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Here we discuss the Ampere’s law and Biot-Savart law for the magnetic field arising 

from electric currents. These laws can be derived from the vector potential A, which is 

related to the magnetic field B as B A . For the gauge transformation such that 

'  A A , one can get the same B, where   is arbitrary scalar function. So A cannot 

be determined uniquely. In the Aharonov-Bohm effect (quantum mechanics), we realize 

that the vector potential A is more essential to the magnetism compared with magnetic field 

B. 

The Aharonov–Bohm effect is important conceptually because it bears on three issues 

apparent in the recasting of (Maxwell's) classical electromagnetic theory as a gauge theory, 

which before the advent of quantum mechanics could be argued to be a mathematical 

reformulation with no physical consequences. The Aharonov–Bohm thought experiments 

and their experimental realization imply that the issues were not just philosophical. 

 

1. Biot Savart law 

The magnetic field B is given by the integral of the contribution dB to from a length ds 

of a current I, 
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where r is the displacement vector from the current element to the point P. 0 is a 

permeability of free space. 
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((Note)) 

0 is the permittivity constant. 


0 = 8.854187817x10-12 C2/(N m2).  

 

The derivation of the formula of Biot Savart law will be derived later using the vector 

potential. 
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The contribution dB is in the direction d ds r , by the right-hand rule, this is 

perpendicularly out of the plane of paper for the point P. 

 

2. Magnetic field at the center point from a circular loop current 

We apply the Biot-Savart law to find the magnetic field at the center point P of a 

circular loop of radius r. The direction of B is perpendicular to the plane containing the 

loop and its center. 
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((Right-hand rule)) 

Grasp the wire in the right hand with the thumb pointing along the direction of the 

current. The fingers will then circle the wire in the sense of the direction of the B field. 



 

3. Magnetic field from a finite straight current wire  

 

 
 

We apply the Biot-Savart’s law to a finite length of straight current wire to find the 

magnitude at the point P (see Fig.). Note that ds x r points out of the page. The magnitude 

of ds x r is given by 
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The magnetic field at the point P is 
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or 
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Note: in this figure, 1> and 2<0. 

 

When 1 = /2 and 2 = -/2 in the above equation, we have 
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This formula can be derived from the Ampere’s law (later). In other words, the Ampere’s 

law can be derived from the Biot-Savart law. 

 

4. Magnetic field at the center of the square loop current 

The magnitude and direction of magnetic field due to a square current (side a). 

 

When 1 = /4, 2 = -/4, and z = a/2, we have 
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5. Magnetic field at a point on the axis of a circular current loop of radius R. 

We consider a point P on the axis of a circular current loop. 

 



 
 

 



 

By the symmetry, only the z component of the magnetic field due to a segment ds of the 

loop contributes to the net magnetic field. 
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where 
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((Note)) 

The point z/R = ½ is the point of inflection at which the curvature changes, 

0/ 22  zBz  at z/R = ½. 

 

In the limit of z>>R,  
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where mis the magnetic moment, )( 2RIm  . 

 

((Note)) 

From the Bio-Savart law, the magnetic field at the origin ( 0x y z   ) arising from  

the circulating current I around the z axis is 
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where 2A r  and IA   (magnetic moment). 

 

6. The magnetic field at a focal point of the parabola-shaped current path 

We consider a magnetic field at the focal point (a, 0), when the current I flows on the 

parabola (y2 = 4ax). From the Biot-Savart law, the magnetic field at the focal point is 

along the out-of-page direction. 
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We note that  sindsrd   and 
cos1

2
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a
r  (from the definition of the parabola, 

rar  2cos ), 

 

 
 



Fig. The parabola-shaped current path with y2 = 4ax in the x-scale, where a = 1. 

From the definition of the parabola, we have the lengths, PQ = PF. F is the 

focal point at (a, 0). 

