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4 APPLICATIONS OF
DIFFERENTIATION

Introduction

We use the derivative to determine the maximum and minimum values of particular

functions (e.g. cost, strength, amount of material used in a building, profit, loss,

etc.).

Change of velocity with time

Displacement
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Simple circuit with light

flow of tank

Maximum and Minimum Values

SN N
s II‘ \\1:/ Ir -»r/IJ:
-, o~

Lcal and aheniple mismom

Engineering mechanics

Unstretched length

}-4 -k—h‘-l —

61



University of Anbar Calculus |

College of Engineering By Group of Calculus |
Department(s): Dep. Of Elec. Eng. Phase: 1
. Semester | (2018-2019)
Summary
Mechanics

dx . ) .
V=g where v = velocity, x = distance, r = time.

dw ) . .
a= a where a = acceleration, v = velocity, ¢ = time.
f
. dW X .
F = e where F = force, W = work done {or energy wsed), r =

X
distance moved in the direction of the force.

o dp . R
F= d_J where F = force, p = momentum, ¢ = time.
t

dW
= where P = power, W = work done (or energy used), r =

Llime.
dE i N .
& =" where E = kinetic energy, v = velocity, p = momentum.
o
Gases
dw , B
e p. where p = pressure, W = work done under isothermal

expansion, ¥ = volume.

Circuits
dQ

I = O where J = cumrent, (! = charpe, ¢ = time.

(odl
V= {I—) where V' is the voltage drop across an inductor, L =
L dr =

inductance, | = current, ¢ = time.

Electrostatics
¥

E = —rjj—. where V' = potential, £ = electric field, x = distance.
X

Maximum and Minimum Values

Some of the most important applications of differential calculus are optimization
problems, in which we are required to find the optimal (best) way of doing

something.

These problems can be reduced to finding the maximum or minimum values of a

function.
Let’s first explain exactly what we mean by maximum and minimum values.
We see that the highest point on the graph of the function f shown in Figure is the

point (3,5). In other words, the largest value of f is f(3)= 5. Likewise, the smallest

value is f(6)= 2. We say that f (3)=5 is the absolute maximum of fand f (6)=2 is
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the absolute minimum.

In general, we use the following definition

m Definition Let ¢ be a number in the domain D of a function f. Then f(c) is
the

« absolute maximum value of f on D if f(c) = f(x) for all xin D.

« absolute minimum value of f on D if f(c) =< f(x) for all xin D.

Example 48 The function f(x) = cos x takes on its (local and absolute) maxi-
mum value of 1 infinitely many times, since cos 2rw = 1 for any integer n and
—1 = cos x = 1 for all x. (See Figure ) Likewise, cos(2rn + 1)} = —1 is its mini-
mum value, where n is any integer.

A ZeaN

Local and absolute mamimum
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Read from Left to Right

If f(x2) > f(x1) then the function is called_increasing on its interval
If f(x2) < f(x1) then the function is called decreasing on its interval

If f(x2) = f(x1) then the function is called constant on its interval

y = flx)
Y (max) Point of
A inflexion B
X
X
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Inflectio

Point

-]

Concave
Downward

is

Concve up when y" >0

Concave down when y" <0

Example 49:

Mimimum value 0, no maximum

Concave
Upward
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No mimimum, no maximum
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Example 50: The graph of the function

flx) =3x* — 16x* + 18x? —-1=x=4

is shown in Figure . You can see that f(1) = 5 is a local maximum, whereas the
absolute maximum is f{—1) = 37. (This absclute maximum is not a local maximum
because it occurs at an endpoint.) Also, f(0) = 0 is a local minimum and f(3) = —27
is both a local and an absolute minimum. Note that f has neither a local nor an absolute
maximum at x = 4.,

~1,37) ¥=3x*— 16x° + 18x2

We have seen that some functions have extreme values, whereas others do not. The

following theorem gives conditions under which a function is guaranteed to possess extreme
values.

