r^{t} Class

Basic of Electrical Engineering.

Sinusoidal Alternating

Series and Parallel ac Circuits

Resistive Elements

$I_{m}=\frac{V_{m}}{R}$
$V_{m}=I_{m} R$
In phaser form,
$v=V_{m} \sin \omega t=V \angle 0$
Where $V=0.707 V_{m}$

Applying Ohm's law and using phaser algebra, we have
$I=\frac{V \angle 0}{R \angle 0}$
So that in the time domain,
$i=\sqrt{2} \frac{V}{R} \sin \omega t$

Example:

Using complex algebra, find the current i for the circuit shown below. Sketch the waveforms of v and i.

Solution

$v=100 \sin \omega t=70.7 \angle 0$
$I=\frac{V \angle 0}{Z_{R} \angle 0}=\frac{70.7 \angle 0}{5 \angle 0}=14.14 \angle 0 \mathrm{~A}$
$i=\sqrt{2} \times 14.14 \sin \omega t=20 \sin \omega t A$

Inductive Reactance

The voltage leads the current by 90° and that the reactance of the coil $X L$ is determined by ωL.
$v=V_{m} \sin \omega t=V \angle 0$
By Ohm's law,
$\mathbf{I}=\frac{V \angle 0}{X_{L} \angle 90}=\frac{V}{X_{L}} \angle-90$
so that in the time domain,
$i=\sqrt{2} \frac{V}{X_{L}} \sin (\omega t-90)$

r^{t} class

Basic of Electrical Engineering,

Sinusoidal Alternating

$Z_{L}=X_{L} \angle 90$

Example:

Using complex algebra, find the current i for the circuit shown below. Sketch the v and i curves.

Solution:

$v=24 \sin \omega t$
In polar form
$\mathbf{V}=16.968 \angle 0$
$\mathbf{I}=\frac{\mathbf{V}}{\mathbf{Z}_{\mathbf{L}}}=\frac{V \angle 0}{X_{L} \angle 90}=\frac{16.968 \angle 0}{3 \angle 90}=5.656 \mathrm{~A} \angle-90$
$i=\sqrt{2}(5.656) \sin (\omega t-90)=8 \sin (\omega t-90)$

Example:

Using complex algebra, find the voltage v for the circuit shown below. Sketch the v and i curves.
$i=5 \sin \left(\omega t+30^{\circ}\right)$

Capacitive Reactance

The current leads the voltage by 90° and that the reactance of the capacitor X_{C} is determined by $\frac{1}{\omega C}$.
$v=V_{m} \sin \omega t$
In polar form
$\mathbf{V}=V \angle 0$
$\mathbf{I}=\frac{\mathbf{V}}{\mathbf{Z}_{\mathbf{C}}}=\frac{V \angle 0}{X_{C} \angle-90}=\frac{V}{X_{C}} \angle 90$
$i=\sqrt{2} \frac{V}{X_{C}} \sin (\omega t+90)$
$\mathbf{Z}_{\mathbf{C}}=X_{C} \angle-90$

r^{t} class

Basic of Electrical Engineering.

Sinusoidal Alternating

Example:

Using complex algebra, find the current i for the circuit shown below. Sketch the v and i curves.

solution:

$v=15 \sin \omega t$
In polar form
$\mathbf{V}=10.605 \angle 0$
$\mathbf{I}=\frac{\mathbf{V}}{\mathbf{Z}_{\mathbf{C}}}=\frac{V \angle 0}{X_{C} \angle-90}=\frac{10.605 \angle 0}{2 \angle-90}=5.303 \mathrm{~A} \angle 90$
$i=\sqrt{2} \frac{V}{x_{C}} \sin (\omega t+90)=7.5 \sin (\omega t+90)$

Example:

Using complex algebra, find the voltage v for the circuit shown below. Sketch the v and i curves.

Impedance Diagram

Now that an angle is associated with resistance, inductive reactance, and capacitive reactance, each can be placed on a complex plane diagram. For any network, the resistance will always appear on the positive real axis, the inductive reactance on the positive imaginary axis, and the capacitive reactance on the negative imaginary axis. The result is an impedance diagram that can reflect the individual and total impedance levels of an ac network.

