mxB
The magnetic moment is defined by

m =IA=£(]S(r><ds)

2

where A is the area enclosed by the curve. The direction of 4 is perpendicular to the plane.

31. The field of a magnetized object




The vector potential at the point P due to the magnetic dipole moment m is given by

=&mx(r—r')
A(r) 47[—|r_r'|3

M is the magnetic dipole moment per unit volume.

m=M(r"dr'

Mo (M(r)yx@r—r")
A(r)=— dt
47TJ. |r—r'|3

1 r—r'

r=r| :|r—r'|3

A(")=f—;'|‘M(V')XV'|r_r'|dr'
Using the formula

MV =|r_r,|v'xM(rv)_v'x|f:4_<Vr'}|
we get

Hy V'XM(V') v Hy ' M(I"') '
Ay =" —Mm= _ 0
) 47z-[ |r—r'| ar 47[IVX[|r—r'|JdT

_ IV'xM<r')dr.+ﬂj(M<r')dea.

- ' '
4rs, |r—r| 4 |r—r|

Here we use the formula

j(va)dr'z—j(vxda')

v

Definition of current density

J, =VxM



K, =M(r)xn

At 1 A

5~ — =~ (current density). The init
m

where n is the normal unit vector. The unit of Jy is

2
of Ky is —5— =— (surface current density). The vector potential is now given by
m m

_ Mo (L) g e (K
A(r)_4ﬂ-£|r—r'| dz +47r~£|r—r'| da

32. Physical meaning of magnetization current

The magnetization M provides us with a macroscopic description of the atomic currents
inside matter. Each atomic current circuit produces a magnetic moment. The magnetization
M is defined as the magnetic moments per unit volume.

First we consider a simplified model of magnetized matter. It consisted of atomic loop
currents circulating in the same direction, side by side. If the magnetization is uniform, the
currents in the various loops tend to cancel each other out, and there is no net effective
currents in the interior of the material. Only at the surface there is a net current always
going in the same direction.



If the magnetization is non-uniform, the cancellation will not be complete. As an example
of non-uniform magnetization, we consider the abrupt change in magnetization shown in
the above figure. If we focus our attention on the region between the dotted lines, it is
evident that there is more charge moving down than there is moving up. This we call the
magnetization current. Thus, even though there is no charge transport, there is an effective
motion of charge downward, and this current can produce a magnetic field.

33. Magnetic moment from surface current of cubic form

M

The volume of cube is given by



V=a’
The magnetic moment m is given by
m=Ma’ =1,a°

where a is the length of the side a for cube. Thus we have

I, =Ma
Note that
Kb =Mxn, Kb =M

where the direction of M is perpendicular to that of the vector n. The surface current is
I, =K,a=Ma

34. Magnetic moment from the surface current of disk-like form

m

The magnetic moment m is given by



m=M(nR’l)=IzR* =(K,[)xR’

leading to
[=M=K]
K,=M,
K, =Mxn

where M is the magnetization, the magnetic moment per unit volume.

Note that the magnetic field at the center is

Mol _ pMlI

" 2R*  2R?

When R— o and [ — o, B — 0. Using the relation

B=py(H+M)=0
we have
H=-M

which means that the demagnetization factor is IV, =1.

35.  Surface current and boundary of B-field

; \\ > 1=K, \

The charge contributing to the surface current
AQ = o (vAt)!

The surface current:



I=£=alv=Kbl

At
Igis the unit of [A/m].

Boundary condition:

$(VxB)-da=dB-ds

(B,—B) AN =pKAN

or
(B,~B,), = 14(K, xm)
Bo¢l
- 21
¢ | @ 1=K,
+ Bl
= ]
n
36. Equivalent current density of magnetization

We show that the volume current and surface current due to magnetic moment is

J, =VxM, K, =Mxn

r 3




Fig. The magnetic dipole moment g of a current loop with area 4

A circular current / has a magnetic moment g given by
u=14
where A4 is the area of the current loop.
We now consider a small rectangular block inside of a magnetized material. We take

the block so small that we can consider that the magnetization is uniform inside it. If this
block has a magnetization M, in the z direction. The total magnetic moment is

H=M (abc)=[M blac = lac
So the surface current going around on the vertical faces is

I=M.b

A small magnetized block is equivalent to a circulating surface current



M
z Mz + AM3

-

If the magnetization of two neighboring blocks is not the same, there is a
net surface current in between.