Extrema of a function (maxima and minima)

[2] The Extreme Value Theorem If f is continuous on a closed interval [a, b],
then f attains an absolute maximum value f(c) and an absolute minimum value
f(d) at some numbers ¢ and d in [a, b].

The Second Derivative Test Suppose f" is continuous near c.
(a) If f'(c) = 0and f"(c) = 0, then f has a local minimum at c.
(b) If f'(c) = 0and f"(c) < 0, then f has a local maximum at c.
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Example 51: Discuss the curve y = x* - 4x3 with respect to concavity, points of

inflection, and local maxima and minima. Use this information to sketch the curve

SOLUTION If f(x) = x* — 4x°, then
f(x) =4x* — 12x* = 4x%x - 3)

frx) =12x2 — 24x = 12x(x — 2)

To find the critical numbers we set f'(x) = 0 and obtain x = 0 and x = 3. (Note that f"
is a polynomial and hence defined everywhere.) To use the Second Derivative Test we

evaluate f" at these critical numbers:

fro)y=0 ff3)=36=0
Since f'(3) = 0and f"(3) = 0, f(3) = —27 is a local minimum. [In fact, the expres-
sion for f'(x) shows that f decreases to the left of 3 and increases to the right of 3.]
Since f"(0) = 0, the Second Derivative Test gives no information about the critical
number (). But since f'(x) << 0 for x << 0 and also for 0 < x << 3, the First Derivative
Test tells us that f does not have a local maximum or minimum at (.
Since f"(x) = 0 when x = U or 2, we divide the real line into intervals with these

numbers as endpoints and complete the following chart.

Interval Frix)=12x(x — 2) Concavity
(—o, 0) + upward
{0, 2) - downward
(2, =) + upward

The point (0, 0) is an inflection point since the curve changes from concave up
to concave downward there. Also (2, —16) is an inflection point since the curve

changes from concave downward to concave upward there.
Using the local minimum, the intervals of concavity, and the inflection points,

\ y=xt— 4y’
|III |
0o |
y t i t —
inflection \ I3 *
points \ I|
\II‘IIIII I
I
L' |
(2,-16) f
\
\/
(3,—27)
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@ Definition A critical number of a function f 1s a number ¢ in the domain of
f such that either f'{c) = 0 or f'(c) does not exist.

Example 52: Find the critical numbers of f(x) = x¥*(4 — x).
SOLUTION The Product Rule gives

34 — x)

SXEJ-'S

Fi3) =xP(—1) + @ — 0ExY) = —x¥ +

—S5x+34—-x 12— 8x
525 S

[The same result could be obtained by first writing f(x) = 4x*° — x*°.] Therefore
flix) =01f 12 — 8x = 0, that is, x = %, and f'(x) does not exist when x = 0. Thus the
critical numbers are 5 and 0. [

Procedures for finding and distinguishing between stationary points:
1. Giveny = f(x), determine dy/dx (i.e. f'(x) ).
2. Let dy/dx = 0 and solve for the values of x.
3. Substitute the values of x into the original function y= f(x) to find the
corresponding y ordinate values. This would establish the nature of stationary

points.

4. Find d?y/dx? and sub into the values found in 2 above. If the result is:

i.  Positive then min. point

ii. Negative then max. point

ili. Zero then its point of inflexion (inflection)

5. Determine the sign of the gradient of the curve just before and just after the
stationary points. If the sign changes for the gradient of the curve is:

a) Positive to negative then point is max.

b) Negative to positive then point is min

c) Positive to positive or negative to negative then it's a point of inflection.
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Example 53: Find the local minimum and maximum values of the function f

fo=x>=3x*+4

Solution

f(’x)=3X2_6X , (”X)=6X_6
flxy=0 0=3x"-6x

X=00r3x—-6=0 thenx=2

Finding values of f"(x) atx =0, 2

floy=-6 Relative maximum point

fl2)=6 Relative minimum point

Summary of Curve Sketching

The following checklist is intended as a guide to sketching a curve y = f (x) by hand.
Not every item is relevant to every function. (For instance, a given curve might not
have an asymptote or possess symmetry.) But the guidelines provide all the
information you need to make a sketch that displays the most important aspects of the

function
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1

A. Domain It’s often useful to start by determining the domain D of f, that is, the set

B.

of values of x for which f(x) is defined.