$r^{t r}$ Class

Basic of Electrical Engineering,

Sinusoidal Alternating

SERIES CONFIGURATION

The overall properties of series ac circuits are the same as those for dc circuits. For instance, the total impedance of a system is the sum of the individual impedances:

$\overrightarrow{\mathbf{Z}_{T}}$

$Z_{T}=Z_{1}+Z_{2}+\cdots \cdot . \cdot Z_{N}$
Example:
Draw the impedance diagram for the circuit shown below, and find the total impedance.

$\mathbf{Z}_{\mathbf{T}}=\mathbf{Z}_{\mathbf{1}}+\mathbf{Z}_{\mathbf{2}}=R+j X_{L}=4+j 8=\mathbf{8 . 9 4 4} \angle \mathbf{6 3 . 4 3} \mathbf{3}^{\circ} \boldsymbol{\Omega}$

${ }^{p t}$ Class

Basic of Electrical Engineering.

Sinusoidal Alternating

Example:

Determine the input impedance to the series network shown below. Draw the impedance diagram.

R-L

r^{t} Class
Basic of Electrical Engineering.

Sinusoidal Alternating

Power: The total power in watts delivered to the circuit is
$p_{T}=E I \cos \theta_{T}=100 \times 20 \cos 53.13^{\circ}=1200 \mathrm{w}$
where E and I are effective values and θ_{T} is the phase angle between E and I, or
$p_{T}=I^{2} R=20^{2} \times 3=1200 \mathrm{w}$
where I is the effective value, or, finally,
$p_{T}=p_{R}+p_{L}=60 \times 20 \cos 0+80 \times 20 \cos 90=1200 \mathrm{w}$
Power factor: The power factor $F p$ of the circuit is $\cos 53.13^{\circ}=\mathbf{0 . 6}$ lagging, where 53.13° is the phase angle between \mathbf{E} and \mathbf{I}.
$\cos \theta=\frac{p}{E I}=\frac{I^{2} R}{E I}=\frac{I R}{E}=\frac{R}{E / I}=\frac{R}{Z_{T}}$
R-C
Phasor Notation
$i=7.07 \sin \left(\omega t+53.13^{\circ}\right)$
$\mathrm{I}=\mathbf{5} \angle 53.13^{\circ} \mathrm{A}$
$\mathbf{Z}_{\mathbf{T}}=\mathbf{Z}_{\mathbf{1}}+\mathbf{Z}_{2}=R-j X_{C}=6-j 8=\mathbf{1 0} \angle-\mathbf{5 3 . 1 3}{ }^{\circ} \boldsymbol{\Omega}$
$\mathrm{E}=\mathbf{I} \mathrm{Z}_{\mathbf{T}}=\mathbf{5} \angle 53.13^{\circ} \times \mathbf{1 0} \angle-53.13^{\circ}=50 \angle 0^{\circ}$

$\mathrm{V}_{R}=\mathrm{IZ}_{\mathrm{R}}=5 \angle 53.13^{\circ} \times 6 \angle 0^{\circ}=30 \angle 53.13 \mathrm{~V}$

Time domain: In the time domain,
$e=\sqrt{2} \times 50 \sin \omega t=70.7 \sin \omega t$
$V_{R}=\sqrt{2} \times 30 \sin \left(\omega t+\mathbf{5 3 . 1 3}{ }^{\circ}\right)=42.42 \sin \left(\omega t+53.13^{\circ}\right)$
$V_{C}=\sqrt{2} \times 40 \sin (\omega t-36.87)=56.56 \sin (\omega t-36.87)$

Power: The total power in watts delivered to the circuit is
$p_{T}=E I \cos \theta_{T}=50 \times 5 \cos 53.13^{\circ}=150 \mathrm{w}$
where E and I are effective values and θ_{T} is the phase angle between E and I, or
$p_{T}=I^{2} R=5^{2} \times 6=150 \mathrm{w}$
$p_{T}=p_{R}+p_{C}=30 \times 5 \cos 0+40 \times 5 \cos 90=150 \mathrm{w}$
Power factor: The power factor of the circuit is
$F_{P}=\cos 53.13^{\circ}=0.6$ leading
R L C
$\mathbf{Z}_{\mathbf{T}}=\mathbf{Z}_{\mathbf{R}}+\mathbf{Z}_{\mathbf{L}}+\mathbf{Z}_{\mathbf{C}}=R+j X_{L}-j X_{C}$
$\mathbf{Z}_{\mathbf{T}}=3+j 7-j 3=3+j 4=5 \angle 53.13^{\circ}$