Now suppose that we imagine two such blocks (denoted by 1 and 2) next to each other.
The block 1 has a magnetization M., while the block 2 has a magnetization M _+ AM _. The

block 1 will produce a surface current /; flowing in the positive y direction. The block 2
will produce a surface current /> flowing in the negative y direction. The total surface
current in the positive y-direction is given by

I=11—12=Mzb—(Mz+AMz)b=—AMzb=—6g/‘fzab
X

Then the current density Jy is obtained as

J, = _OM.,
ox



T — My

4

Fig. Two blocks, one above the other, may also contribute to Jy.

X

Next we imagine two such blocks (denoted by 1 and 2) next to each other. The block 1
has a magnetization M, while the block 2 has a magnetization M +AM . The block 1

will produce a surface current /; flowing in the negative y direction. The block 2 will
produce a surface current /> flowing in the positive y direction. The total surface current in
the positive y-direction is given by

I=1-1,=-Ma+(M_+AM )a=AM a= 624)‘ ab

z

The current density Jy is obtained as

J - oM |
7 Oz

The resulting current density along the y direction is

oM, oM.
Y oz ox

J =(VxM),

or

J,=VxM



which also means that
V-J,=0

From the continuity of equation, this implies that there is no magnetic pole.

37.  Magnetic field due to the uniformly magnetized cylinder
The magnetic field B due to the uniformly magnetized cylinder is given by

B=uM

The proof is as follows.

Suppose that the cylinder is uniformly magnetized. The direction of the magnetization
M is along the z axis. We now consider a small disk (area 4 and thickness dh) in the cylinder.
The total magnetic moment inside the disk is

Au = M (Adh) = dIA
where d/ is the equivalent surface current. From this we have

dl = Mdh

This current flowing on the surface of the cylinder forms a solenoid coil with the number
of the coil’s turns per unit length given by n = 1/(d4). The magnetic field B in side the long
solenoid with sufficiently long length is

1 1
B = pundl = py—dl = p,— Mdh = u,M
Holt Hy dh Hy dh Hy



The magnetic field B outside the cylinder is equal to zero.

. )
B=pgM
"“—_«|_\_\-\~ o
e, P
M
C >

38. Magnetic field due to the uniformly magnetized disk
The magnetic field due to the uniformly magnetized disk is given by

B=0.

The proof'is given as follows.

~N

B eI R T L

AT e ——
] 2
dh
—-ﬁ_____,_,ﬁp—%
-

|

We consider the small disk (radius a and thickness dh). The total magnetic moment
inside the disk is

Au=M(m’dh)=1(mr’)
where [ is the surface current. From this we have

I =Mdh



((Another method)) The surface current density K is related by the magnetization M by
the relation

K,=Mxn=»Me,

Then the surface current is obtained as Ky, di = Mdh

Using the Biot-Savart law, the magnetic field B at the point P can be calculated as

Mdh a’

Hy
B.(P)=
Z( ) 2 (22+a2)3/2

When z = 0, we have

B.(P) = LM

When d/ — 0 and a—o0, [B_(P) = 0.

39. Example
We now consider two of a part of circular cone which are magnetized with the
magnetization M. What is the magnetic field at the center O?




gMdx  x*tan’0 g Mdx

2
= sin“ @cos@
2 (X*+x"tan’ )’ 2x

dB,(0)=

from one of the circular cone. Taking into account of the contributions from the two cones,
we have

-2 b
B.(0)=2 HMsin_Gcost rdx LM sin® z‘)cosé’ln(é)
2 "X a
= ,M,sin’ @cos @
where
M, = Min(2)
a

1
Bx(0) has a maximum (= 0.3849 1M,) at cos :E (6= 54.6356°).
6(degrees)
03}

02r

0.1

1 1 1 1 M /MO
20 40 60 80

40. Magnetic field due to the uniformly magnetized sphere
The magnetic field due to the uniformly magnetized sphere is given by

2
B=§/IOM

The proof'is as follows. We consider the uniformly magnetized sphere with radius R. The
surface current Ky is related by M by the relation

K, = Mxn=Msin6p

In other words, the surface current in the surface region (60— 6+d6) is given by



I =K, (RdO)=MsimO(RdO)

Using the Biot-Savart law, we can calculate the magnetic field B at the center O as

: 2 2.2
dB.(0) = Hy(M sin@)RdO R s121 0
2 R
=%sin30d9

Then we have

M
2

M4 2
B_(0) = sin@dg =2 _ 2y
z( ) 2 3 3lu0

O ey N

Note that in general the internal field is constant and is given by

B=2Foy
3

any place inside the sphere.