Intercepts The y-intercept is f(0) and this tells us where the curve intersects the
y-axis. To find the x-intercepts, we set y = 0 and solve for x. (You can omit this step
if the equation is difficult to solve.)

Symmetry

(i) If f(—x) = f(x) for all x in D, that is, the equation of the curve is unchanged
when x is replaced by —ux, then f is an even function and the curve is symmetric
about the y-axis. This means that our work is cut in half. If we know what the curve
looks like for x = 0, then we need only reflect about the v-axis to obtain the com-
plete curve [see Figure -(a)]. Here are some examples: y = x*,y = x*, y = | x|, and
¥ = cos X.

(i) If f(—x) = —f(x) for all x in D, then f is an odd function and the curve
is symmetric about the origin. Again we can obtain the complete curve if we know
what it looks like for x = (. [Rotate 180° about the origin; see Figure . (b).] Some
simple examples of odd functions are y = x,y = x°,y = x°, and y = sin x.

Y

D

D

(a) Even function: reflectional symmetry

¥i

\ //"ﬂ\\
0

(b) Odd function: rotational symmetry

uy

By Group of Calculus |
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(iii) If f(x + p) = f(x) for all x in D, where p is a positive constant, then f is
called a periodic function and the smallest such number p is called the period. For
instance, y = sin x has period 27 and y = tan x has period #r. If we know what the
graph looks like in an interval of length p, then we can use translation to sketch the
entire graph (see Figure ).

¥ period p

a—p 0| a a+p a+2p X

D. Asymptotes

(i) Horizontal Asymptotes. Recall from chapter 2 that if either lim,_.,, f(x) = L
or lim;_,_o f(x) = L, then the line y = L is a horizontal asymptote of the curve
y = f(x). If it tumns out that lim, .. f(x) = = (or —), then we do not have an
asymptote to the right, but this fact is still useful information for sketching the curve.

(ii) Vertical Asymptotes. Recall from chapter 2 | that the line x = a is a vertical
asymptote if at least one of the following statements is true:

0 lim f) = lim f(x) =<
Jlim f(x) =—=  lim f(x) = —

(For rational functions you can locate the vertical asymptotes by equating the denomi-
nator to 0 after canceling any common factors. But for other functions this method
does not apply.) Furthermore, in sketching the curve it is very useful to know exactly
which of the statements in (1) is true. If f(a) is not defined but « is an endpoint of the
domain of f, then you should compute lim,_, .- f(x) or lim,_, ,- f(x), whether or not
this limit is infinite.

(iii) Slant Asymptoftes.

Some curves have asymptotes that are obligue, that is, neither horizontal nor vertical. If
lim [ f(x) — (mx + b)] =0

where m #* 0, then the line y = mx + b is called a slant asymptote because the ver-
tical distance between the curve y = f(x) and the line y = mx + b approaches 0, as
in Figure . . (A similar situation exists if we let x — —=.) For rational functions,
slant asymptotes occur when the degree of the numerator is one more than the degree of
the denominator. In such a case the equation of the slant asymptote can be found by long
division as in the following example.
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¥4

E. Intervals of Increase or Decrease Use the I/D Test. Compute f'(x) and find the
intervals on which f’(x) is positive ( f is increasing) and the intervals on which f'(x)
is negative ( f is decreasing).

F. Local Maximum and Minimum Values Find the critical numbers of f [the num-
bers ¢ where f'(c) = 0 or f’(c) does not exist]. Then use the First Derivative Test.
If f' changes from positive to negative at a critical number ¢, then f(c) is a local
maximum. If f’ changes from negative to positive at ¢, then f(c) is a local minimum.
Although it is usually preferable to use the First Derivative Test, you can use the
Second Derivative Test if f'(c) = 0 and f"(c) # 0. Then f"(c) > 0 implies that f(c)
is a local minimum, whereas f"(c) < 0 implies that f(c) is a local maximum.