Impedance diagram

$\mathrm{I}=\frac{\mathrm{E}}{\mathrm{Z}_{\mathrm{T}}}=\frac{50 \angle 0}{5 \angle 53.13^{\circ}}=10 \angle-53.13^{\circ} \mathrm{A}$
$\mathrm{V}_{R}=\mathrm{IZ}_{\mathrm{R}}=3 \times 10 \angle-53.13^{\circ}=30 \angle-53.13^{\circ} \mathrm{V}$
$V_{L}=\mathrm{IZ}_{\mathrm{L}}=7 \angle 90 \times 10 \angle-53.13^{\circ}=70 \angle 36.87^{\circ} \mathrm{V}$
$\mathrm{V}_{C}=\mathrm{IZ}_{\mathrm{C}}=3 \angle-90 \times 10 \angle-53.13^{\circ}=30 \angle-143.13^{\circ} \mathrm{V}$
Phasor diagram: The phasor diagram of Fig. 15.38 indicates that the current \mathbf{I} is in phase with the voltage across the resistor, lags the voltage across the inductor by 90°, and leads the voltage across the capacitor by 90°.
Time domain:
$i=\sqrt{2} \times 10 \sin \left(\omega t-53.13^{\circ}\right)=14.14 \sin \left(\omega t-53.13^{\circ}\right)$
$V_{R}=\sqrt{2} \times 30 \sin \left(\omega t-53.13^{\circ}\right)=42.42 \sin \left(\omega t-53.13^{\circ}\right)$
$V_{L}=\sqrt{2} \times 70 \sin (\omega t+36.87)=98.98 \sin (\omega t+36.87)$
$V_{C}=\sqrt{2} \times 30 \sin \left(\omega t-143.13^{\circ}\right)=42.42 \sin \left(\omega t-143.13^{\circ}\right)$
Power: The total power in watts delivered to the circuit is
$p_{T}=E I \cos \theta_{T}=50 \times 10 \cos 53.13^{\circ}=300 \mathrm{w}$
or
$p_{T}=I^{2} R=10^{2} \times 3=300 \mathrm{w}$

7^{t} Class

Basic of Electrical Engineering.

Sinusoidal Alternating

$p_{T}=p_{R}+p_{L}+p_{C}=30 \times 10 \cos 0+70 \times 10 \cos 90+40 \times 10 \cos 90=300 \mathrm{w}$
Power factor: The power factor of the circuit is
$F_{P}=\cos 53.13^{\circ}=0.6$ leading
$F_{P}=\frac{R}{\mathbf{Z}_{\mathbf{T}}}=\frac{3}{5}=0.6$ leading

${ }^{p t}$ Class

Basic of Electrical Engineering,

Sinusoidal Alternating

VOLTAGE DIVIDER RULE

The basic format for the voltage divider rule in ac circuits is exactly the same as that for dc circuits:

Example:

Find the voltage across each element of the circuit shown below

H.W

For the circuit shown below,
1- Calculate $\mathbf{I}, \mathbf{V}_{R}, \mathbf{V}_{L}$, and \mathbf{V}_{C} in phasor form.
2- Calculate the total power factor.
3- Calculate the average power delivered to the circuit.
4- Draw the phasor diagram.
5- Obtain the phasor sum of $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$, and V_{C}, and show that it equals the input voltage E .
6- Find V_{R} and V_{C} using the voltage divider rule.

PARALLEL ac CIRCUITS

In ac circuits, we define admittance (\mathbf{Y}) as being equal to $1 / \mathbf{Z}$. The unit of measure for admittance as defined by the SI system is siemens, which has the symbol S. Admittance is a measure of how well an ac circuit will admit, or allow, current to flow in the circuit. The larger its value, therefore, the heavier the current flow for the same applied potential. The total admittance of a circuit can also be found by finding the sum of the parallel admittances.

$\frac{1}{Z_{T}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\cdots+\frac{1}{Z_{N}}$
$Y_{T}=Y_{1}+Y_{2}+\cdots+Y_{N}$
${ }^{p t}$ Class
Basic of Electrical Engineering,