41. Understanding of M using solenoid



We now consider the magnetic field of the solenoid. The total number of turns is N; N = g ,

where d is the length of the coil along the cylindrical axis. Using the Ampere’s law, we
have

BL= 1,Ni

or

N i
B=u —i=u,—
,uoL ;uod

where i is the current flowing in the solenoid coil.
The magnetization M is given by

L,
Nia g4 i

M — /’ltnt —
vV AL AL d

Then we have the relation between B and M, given by

B=uM

42.  Vector potential due to the magnetic moment
The vector potential from the magnetic moment m is

4o Mo mxr

4z

The vector potential from the magnetization vector M is



A(l’):&jM(r')X(r_r')d3}"

4 |1»'—r"|3

Using the relation

1 r—r'

v -
|l‘—l"| |r—r'|3

we get

A(r) =22 [ M(r)x V' L
4

r=r]

We note that

M) -1 G ey - My v ——

V '% =
e =

or



M(r)

M(ryxV'
r=r

= VxM(r')—V'x
|r—r'| |r—r'|

Thus we hav e

_& 1 [ v 3v_ﬂ vM(r')Sy
A(r)—4ﬁ'[—|r_r'|VxM(r)dr 47['[Vx—|r_r'|dr

Here we use the following formula

[(Vxv)d’r = [vxda

((Proof))

We use the Stokes theorem,
jV-(vxC)d3r =—C-jvxda
where C is a constant vector.

V-(vxC)zC-(va)—v-(VxC)
=C-(V><v)

da-(wxC)=C-(daxv)=-C-(vxda)
Then we have

[V-(vxC)d’r=-C-[vx-da

Using this theorem, we get

1
r=r

M 1 ' ' ' H [ '
A(r):ﬁj‘mv XM(I’ )dar +ﬁj‘ M(r)xda

_ﬂ 1 [ N 3.0 ﬂ 1 ' ' '
_4ﬂj|r_r'|V><M(r d'r +4ﬂj|r_r'|M(r)xn da

The volume current is defined by

J,(")=VxM(),



The surface current is defined by
K, (r)=M(r)xn

Thus we get the expression of the vector potential

A()_/Uoj‘ b(r)d3. ﬂoj b(r)dv

r—r| r—r
This is compared with the vector potential in the presence of a free current density Jf

A(r)= ﬂoh,,f(r)

The current density is given by
J=J,+J,.

43. Auxiliary field H
43.1 Definition
The current density is given by

J=J,+J,

where Jr is a free current density and J, is a current density due to the magnetization
(bound).

L VxB)=J=J +J,=J,+VxM
RN

Hy
or
VX(E—M):
Hy
We define the field H as
VtzJf
B
H=—-M

Hy



where
<j>(va)-da=gSH~ds=1f

and /ris the free currents enclosed inside the current path. The field H permits us to express
Ampere’s law in terms of the free current alone.

B=1o(H+M)
((Note)) The unit of H is as follows.

_Bl__ T

[H]=-" = =
] T(m/ 4)

[A/m]

43.2 Physical meaning of H

dh

dh

We now assume that the magnetization at the point P is given by M. The equivalent
current d/ flowing the side face with the height d#, is obtained as



dl = Mih=Mds cos =M - ds

where M; is the tangential component of M along the ds direction.
From the Ampere’s law, we have

$B-ds = 1y (i+1) = pyi+ 1, M -ds

where i is a true current.
Here we introduce a new vector H which is defined by

uH=B'=B—yM

Then we have
@H -ds =i

This equation is valid even for the magnetic materials. Note that if M =0,
B=uH

44, Magnetic susceptibility
44.1 Definition

In order to solve problems, it is essential to have a relationship between M and H, or
equivalently, a relationship between M and one of the magnetic field vectors. These
relationships depend on the nature of the magnetic materials and are usually obtained from
experiment.