 

7. Force between current wires 

7.1 Force between parallel currents 

A force between parallel currents is attractive. The proof is as follows. The magnetic 

field due to the current I1 is 
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Then the force per unit length of the wire flowing the current I2, is given by 
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following the right-hand rule. 

 
 

 

7.2.  Force between antiparallel current wires 

Force between antiparallel currents is the same magnitude but repulsive in 

comparison with the parallel case. 

 



 
 

8. The Biot-Savart law (general expression) 

8.1 Expression for the 3D system 

The magnetic field due to the current density J can be expressed as follows. 

 

 
 

From the Bio-Savart law, we have 
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with 
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where J (current per unit area) is the current density, da  is the cross section of the 

system, and sd dls e . Then we have 
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where ŝ  is the unit vector along the direction of s. 

 

8.2 Expression for the 2D system 

The current I flowing the cross section (area = dl ) is expressed by 
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where  is the thickness, K (= J) is the surface current density (A/m), and J is the current 

density (A/m2) 

 

 
 

Fig. surface current density K. The direction of d l  is perpendicular to that of ds. 

 

The magnetic field due to the surface current density is expressed by 
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with 

 

( ) ( ') 'Id dl ds da s K K r  

 

where dsdlda ' , K is the surface current density (current per unit length). 

 

9. Ampere’s law 

9.1 Ampere’s law: simple case 

We find a magnetic field outside of a long current wire (current I). The magnetic field 

lines of B go around the wire in closed circle is 
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using the Bio-Savart law. Since the final result does not depend on the radius of the circle, 

we surmise that the result is independent of the exact shape of the path used in going around 

the wire. The expression 

 

0d I  B s�   (Ampere’s law) 

 

is, in fact, a general theorem that holds true regardless of the exact path of integration. This 

theorem is called Ampere’s law. Note that I is the current enclosed by the path. 
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9.2 Example-: map of magnetic field 

 

 



 

Using the Ampere’s law, we can directly calculate the magnetic field around a 

circular path (radius r) surrounding an infinitely long wire carrying the current I. 
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We can write this equation in vector form. Remembering that B is at right angles both 

to I and to r, we have 
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((Mathematica)) 

We use the VectorFieldPlot of Mathematica for the map of the magnetic field produced by 

a long straight current wire (flowing out of page). 

 

 
 

((Feynman)) 



It is worth remembering that it is exactly 10-7, since this equation is used to define the 

unit of current, the ampere (A). At one meter from a current of 1 A the magnetic field is 

2x10-7 Wb/m2 = 2x10-7 T = 2.0 mGauss = 2.0 mOe. 

 

9.3 Example: map of magnetic field 

This figure shows the VectorFieldPlot of the magnetic field produced by two long wires 

carrying equal currents in opposite directions. The magnetic field lines always form closed 

loops. In other words, magnetic field lines never have end points 

 

 

 
 

9.4 Ampere’s law in differential form 

Using the Stoke’s theorem, the Ampere’s law can be rewritten as 

 

0( ) ( )d d I d         B s B a J a� � �  

 

or 
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This expression is one of the Maxwell’s equations. 

 

10. Magnetic field inside a long straight wire with current 

 

 
 

A long, straight wire of radius R carries a steady current I that is uniformly distributed 

through the cross-section of the wire. Find the magnetic field a distance r from the center 

of the wire in the regions r≥R and r≤R. 

 

(a) For r≥R,  
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(b) For r≤R,  

The current I’ passes through the plane of the circle (r<R). 
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Using the Ampere’s law, we have 
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11. The magnetic field of a solenoid 

The magnetic field is produced by the current in a infinitely long, tightly wound helical 

coil of wire (called solenoid) is obtained using the Ampere’s law; 
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or 

 

)(0 nlIBl  , or nIB 0  

 

where n is the number of turns per unit length. 