G. Concavity and Points of Inflection Compute f"(x) and use the Concavity Test. The
curve is concave upward where f"(x) > 0 and concave downward where f"(x) < 0.
Inflection points occur where the direction of concavity changes.

H. Sketch the Curve Using the information in items A—G, draw the graph. Sketch the
asymptotes as dashed lines. Plot the intercepts, maximum and minimum points, and
inflection points. Then make the curve pass through these points, rising and falling
according to E, with concavity according to G, and approaching the asymptotes.
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Example 54:

A.

B.
C.

D.

2x*

2

Use the guidelines to sketch the curve y = T
22—

The domain 1s

x|a*—120={|xz#xl}=(—=-1)U (-1, 1)U (1=

The x- and y-intercepts are both 0.
Since f(—x) = f(x), the function f is even. The curve is symmetric about the y-axis.
2x? 2
lim ——= lim —————==12
:—la-Tw Xt — ] :—lal-.:-'m ] — lf_‘:[l
Therefore the line v = 2 is a horizontal asymptote.
Since the denominator is 0 when x = *1, we compute the following limits:
. 2x* Iy
lim = i - =
o am T
2x? - I 2x* —
J—ET—T}"'_:;Z—] B x—a-u—nl-_rz—l_

Therefore the lines x = 1 and x = —1 are vertical asymptotes. This information

about limits and asymptotes enables us to draw the preliminary sketch in Figure 5,
showing the parts of the curve near the asymptotes.

o (x? — 1)(4x) — 2x% - 2x =4
fl:-ﬂ - (xl _ 1)1 - (xz _ ”2

Since f'(x) > 0 whenx < U (x # —1)and f(x) < Owhenx > 0(x # 1), fis
increasing on (—e, —1) and (—1, 0) and decreasing on (0, 1) and (1, ).

F. The only critical number 1s x = (. Since ' changes from positive to negative at 0,
f(0) = 0is a local maximum by the First Derivative Test.

(x?— DAM—4) + 4x - 2(x* — 1)2x _ 1222 + 4

G. e = = 1) =0y

Since 12x* + 4 = 0 for all x, we have
=0 <= x—-1=20 < |x|=1

and f"(x) <0 <& |x| < l. Thus the curve is concave upward on the intervals
(—o, —1) and (1, =) and concave downward on (—1, 1). It has no point of inflec-
tion since 1 and —1 are not in the domain of f.
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I ¥4 |1
| |
| |
S
| o |
| | T
/1)
| | |
|| L
x=—1 [|x=1
Example 55:
2
Sketch the graph of f(x) = TRk
x+1
A.Domain={x |x+ 1=>0={x| x> -1} = (-1, %)
B. The x- and y-intercepts are both 0.
C. Symmetry: None
D. Since .2
I - =
e Jx+ 1

there is no horizontal asymptote. Since /x + 1 — 0as x — —1% and f(x) is
always positive, we have

x!
li = w
L Jr+1
and so the line x = —1 is a vertical asymptote.
E. flo= VIt 1020 -x2- 1/2x+ 1) 3 +4x  x(3x+4)
- W x+ 1 T 20+ 17T 2(x + 1)

We see that f'(x) = 0 when x = () (notice that —} 15 not in the domain of f), so the
only critical number is (0. Since f'(x) << 0 when —1 < x << 0 and f'(x) = 0 when
x =0, f is decreasing on (—1, 0) and increasing on (0, =).

F. Since f'(0) = 0 and f' changes from negative to positive at 0, f(0) = 0 is a local
(and absolute) minimum by the First Derivative Test.