In a large class of materials there exists an approximately linear relationship between
M and H. If the material is isotropic as well as linear,

M=y H

M

where ym is called the magnetic susceptibility. If ym is positive, the material is called
paramagnetic susceptibility, and if ym is negative, the material is diamagnetic. Then

a-2_wu-2_, u

Hy Hy

or

B= 1+, )H=uH

with



7
—=1l+z,
Hy

44.2 The method to determine B and M from H

The method is similar to the discussion for the derivation of D, E and gy in the dielectric
system. First we determine the auxiliary field H by using the formula

C_f)H-ds:If

0000060056568 80000068
Next we calculate B using the relation
B=uH
00000000000 00000800000 OO0
* B=pH |
C000000000C0000000C 000X
Then we calculate M using the relation
B
M="-H=E-DH=y H
Hy Hy
CO00000O0O000000000000
M= Blug - H=ymH I
0O00000000C00000000000
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APPENDIX-A Spherical coordinates

or . . .
e, =—=sinfcosge +sinbfsinge +coslbe_,

r
r

1 or . .
=———=cosfcosge, +cosfsinge —sinlbe,_,

r

€y

1 or :
— =—singe, +cosge, .

e, =—;
rsin@ 0¢

This can be described using a matrix 4 as

e e sinfcosg sinfsing cosé | e,
e, |=A| e, |=|cosfcosg cosfsing —sind |e,
e, e, —sing cos¢ 0 e

or by using the inverse matrix A as

e e e, sinfcos¢ cosfcosg —sing| e,

-1 T . . .
e, |=A"|e,|=A"|e, |=|sinfsing cosfsing cosg | e, |
e, e, e, cos@ —sin@ 0 e,

or

e, =sinfcosge, +costcosge, —singe,,
e, =singsinge, +cosdsinge, +cosge,,
e, =coste, —sin,,.

in the spherical coordinate systems.

0 10 1 0
V=e —+te,———+e,———,
or r o6 rsiné 0¢

A=Ae +A4e,+ e,



The divergence is given by

1o 10
—(siné4,) + —A
o S o

rsin@

1 0,,
V-A=—— +
P Gr(r 4)

re, rsinbe,

1 o 0 0

P2sind|or 00 %
A, rd, rsinf4,

VxA=

10 1 0 ,. Oy 1 oy
Viy =———(ry)+ —(sin@ +
Ve o " e 00t 00’ eint e 07

APPENDIX-B Cylindrical coordinates
The unit vectors are written as
e = I or _or cos @e_ +sin e
b= _— = -
h,op Op g
e = Lo _1or sin pe_ + cos e
0 "7 A A~ T x y
h, 09 p o
_Ltor _or_
T h ooz o0z O

The above expression can be described using a matrix 4 as

e, e, cosp sing 0)fe,
e,|=A|e |=|—sing cosp O] e, |

e, e 0 0 1)e,

or by using the inverse matrix 4™ as
e e, e, cosp —sing 0)fe,
_ 41 _ 4T _ :

e |=A4A|e, |=A4|e, |=|sing cosp O]e,
e e, e 0 0 1)\e.

The differential operations involving V are as follows.



"op "pop T’

V.V:li(py) 190, +£V;,
P Op pop " o

e, pe, e

vxp =Ll 2 2]
plop O Oz
v, pVv, V.
2 2
Viy =——( ) 128V;+8V2/.
p op op~ oz

where V is a vector and i/ is a scalar.

APPENDIX-C Magnetic field of the Earth
C.1  Magnetic moment of the Earth
R
X
Geomagnetic Geographic
north pole north pole
/\ B
@ \_/

=

£=28.00x 10 A m?

Halliday and Resnick;



Table 2

Dipole Magnetic Moment Data
From Barnes Pages 33 & 61

Dipole Moment

Year (x 1022 amp-meterz)
1835 8.558
1845 8.488
1880 8.363
1880 8.336
1885 8.347
1885 8.375
1905 8.291
1915 8.225
1922 8.165
1925 8.149
1935 8.088
19425 8.009
1945 8.065
1945 8.010
1945 8.066
1945 8.090
1955 8.035
1955 8.067
1958.5 8.038
1959 8.086
1960 8.053
1960 8.037
1960 8.025
1965 8.013

C.2  Magnetic axis and geograpic axis

A freely suspended magnet always points in the North-South direction even in the
absence of any other magnet. This suggests that the Earth itself behaves as a magnet which
causes a freely suspended magnet (or magnetic needle) to point always in a particular
direction: North and South. The shape of the Earth’s magnetic field resembles that of a bar
magnet of length one-fifth of the Earth’s diameter buried at its center.

The South Pole of the Earth’s magnet is in the geographical North because it attracts
the North Pole of the suspended magnet and vice versa. Thus, there is a magnetic S-pole
near the geographical North, and a magnetic N-pole near the geographical South. The axis
of the Earth’s magnet and the geographical axis do not coincide. The axis of the Earth’s
magnet is inclined at an angle of about 11.5° with the geographical axis.