 

 
 

Next figure shows the field lines associated with the current in an ordinary solenoid. Note 

that there is an outward leakage of field lines between the wires, and that in the region near 

the center the field lines tends to be parallel to the axis.  
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((Link)) 

 

Scientific visualization and graphics with Mathematica. Magnetic field of solenoid 

calculated using Mathematica 

http://members.wri.com/jeffb/visualization/solenoid.shtml 

 

 



 

12. Magnetic field of a toroid 

A toroid is a solenoid that is curved until two ends meet, forming a sort of hollow 

solenoid. Using the Ampere’s law, we can calculate the magnetic field inside the toroid, 
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where N is the total number of turns. 

 

 
Note that the magnetic field is dependent on r.  

 

13. A current-carrying coil as a magnetic dipole 

The magnetic field on the axis of a circular loop current (NI) is approximated by 
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where 2RA   is the area of the circle and NIA  is the magnetic dipole moment.  

 



 

14. Vector potential A and scalar potential  
We introduce the vector potential A: 
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where  is a scalar potential. 

 

Then we have 
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In the simple case, we have 
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15. Gauge transformation 

We have a gauge transformation 
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Therefore ( ', ')A  and ( , )A  gives the same expression for E and B. 

 

16. Coulomb gauge 

Here we use the Coulomb gauge such that 
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The solutions of A and are obtained by 

 

30 ( ')
( ) '

4 | ' |
d







J r
A r r

r r
, 3

0

1 ( ')
( ) '

4 | ' |
d








r

r r
r r

  

 

Here we use the Green function such that 
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((Note-2)) Green function method 

The above formula can be derived using the Green function method. 
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The solution of this equation is given by 
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17. The expression of the vector potential 

The vector potential is expressed by 
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18. Derivation of Ampere’s law from the vector potential 

We now consider the derivation of A for the one-dimensional system (current wire 

along the z axis). 
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The vector potential A has only the z component. 
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Since A = 0 and A = 0, and Az is only dependent on r,  
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in the cylindrical coordinates (usually we use r   and   ). Then we have 
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((Mathematica)) 

 

 
 

((Mathematica)) 

 
 

19. Derivation of the Biot-Savart law from the vector potential 

We use the formula 
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to find the vector potential dA at point (r, , 0) [cylindrical coordinate] from the small 

segment of the current (Ids) pointing in the positive x axis at the origin (0, 0) [see Fig.]. 

Note that usually we use the notation r   in the cylindrical coordinate. 
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The magnetic field B is obtained as 
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((Mathematica)) 

 

 
 

20. Magnetic dipole moment (I) 



In this Fig. the polar coordinate of the observation point P is (r, , 0). We assume that 

the circular loop current is formed of the pair of current elements, C (a, /2, ) and D (a, 

/2, -). The sum of vector potentials from these current elements has a direction of e1. 
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Suppose that r>>a. We use the Legendre generating function 

 



...])cos(sin)()cos(sin)cos(sin[
1

))(cos(sin
1

)coscos(sin2)(1

11

)coscos(sin2

1

2

2

10

0

2
22





















P
r

a
P

r

a
P

r

r

a
P

r

r

a

r

arraar

n

n

n
 

where Pn(x) is the Legendre polynomial,  
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((Mathematica)) 

 

 
 

In the approximation up to 1/r, we have 
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where 2 ˆa Izm  is the magnetic dipole moment (or simply magnetic moment) of circular 

current loop. 

 

21. Magnetic field from the magnetic dipole moment (more simple method) 

The magnetic vector potential A due to a localized current at large distance can be 

evaluated relatively easily. We show that A is obtained as 
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where m is the magnetic moment due to the small circular current and B A .  
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The expression for the vector potential A is applied to current circuit by making the 

substitution: J(r’)d’ → Ids, 
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The first integral vanishes. The second integrand is one term in the expansion 
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The magnetic field can be calculated as 
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If ˆmzm  (along the z axis), in the Cartesian coordinate we have 
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or in spherical coordinates, we have 
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((Mathematica)) VectorFieldPlot (zx plane) using the Mathematica 

The map of he magnetic field produced by a magnetic dipole moment directed along the z 

axis (x-z plane). 