2 + 1PP(6x +4) — B + 4)3(x + D7 32’ + 8x + 8

G f)= Ax + 1P Ax + 17

Note that the denominator is always positive. The numerator is the gquadratic

3x? + 8x + 8, which is always positive because its discriminant is

b* — d4ac = —32, which is negative, and the coefficient of x* is positive. Thus
f"(x) = 0 for all x in the domain of f, which means that f is concave upward on
(—1. =) and there is no point of inflection.
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Example 56:

COs X
2+ sinxy’

Sketch the graph of f(x) =

A. The domain is K.

B. The y-intercept is f(0) = é— The x-intercepts occur when cos x = 0, that is,
x = (w/2) + nmw, where n is an integer.

C. f is neither even nor odd, but f(x + 2w) = f(x) for all x and so f is periodic and
has period 27r. Thus, in what follows, we need to consider only 0 = x = 27 and
then extend the curve by translation in part H.

D. Asymptotes: None

(2 + sin x)(—sinx) — cosx (cos x) B 2sinx + 1
(2 + sinx)® (2 + sinx)?

E. flx) =

The denominator is always positive, so f'(x) = Owhen2sinx + 1 <0 <
sin x < —;f_v < Tw/6 < x < 1lw/6. 50 f is increasing on (77/6, 117/6) and
decreasing on (0, 7w/6) and (117/6, 2m).

F. From part E and the First Denvative Test, we see that the local minimum value 1s

f(7w/6) = —1/4/3 and the local maximum value is f(117/6) = 1/4/3.
G. If we use the Quotient Rule again and simplify, we get

2cosx (]l — sinx)
(2 + sinx)’

f(x)=—

Because (2 + sinx)” = Oand 1 — sin x = 0 for all x, we know that f"(x) = 0
when cos x << (), that is, w/2 < x < 3w/2. So f is concave upward on (72, 37/2)

and concave downward on (0, 77/2) and (37/2, 2). The inflection points are
(ar/2. 0) and (34r/2, 0).
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Example 57:

Sketch the graph of y = In(4 — x?).
A. The domain is

E.

G.

x|4-x=0={x|F<4={x||x]|<2}=(-2.2)

The y-intercept is f{0) = In 4. To find the x-intercept we set
y=Inl4-x*)=0

We know thatIn 1 = U, sowe have 4 —x- =1 = x° = 3 and therefore the
x-intercepts are *+ V3.

. Since f(—x) = f(x). { is even and the curve is symmetric about the y-axis.

We look for vertical asymptotes at the endpoints of the domain. Since 4 — x*— 0*
as x — 2~ and also as x — —2%, we have

lim In(4 — )= —= Iin";J Inf4 — x*) = —=
I—2 I—= =2+
Thus the lines x = 2 and x = —2 are vertical asymptotes.
—2x
f =3z

Since f'(x) = O when —2 << x <~ Uand f'(x) < O when U < x <0 2, f is increasing
on (—2, 0) and decreasing on (0, 2).

. The only critical number is x = 0. Since [ changes from positive to negative at 0,

f(0) = In 4 1s a local maximum by the First Derivative Test.

e (=2) + 2x(-2x) -8 — 27
fx) = 4 — 2P T4 =P

Since f"(x) < 0 for all x, the curve is concave downward on (—2, 2) and has no
inflection point.
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The Mean Value Theorem

The Mean Value Theorem Let f be a function that satisfies the following
hypotheses:

1. f is continuous on the closed interval [a, b].
2. f is differentiable on the open interval (a, b).

Then there is a number ¢ in (a, b) such that

- fO="—a
or, equivalently,
(2] fb) — fla) = f(c)b — a)

Before proving this theorem, we can see that it is reasonable by interpreting it geomet-
rically. Figures 3 and 4 show the points A(a, f(a)) and B(b, f(b)) on the graphs of two
differentiable functions. The slope of the secant line AE is

3 e — 0 — f(@

- b—a
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Before proving this theorem, we can see that it is reasonable by interpreting it geomet-
rically. Figures 3 and 4 show the points A(a, f(a)) and B(b, f(b)) on the graphs of two
differentiable functions. The slope of the secant line AB 1s

3] m’“‘:ﬂ?__i(ﬂ]

which is the same expression as on the right side of Equation 1. Since f'(c) is the slope of
the tangent line at the point (¢, f(c)), the Mean Value Theorem, in the form given by Equa-
tion 1, says that there is at least one point Plc, f(c)) on the graph where the slope of the
tangent line 1s the same as the slope of the secant line AB. In other words, there is a point
P where the tangent line is parallel to the secant line AE. (Imagine a line far away that
stays parallel to AF while moving toward A8 until it touches the graph for the first time.)