C.3  Cause of Earth’s magnetism:

It is now believed that the Earth’s magnetism is due to the magnetic effect of current
which is flowing in the liquid core at the center of the Earth. Thus, the Earth is a huge
electromagnet.

1. Declination
2. Angle of dip (or inclination)



Magnetic meridia

Geographic meridian declination

dip

The vertical plane passing through the axis of a freely suspended magnet is called
magnetic meridian. The direction of the Earth’s magnetic field lies in the magnetic
meridian and may not be horizontal. The vertical plane passing through the true
geographical North and South (geographical axis of Earth) is called geographical meridian.
The angle between the magnetic meridian and the geographical meridian at a place is called
declination at that place.

Magnetic Neadle

Horizontal
plane —

Angle of dip

I |

The angle HOM betw een the horizontal plane HO and the axis of
freely suspended rnagnetic needle MO is Angle of Dip or Inclination,

C.4  Angle of dip (or inclination)

If we take a magnetic needle which is free to rotate in the vertical plane, then it will not
remain perfectly horizontal. The compass needle makes a certainangle with the horizontal
direction. In fact, in the Northern Hemisphere of Earth, the North Pole of the magnetic
needle dips below the horizontal line. At any place, the magnetic needle points in the
direction of the resultant intensity of the Earth’s magnetic field at the place.



Seographic

Magnetic meridian

Magnetic moment o
Earthf

C.5 Magnetic field due to the magnetic moment

Bé
dip

By

North Hemisphere

South Hemisphere

Br




_ 2uymcos@  2umcos(r—@)  2umcosg

B

’ 4m? 4m? 4’
B Hom sin® _ Hgm sin(z — @) _ Hgm sing

© an? 4 4m?

Note that the vertical component (B;) is directed inward in the North Hemisphere.
The angle between the magnetic field and the surface of the Earth is called the dip
(inclination). We define the angle of dip as

7
B 2cosg 2cos(5—/1) )

tan] = ——~
sin ¢ sin(z— 2) cos 77
2
where A is the latitude.

D. Earth magnetic field
The magnetic field of the Earth is due to a magnetic dipole.

The magnetic field is given by

Be, = 2’u—(’r’:cos O(e sinf+e_cosb)
drr



Bye, = £ Gin O(e cos@—e_sin0)

4713
and

B=Be +B,e,

2 .
= ﬂ—‘)n:cos O(e sinf+e, cosO)+
4rr 4rr

Hym

3

sinf(e_cosf—e_sinb)

= % [2cosB(e, sinf+e, cosd)+sinb(e cosd—e_ sinb)]
zr

= f;:é [%sin 20 e +(3cos’O-1)e.]

where ¢ =0 .
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B=Be +B,e,

2 . ) .

= %cos O(e, sinfcosg+e sinfsing+e, cosbe,)

r

Hm . . .

+ Fsm O(e, cosbcosp+e, cosfsing—e,_sinb)

r
=™ 12cosO(e, sin 0 in Osi 0
= W[ cost(e sinfcosg+e sinfsing+e, cosbe,)

+sind(e, coscosp+e, cosfsing—e_sinb)]

= f;’; [ 3cos@sinfcos de +3cosBsinfsin @ e, + (3cos2 0—-1e.]
Note that
g; = 2;229 =2cotd =2tan @
where
¢:§—a

((Evaluation of the magnetic field of Earth

https://cdn.mos.cms.futurecdn.net/yCPyoZDQBBcXikqgxkeW2iJ-970-80.ipg




B, = =0.309217 x 10 T=0.309217 Oe

0

4rr
where
Ly =47x107 Tm/A (permeability of free space)
m, =7.79x10” Am?. (magnetic moment od the Earth)
r=R=6372.797 km. (radius of the Earth)

The magnetic moment is expressed by
m=I1(zR)’
or

M _6.27x 108 A.

7=

[ =

7R
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APPENDIX Analogy between the electric dipole moment and magnetic moment

(a) Electric dipole moment
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Fig.  The electric field due to the electric dipole moment p (along the z axis) at the origin.

Electric dipole moment, p: p=ql
Torque: t=pxE
Potential energy: U.,=-p-E
The electric field:

E =

1
3(p-e)e. — pl.
47r€or3[ (p-e)e. —p]

(b) Magnetic dipole moment



The magnetic field of a magnetic moment x (along the z axis) at the origin.

Fig.

Magnetic dipole moment, 4;

Torque:

Potential energy:

The magnetic field:

~B(u-e,)e, - ]

Hy
dzr

B=