 

 
 

22. Vector potential from magnetic moment (Mathematica) 

We start with a vector potential given by 
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((Note)) 

 

Experimental result: magnetic field distribution from a spherical magnet (dipole 

field) 

(from the book of O.D. Jefimenko, Electricity and Magnetism). 
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Fig. Magnetic field of a spherical magnet (dipole field). 

 

 

23. Magnetic scalar potential of magnetic moment 

We note that 0 B J . When 0J , 0 B . In this case B can be expressed 

by the gradient of a scalar potential, such that 
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* , which is called the magnetic scalar potential, satisfies Laplace’s equation.  

 

The expression for the scalar potential of a magnetic dipole is particularly useful.  

 

0 3
( )

4 r



    

 

m r
B r ,  

*

0( )B   r  

 

Magnetic scalar potential 

 

*

34 r






m r

  

 

B A  

 

0

34 r







m r
A   (electric dipole moment) 

 

Thus we have 

 

0

3

0

3

0

3

*

0

4

( )
4

( )
4

r

r

r







 

 

   
 

  

   

  

B A

m r

r
m

r
m

 

 

with 

 

*

34 r






m r

 

 

If the magnetic moment m is directed along the z axis, 
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in the z-x plane (y = 0). 

 



 
 

24. Vector potential of the magnetic moment 

The vector potential A is given by 
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in the spherical coordinates. The magnetic field B is evaluated from  
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with the use of the unit vectors of cartesian co-ordinate. When 0   (in the z-x plane), 

we have 
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The torque is given by 
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25. Magnetic flux arising from the magnetic dipole moment 

The magnetic flux is related to the vector potential A by 
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Using the above example, we show that 
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26. Vector potential and magnetic field due to a straight infinitely long current 

wire 
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We calculate the magnetic field due to an infinitely long electric wire in which the 

current I flows. 

 

We first calculate the vector potential, 
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which depends only on . The magnetic field B can be calculated using the formula 
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using the cylindrical coordinate. Noting that 
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we get the final result 
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in the limit of L . 

 

27. Vector potential for a solenoid 

A solenoid has radius R, current I, and n turns per unit length. Given that the magnetic 

field is B = μ0nI inside and B = 0 outside, find the vector potential A both inside and 

outside. Do this in two ways as follows. 

(a) Find the magnetic field inside and outside the solenoid using the Ampere’s law. 

(b) Use the expression for the curl in cylindrical coordinates to find the forms of A that 

yield the correct values of B A  in the two regions. 



[Problem 6-18, E.M. Purcell and D.J. Morin, Electricity and Magnetism, 3rd 

edition (Cambridge, 2013)) 

 

 

 
 

There is a magnetic field due to the infinitely long solenoid (the flowing current is I). 

The magnetic field inside the solenoid is 
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Outside the solenoid, there is no magnetic field; 0B  . 
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We now calculate the magnetic field using the formula: 
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The magnetic field B can be calculated as 
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We note that there is some arbitrariness in choosing the form of A   
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as an addition of the form /C  , where C is a constant, since 
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28. Ampere’s law and vector potential 

From the Ampere’s law, we have 
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29. Interaction between magnetic dipole moments. 

We now consider the magnetic interaction between two magnetic moments m1 and m2. 

The interaction is given by a Zeeman energy 
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where B1 is the magnetic field due to the moment m1, 
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Two dipoles have an attractive force between them if they are arranged end to end a 

repulsive force if they are oppositely arranged end to end. This result is the explanation of 

the familiar result that like magnetic poles repel and unlike attract. 