¥y ) )
~—__ P(c fic)

—

Ala, fla)

B{b, fib))

0 a € b x 0 a €, €y b x

FIGURE 3 FIGURE 4

To illustrate the Mean Value Theorem with a specific function, let’s
conzider f(x) = x* — x,a = 0,/ = 2. Since f is a polynomial, it is continuous and
differentiable for all x, so it is certainly contimous on [0, 2] and differentiable on (0, 2).
Therefore, by the Mean Value Theorem, there is a number ¢ in {0, 2} such that

f2) — AO) = f{c)2 — 0)
Now f(2) = 6, f(0) = 0, and f1(x) = 3x? — 1, so this equation becomes

6=03c*—1)2=6c*—-12
which gives c? = %, that is, c = +2/,/3. But ¢ must lie in {0, 2), soc = 2/,/3.

y=x—x
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Optimization Problems
In solving such practical problems the greatest challenge is often to convert the word
problem into a mathematical optimization problem by setting up the function that is to be

maximized or minimized

Solving Applied Optimization Problems

1. Read the problem. Read the problem until you understand it. What 1s given?
What 1s the unknown quantity to be optimized?

2. Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem as
an equation or algebraic expression, and identify the unknown variable.

4. Write an equation for the unknown guantity. If you can, express the unknown
as a function of a single variable or in two equations in two unknowns. This
may require considerable manipulation.

i

Test the critical points and endpoints in the domain of the unknown. Use
what you know about the shape of the function’s graph. Use the first and
second derivatives to identify and classify the function’s critical points.

Example 58:
A cylindrical can is to be made to hold 1 L of oil. Find the dimensions that will minimize the

cost of the metal to manufacture the can?.

SOLUTION Draw the diagram as in Figure 3, where r is the radius and k the height (both
in centimeters). In order to minimize the cost of the metal, we minimize the total surface
area of the cylinder (top, bottom, and sides). From Figure 4 we see that the sides are
made from a rectangular sheet with dimensions 27r and h. So the surface area is

A=2mr" 4+ 2mwrh

We would like to express A in terms of one variable, r. To eliminate h we use the
fact that the volume is given as 1 L, which is equivalent to 1000 cm® Thus

arh = 1000

which gives h = 1000/(srr?). Substitution of this into the expression for A gives

1000 2000
A=2mr + Zwr( 3 ) =2mr +
r r

We know r must be positive, and there are no limitations on how large r can be. There-
fore the function that we want to minimize is

2000

r

Alr) =2wr? + r=10
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To find the cnitical numbers, we differentiate:

2000  4(wr' — 500)

rt

Alr) = dwr —

Then A'(r) = 0 when mrr® = 500, so the only critical number is r = /500/7 .

The value of h corresponding to r = /500/7 1s

1000 1000 [ 500
= s s M —
h r (500/ )3 2 ar 2r

Thus, to minimize the cost of the can, the radius should be /500/7 cm and the height
should be equal to twice the radius, namely, the diameter. [ |
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Example 59

We want to construct a box whose base length is 3 times the base width. The
material used to build the top and bottom cost $10/ft> and the material used to build the sides cost

$6/ft2. If the box must have a volume of 50ft* determine the dimensions that will minimize the
cost to build the box.
Solution:

First, we sketch a figure as below:

I=73w

We want to minmimize the cost of the materials subject to the constraint that the volume must be
50ft>. Note as well that the cost for each side is just the area of that side times the appropriate
cost.

