University of Anbar College of Engineering Dept. of Electrical Engineering

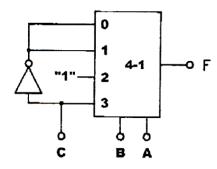
Lab. Name: Multiplexer Circuit

Experiment no.: 8

Lab. Supervisor: Arrak –M-Idan

Multiplexer Circuit

OBJECTIVE


Understanding the operating principles and construction of multiplexers.

Summary

Multiplexer, or MUX, is a logic circuit that select and route any number of inputs to a single output. One of the multiple inputs are selected by the selector gate and routed to the single output. The number of selector gates determine the capacity of a multiplexer. For example, if a certain MUX has only one selector gate, it is referred to as a "2 line-to-1 line MUX" because one selector can only select from two inputs.

A MUX with 3 selector gates is called "8 line-to-1 line MUX", since 3 selectors are capable of selecting an output from 8 inputs (2³=8). MUX is also referred to as "Data Selector" because it selects one output from among many inputs.

Function expression, such as $F(CBA)=\Sigma(0, 1, 2, 6, 7)$, can be easily executed on MUX. The function "F" generates the sum of products (CB+CB) from states 0, 1, 2, 6, 7. Refer to the 4 line-to-1 line MUX below, the output is determined by states of selectors A, Band C. When CBA=000, 001, 010, 110, 111 the output F is 1. In all other states F=0.

Lab. Name: Multiplexer Circuit

Experiment no.: 8

Lab. Supervisor: Arrak –M-Idan

EQUIPMENTS REQUIRED

KL-31001 Digital Logic Lab, Module KL-33006

PROCEDURES

- (a) Constructing a 2-to-1 Multiplexer
 - 1. Block e of module KL-33006 will be used as a 2-to-1 MUX.

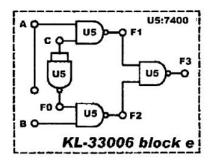


Fig. 2-71

- Connect inputs A, B to Data Switches SW0, SW1; selector C to SW2. Connect output F3 to Logic Indicator L0.
- 3. Follow the input sequences in Table 2-34 and record states of F3. Which input (A or B) determines the output?

C	В	A	F3
ō	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	O	1	
1	1	0	
1	1	1	

Table 2-34

- (b) Using Multiplexers to Create Functions
 - Block f of module KL-33006 will be used in this section of the experiment to create functions.

Lab. Name: Multiplexer Circuit

Experiment no.: 8

Lab. Supervisor: Arrak –M-Idan

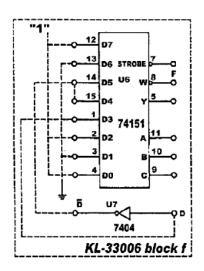


Fig. 2-72

2. Use U6 (74151) to create this function:

$$F(D, C, B, A) = \Sigma(0, 2, 4, 5, 7, 8, 10, 11, 15)$$

Place connection leads according to Fig. 2-72 to complete the function shown above. Since D, C, B, A has 16 possible variations and the 74151 has only 8 variations, D will be used as the data input.

Connect inputs D, C, B, A to Data Switches SW3, SW2, SW1, SW0
respectively. Connect output Y to Logic Indicator L0. Follow the input
sequences below and record output states.

D	С	В	Α	Υ
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
D 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	C 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1	B 0 0 1 1 0 0 0 1 1 0 0 0 1 1	010101010101	
1	1	1	1	

Lab. Name: Multiplexer Circuit

Experiment no.: 8

Lab. Supervisor: Arrak –M-Idan

(c) Constructing a 8 to 1 Multiplexer Circuit with TTL IC

 U6 (74151) on block f of module KL-33006 will be used in section of the experiment.

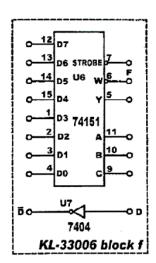


Fig. 2-73

2. Refer to the data book for specifications of the 74151.

When CBA = "000", data at D0 is send to output F.
When CBA = "010", data at D2 is send to output F.
When CBA = "111", data at D7 is send to output F.
The IC will function properly only when STROBE = "0".
Y will remain "0" when STROBE = "1".

 Connect inputs D0~D7 to DIP Switch 1.0~1.7; inputs C, B, A to DATA Switches SW2, SW1, SW0. Follow the input sequences in Table 2-35, adjust D0~D7 and record output states. Determine on which input among D0~D7 does F depend on.

С	В	Α	F
0	0	0	
0 0 0	0	1	
0	1	0	
0	1		
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Table 2-35

University of Anbar College of Engineering Dept. of Electrical Engineering

Lab. Name: Multiplexer Circuit

Experiment no.: 8

Lab. Supervisor: Arrak –M-Idan

DISCUSSION:

1- Use the 74151 to create this function shown below $F(C,B,A)=\sum (1,3,5,6)$?

- 2- Use the 74151 to create this function shown below $F(D,C,B,A)=\sum (1,2,5,6,7,10,12,13,15)$
- 3- Use 74150s and any other logic necessary to multiplex 32 date lines on to a single date-output line ?
- 4- Design 16x1 Mux using a suitable Mux?
- 5- Design equation $F(A,B,C,D) = \sum (0,1,4,5,7,10,11,15)$ using 4x1 Mux?
- 6- Design 4x1 Mux using Enable pin at low active?