 

Dipole configuration (see the figure below) 
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30. Torque due to the magnetic dipole moment 

Here we show that the torque due to the magnetic moment m in the presence of a 

uniform magnetic field is given by 

 

 τ m B . 

 

The force on an infinitesimal element of a charge-carrying conductor in the presence of a 

magnetic field B is given by 

 

d Id F s B  

 

The infinitesimal torque is 

 

d d τ r F  

 

If the circuit in question is represented by the contour C, then the torque on a complete 

closed circuit is 

 

( )d I d    τ τ r s B� �  

 

Note that 



 

( ) ( ) ( ) 0d d d        r s B s B r B r s , (formula) 

 

But we have 

 
[ ( )] ( ) ( ) 0d d d        r r B s r B r s B  

 

where B is constant and sr dd  . 

 
( ) ( )d d    r s B s B r  

 

Then we have 
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( ) ( )
2

d d     r s B B r s  

 

leading to 

 

( ) ( )
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I
I d d        τ r s B r s B m B� �  

 

The magnetic moment is defined by 

 

( )
2

I
I d  m A r s�  

 

where A is the area enclosed by the curve. The direction of A is perpendicular to the plane. 

 

31. The field of a magnetized object 

 

 



 

The vector potential at the point P due to the magnetic dipole moment m is given by 
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M is the magnetic dipole moment per unit volume. 
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Using the formula 
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we get 
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Here we use the formula 
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Definition of current density 
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where n is the normal unit vector. The unit of Jb is 23
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 (surface current density). The vector potential is now given by 

 

0 0( ') ( ')
( ) ' '

4 ' 4 '

b b

V S

K
d da

 


 
 

  
J r r

A r
r r r r

 

 

32. Physical meaning of magnetization current 

The magnetization M provides us with a macroscopic description of the atomic currents 

inside matter. Each atomic current circuit produces a magnetic moment. The magnetization 

M is defined as the magnetic moments per unit volume.  

 

 
 

 
First we consider a simplified model of magnetized matter. It consisted of atomic loop 

currents circulating in the same direction, side by side. If the magnetization is uniform, the 

currents in the various loops tend to cancel each other out, and there is no net effective 

currents in the interior of the material. Only at the surface there is a net current always 

going in the same direction.  



 
 

If the magnetization is non-uniform, the cancellation will not be complete. As an example 

of non-uniform magnetization, we consider the abrupt change in magnetization shown in 

the above figure. If we focus our attention on the region between the dotted lines, it is 

evident that there is more charge moving down than there is moving up. This we call the 

magnetization current. Thus, even though there is no charge transport, there is an effective 

motion of charge downward, and this current can produce a magnetic field. 

 

33. Magnetic moment from surface current of cubic form 

 
 

The volume of cube is given by 



 
3V a  

 

The magnetic moment m is given by 

 
3 2

bm Ma I a   

 

where a is the length of the side a for cube. Thus we have 

 

bI Ma  

 

Note that 

 

b  K M n,  bK M  

 

where the direction of M is perpendicular to that of the vector n. The surface current is 

 

b bI K a Ma   

 

34. Magnetic moment from the surface current of disk-like form 

 

 
 

The magnetic moment m is given by 

 



2 2 2( ) ( )bm M R l I R K l R      

 

leading to 

 

bI Ml K l   

 

bK M , 

 

b  K M n 

 

where M is the magnetization, the magnetic moment per unit volume. 

 

Note that the magnetic field at the center is  
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When R  and l   , 0B . Using the relation 

 

0( ) 0B H M    

 

we have 

 

H M  
 

which means that the demagnetization factor is 1dN  . 

 

35. Surface current and boundary of B-field 

 

 
 

The charge contributing to the surface current 

 
( )Q v t l    

 

The surface current: 
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bK is the unit of [A/m]. 