The two functions we’ll be working with here this time are,

Minimize : C =10(2hv)+6(2wh+2lh)= 60w’ +48wh

Constraint : 50 = lwh = 3w?h

As with the first example. we will solve the constraint for one of the variables and plug this into
the cost. It will definitely be easier to solve the constraint for /2 so let’s do that.

b 501
3w”
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Plugging this into the cost gives.

C(w)= 601’ + 4811{ 502 ] = 60w? +@

w

3w

Now:. let’s get the first and second (we’ll be needing this later...) derivatives,

120w7 —800

> C""(w)=l20+1600\|1"3

C'(w)=120w—800w" =

Al

The next critical point will come from determuning where the numerator 1s zero.

1201° —800=0 = W= 3@=3§=1.8321
Vlzo \# 3

First, we know that whatever the value of w that we get it will have to be positive and we can see
second derivative above that
provided w > 0 we will have C "(11') >0 and so in the interval of possible optimal values the

cost function will always be concave up and so w=1.8821 must give the absolute minimum

cost.

All we need to do now is to find the remaining dimensions.

w=1.8821
[ =3w= 3(1.8821) =5.6463
h= 0 _ 50 =4.7050

3’ 3(1.8821)

Also. even though it was not asked for, the minimum cost is : C(1.8821)=$637.60.
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Example 60:

We have a piece of cardboard that 1s 14 inches by 10 inches and we’re going to cut

out the corners as shown below and fold up the sides to form a box. also shown below.
Determine the height of the box that will give a maximum volume.

hy| i
[
10 - 2h — / 02
. | A
A : § 14 — 2
= -
A 14 - 28 "h

In this case we want to maximize the volume. Here is the volume, in terms of /1 and its first
derivative.

V(h)y=h(14=2h)(10-2h)=140h-48)h’ + 4i* V'(h)=140-96h+12h*

Setting the first derivative equal to zero and solving gives the following two critical points,

124439
C3

h =1.9183, 6.0817

So. knowing that whatever /1 is it must be in the range 0 < /i = 5 we can see that the second

critical point is outside this range and so the only critical point that we need to worry about is
1.9183,

Finally. since the volume is defined and continuous on 0 < /7 <5 all we need to do is plug in the
critical points and endpoints into the volume to determine which gives the largest volume. Here
are those function evaluations.

7(0)=0 7 (1.9183)=120.1644 7(5)=0

So. if we take /1 =1.9183 we get a maximum volume.
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Example 61: a rectangle is to be inscribed in a semicircle of radius 2. What is the
largest area the rectangle can have, and what are its dimensions?

Solution Let {.r, v — .rlj be the coordinates of the corner of the rectangle obtained
by placing the circle and rectangle in the coordinate plane (Figure 4.40). The length,
height, and area of the rectangle can then be expressed in terms of the position x of the
lower nght-hand comer:

Length: 2x, Height: v/4 — x%, Area: 2xv4 — x

Motice that the values of x are to be found in the interval 0 = x = 2, where the selected
comer of the rectangle lies.
Our goal 15 to find the absolute maximum value of the function

Ax) = 2avd — 1° y

on the domain [0,2]. )
The derivative e ¥ = 4 _
e = :;;’ 1-7)
dA =2y / AN
—— =+ 2V4 — x° /
dx - ."4 _ _1.2 x ) l\-.
15 not defined when x = 2 and is equal to zero when I'II 2 \
| .
L9 - 0 r 2
———+2V4 - =10
V4 — 1
2+ 24— =0
8 -4 =0
=2
x= = \e"ﬁ
Of the two zeros, x = V2 and x = — 2, only x = V2 lies in the interior of A’s domain
and makes the critical-point list. The values of A at the endpoints and at this one critical

point are
Critical point value: A(\»E} =2V2V4-2=4
Endpoint values: Ay =0, A2y = 0.

The area has a maximum value of 4 when the rectangle is V4 — x> = /2 units high and
2x = 2V/2 units long. [ |

Example 62( Homework) Find the volume of the largest
right circular cone that can be inscribed in a sphere
of radius 3?

V=32x/3
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