 

Boundary condition: 

 

( ) d d    B a B s� �  

 

 

2 1 0( )t bl K l   B B  

 

or 

 

2 1 0( ) ( )t b  B B K n  

 

 
 

36. Equivalent current density of magnetization 

We show that the volume current and surface current due to magnetic moment is 

 

b J M ,  b  K M n 

 

 
 



Fig. The magnetic dipole moment  of a current loop with area A 

 

A circular current I has a magnetic moment  given by 

 
IA  

 

where A is the area of the current loop.  

We now consider a small rectangular block inside of a magnetized material. We take 

the block so small that we can consider that the magnetization is uniform inside it. If this 

block has a magnetization Mz in the z direction. The total magnetic moment is  

 
IacacbMabcM zz  ][)(  

 

So the surface current going around on the vertical faces is 

 
bMI z  

 

 
 

A small magnetized block is equivalent to a circulating surface current 

 



 
If the magnetization of two neighboring blocks is not the same, there is a 

net surface current in between. 

 

Now suppose that we imagine two such blocks (denoted by 1 and 2) next to each other. 

The block 1 has a magnetization Mz, while the block 2 has a magnetization 
zz MM  . The 

block 1 will produce a surface current I1 flowing in the positive y direction. The block 2 

will produce a surface current I2 flowing in the negative y direction. The total surface 

current in the positive y-direction is given by 
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Then the current density Jy is obtained as 
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M
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Fig. Two blocks, one above the other, may also contribute to Jy. 

 

Next we imagine two such blocks (denoted by 1 and 2) next to each other. The block 1 

has a magnetization Mx, while the block 2 has a magnetization xx MM  . The block 1 

will produce a surface current I1 flowing in the negative y direction. The block 2 will 

produce a surface current I2 flowing in the positive y direction. The total surface current in 

the positive y-direction is given by 
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The current density Jy is obtained as 
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M
J x

y 
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The resulting current density along the y direction is 
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or 

 

b J M  



 

which also means that 

 

0b J  

 

From the continuity of equation, this implies that there is no magnetic pole. 

 

37. Magnetic field due to the uniformly magnetized cylinder 

The magnetic field B due to the uniformly magnetized cylinder is given by 

 

0B M  

 

The proof is as follows. 

 

 
 

Suppose that the cylinder is uniformly magnetized. The direction of the magnetization 

M is along the z axis. We now consider a small disk (area A and thickness dh) in the cylinder. 

The total magnetic moment inside the disk is 

 
dIAAdhM  )(  

 

where dI is the equivalent surface current. From this we have 

 

MdhdI   

 

This current flowing on the surface of the cylinder forms a solenoid coil with the number 

of the coil’s turns per unit length given by n = 1/(dh). The magnetic field B in side the long 

solenoid with sufficiently long length is 
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ndIB 0000
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The magnetic field B outside the cylinder is equal to zero. 

 

 
 

38. Magnetic field due to the uniformly magnetized disk 

The magnetic field due to the uniformly magnetized disk is given by 

 

B = 0. 

 

The proof is given as follows. 

 
 

We consider the small disk (radius a and thickness dh). The total magnetic moment 

inside the disk is 

 

)()( 22 aIdhaM    

 

where I is the surface current. From this we have 

 

MdhI   



 

________________________________________________________________________ 

((Another method)) The surface current density Kb is related by the magnetization M by 

the relation 

 

b M   K M n e  

 

Then the surface current is obtained as Kb dh = Mdh 

________________________________________________________________________ 

Using the Biot-Savart law, the magnetic field B at the point P can be calculated as  
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When z = 0, we have 
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When dh → 0 and a→∞, )( PB z
0. 

 

 
 

39. Example 

We now consider two of a part of circular cone which are magnetized with the 

magnetization M. What is the magnetic field at the center O? 
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from one of the circular cone. Taking into account of the contributions from the two cones, 

we have 
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where 

 

)ln(0
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b
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Bx(O) has a maximum (= 0.3849 0M0) at 
3

1
cos   ( = 54.6356º). 

 

 
 

40. Magnetic field due to the uniformly magnetized sphere 

The magnetic field due to the uniformly magnetized sphere is given by 

 

0
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3
B M  

 

The proof is as follows. We consider the uniformly magnetized sphere with radius R. The 

surface current Kb is related by M by the relation 

 

ˆsinb M   K M n  

 

In other words, the surface current in the surface region ( – +d) is given by 
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Using the Biot-Savart law, we can calculate the magnetic field B at the center O as 
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Then we have 
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Note that in general the internal field is constant and is given by 

 

02

3


B M  

 

any place inside the sphere. 

 

41. Understanding of M using solenoid 

 



 
 

We now consider the magnetic field of the solenoid. The total number of turns is N; 
d

L
N  , 

where d is the length of the coil along the cylindrical axis. Using the Ampere’s law, we 

have 

 

NiBL 0  

 

or 
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where i is the current flowing in the solenoid coil. 

The magnetization M is given by 
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Then we have the relation between B and M, given by 

 

MB 0  

 

42. Vector potential due to the magnetic moment 

The vector potential from the magnetic moment m is 
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The vector potential from the magnetization vector M is 
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Using the relation 
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we get 
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We note that 

 

( ') 1 1
' ' ( ') ( ') '

' ' '
      

  
M r

M r M r
r r r r r r

  

 

or 



 

1 1 ( ')
( ') ' ' ( ') '

' ' '
     

  
M r

M r M r
r r r r r r

 

 

Thus we hav e 
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Here we use the following formula 

 
3( )d d   v r v a  

 

((Proof)) 

We use the Stokes theorem, 

 
3( )d d       v C r C v a  

 

where C  is a constant vector. 
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Then we have 
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________________________________________________________________________

__ 

Using this theorem, we get 
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The volume current is defined by 

 

( ) ( )b J r M r , 



 

The surface current is defined by 

 

( ) ( )b  K r M r n 

 

Thus we get the expression of the vector potential 
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This is compared with the vector potential in the presence of a free current density fJ  
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The current density is given by 

 

f b J J J . 

 

43. Auxiliary field H 

43.1 Definition 

The current density is given by 

 

b f J J J  

 

where Jf is a free current density and Jb is a current density due to the magnetization 

(bound). 
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We define the field H as 
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where 

 

( ) fd d I     H a H s� �  

 

and If is the free currents enclosed inside the current path. The field H permits us to express 

Ampere’s law in terms of the free current alone. 
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((Note)) The unit of H is as follows. 
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43.2 Physical meaning of H 

 

 
 

 
 

We now assume that the magnetization at the point P is given by M. The equivalent 

current dI flowing the side face with the height dh, is obtained as 

 



cos sdI Mdh Mds d   M s  

 

where Ms is the tangential component of M along the ds direction. 

From the Ampere’s law, we have 
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where i is a true current. 

Here we introduce a new vector H which is defined by 

 

0 0'   H B B M  

 

Then we have 

 

d i  H s�  

 

This equation is valid even for the magnetic materials. Note that if M = 0,  

 

0B H  

 

44. Magnetic susceptibility 

44.1 Definition 

In order to solve problems, it is essential to have a relationship between M and H, or 

equivalently, a relationship between M and one of the magnetic field vectors. These 

relationships depend on the nature of the magnetic materials and are usually obtained from 

experiment. 

In a large class of materials there exists an approximately linear relationship between 

M and H. If the material is isotropic as well as linear, 

 

mM H 

 

where m is called the magnetic susceptibility. If m is positive, the material is called 

paramagnetic susceptibility, and if m is negative, the material is diamagnetic. Then 
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44.2 The method to determine B and M from H 

The method is similar to the discussion for the derivation of D, E and qb in the dielectric 

system. First we determine the auxiliary field H by using the formula 
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Next we calculate B using the relation 
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Then we calculate M using the relation 
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APPENDIX-A  Spherical coordinates 
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This can be described using a matrix A as 
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or by using the inverse matrix A-1 as 
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in the spherical coordinate systems. 
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The divergence is given by 
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APPENDIX-B Cylindrical coordinates 

The unit vectors are written as 
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The above expression can be described using a matrix A as 
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or by using the inverse matrix A-1 as 
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The differential operations involving   are as follows. 
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where V is a vector and  is a scalar. 
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APPENDIX-C Magnetic field of the Earth 

C.1 Magnetic moment of the Earth 

 

 
 

Halliday and Resnick; 

 

 = 8.00 x 1022 A m2 

 



 
 

C.2 Magnetic axis and geograpic axis 

A freely suspended magnet always points in the North-South direction even in the 

absence of any other magnet. This suggests that the Earth itself behaves as a magnet which 

causes a freely suspended magnet (or magnetic needle) to point always in a particular 

direction: North and South. The shape of the Earth’s magnetic field resembles that of a bar 

magnet of length one-fifth of the Earth’s diameter buried at its center. 

The South Pole of the Earth’s magnet is in the geographical North because it attracts 

the North Pole of the suspended magnet and vice versa. Thus, there is a magnetic S-pole 

near the geographical North, and a magnetic N-pole near the geographical South. The axis 

of the Earth’s magnet and the geographical axis do not coincide. The axis of the Earth’s 

magnet is inclined at an angle of about 11.5° with the geographical axis.  

 

C.3 Cause of Earth’s magnetism: 

It is now believed that the Earth’s magnetism is due to the magnetic effect of current 

which is flowing in the liquid core at the center of the Earth. Thus, the Earth is a huge 

electromagnet. 

 

1. Declination 

2. Angle of dip (or inclination) 

 

 



 
 

 

The vertical plane passing through the axis of a freely suspended magnet is called 

magnetic meridian. The direction of the Earth’s magnetic field lies in the magnetic 

meridian and may not be horizontal. The vertical plane passing through the true 

geographical North and South (geographical axis of Earth) is called geographical meridian. 

The angle between the magnetic meridian and the geographical meridian at a place is called 

declination at that place. 

 

 
 

C.4 Angle of dip (or inclination) 

If we take a magnetic needle which is free to rotate in the vertical plane, then it will not 

remain perfectly horizontal. The compass needle makes a certainangle with the horizontal 

direction. In fact, in the Northern Hemisphere of Earth, the North Pole of the magnetic 

needle dips below the horizontal line. At any place, the magnetic needle points in the 

direction of the resultant intensity of the Earth’s magnetic field at the place. 

 



 
 

C.5 Magnetic field due to the magnetic moment 
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Note that the vertical component (Br) is directed inward in the North Hemisphere. 

The angle between the magnetic field and the surface of the Earth is called the dip 

(inclination). We define the angle of dip as 
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where  is the latitude. 

 

D. Earth magnetic field 

The magnetic field of the Earth is due to a magnetic dipole. 

 

 
 

The magnetic field is given by 
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where 0  . 

 



 
 

3D case 
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Note that 
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((Evaluation of the magnetic field of Earth)) 
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6372.797r R  km.  (radius of the Earth) 

 

The magnetic moment is expressed by 
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APPENDIX Analogy between the electric dipole moment and magnetic moment 

 

(a) Electric dipole moment 

 



 
 

Fig. The electric field due to the electric dipole moment p (along the z axis) at the origin. 

 

Electric dipole moment, p:  p ql  

 

Torque:     τ p E  

 

Potential energy:   EU   p E  

 

The electric field: 
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(b) Magnetic dipole moment 
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Fig. The magnetic field of a magnetic moment  (along the z axis) at the origin. 

 

Magnetic dipole moment, ;   IA   

 

Torque:     τ μ B  

 

Potential energy:   BU   μ B  

 

The magnetic field: 
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