Sinusoidal Alternating

For pure resistor, conductance is the reciprocal of resistance, and
$Y_{R}=\frac{1}{Z_{R}}=\frac{1}{R \angle 0}=G \angle 0 \quad$ (siemens, S)
The reciprocal of reactance $(1 / X)$ is called susceptance and is a measure of how susceptible an element is to the passage of current through it. Susceptance is also measured in siemens and is represented by the capital letter B.
For the inductor,
$Y_{L}=\frac{1}{Z_{L}}=\frac{1}{X_{L} \angle 90}=B_{L} \angle-90 \quad$ (siemens, S)
Note that for inductance, an increase in frequency or inductance will result in a decrease in susceptance or, correspondingly, in admittance.
For the capacitor,
$Y_{C}=\frac{1}{Z_{C}}=\frac{1}{X_{C} \angle-90}=B_{C} \angle 90 \quad$ (siemens, S)
For the capacitor, therefore, an increase in frequency or capacitance will result in an increase in its susceptibility.
For parallel ac circuits, the admittance diagram is used with the three admittances, represented as shown in Figure below.
Note from this figure that the conductance (like resistance) is on the positive real axis, whereas inductive and capacitive susceptances are in direct opposition on the imaginary axis.

Example:
For the network of Fig. shown below:
a. Find the admittance of each parallel branch.
b. Determine the input admittance.
c. Calculate the input impedance.
d. Draw the admittance diagram.

Solution:
a. $\mathbf{Y}_{R}=G \angle 0^{\circ}=\frac{1}{R} \angle 0^{\circ}=\frac{1}{5 \Omega} \angle 0^{\circ}$

$$
=0.2 \mathrm{~S} \angle 0^{\circ}=0.2 \mathrm{~S}+\boldsymbol{j} 0
$$

${ }^{p t}$ Class

Basic of Electrical Engineering,

Sinusoidal Alternating

$$
\begin{aligned}
\mathbf{Y}_{L} & =B_{L} \angle-90^{\circ}=\frac{1}{X_{L}} \angle-90^{\circ}=\frac{1}{8 \Omega} \angle-90^{\circ} \\
& =\mathbf{0 . 1 2 5} \mathrm{S} \angle-90^{\circ}=\mathbf{0}-\boldsymbol{j} \mathbf{0 . 1 2 5} \mathrm{S} \\
\mathbf{Y}_{C} & =B_{C} \angle 90^{\circ}=\frac{1}{X_{C}} \angle 90^{\circ}=\frac{1}{20 \Omega} \angle 90^{\circ} \\
& =\mathbf{0 . 0 5 0} \mathrm{S} \angle+90^{\circ}=\mathbf{0}+\boldsymbol{j} \mathbf{0 . 0 5 0 \mathrm { S }}
\end{aligned}
$$

b. $\mathbf{Y}_{T}=\mathbf{Y}_{R}+\mathbf{Y}_{L}+\mathbf{Y}_{C}$

$$
=(0.2 \mathrm{~S}+j 0)+(0-j 0.125 \mathrm{~S})+(0+j 0.050 \mathrm{~S})
$$

$$
=0.2 \mathrm{~S}-j 0.075 \mathrm{~S}=\mathbf{0 . 2 1 3 6} \mathrm{S} \angle-\mathbf{2 0 . 5 6 ^ { \circ }}
$$

c. $\mathbf{Z}_{T}=\frac{1}{0.2136 \mathrm{~S} \angle-20.56^{\circ}}=\mathbf{4 . 6 8} \boldsymbol{\Omega} \angle \mathbf{2 0 . 5 6}{ }^{\circ}$
or

$$
\begin{aligned}
\begin{aligned}
\mathbf{Z}_{T} & =\frac{\mathbf{Z}_{R} \mathbf{Z}_{L} \mathbf{Z}_{C}}{\mathbf{Z}_{R} \mathbf{Z}_{L}+\mathbf{Z}_{L} \mathbf{Z}_{C}+\mathbf{Z}_{R} \mathbf{Z}_{C}} \\
& =\frac{\left(5 \Omega \angle 0^{\circ}\right)\left(8 \Omega \angle 90^{\circ}\right)\left(20 \Omega \angle-90^{\circ}\right)}{\left(5 \Omega \angle 0^{\circ}\right)\left(8 \Omega \angle 90^{\circ}\right)+\left(8 \Omega \angle 90^{\circ}\right)\left(20 \Omega \angle-90^{\circ}\right)} \\
& =\frac{800 \Omega \angle 0^{\circ} \quad}{40 \angle 90^{\circ}+160 \angle 0^{\circ}+100 \angle-90^{\circ}} \\
& =\frac{800 \Omega}{160+j 40-j 100}=\frac{800 \Omega}{160-j 60} \\
& =\frac{800 \Omega}{170.88 \angle-20.56^{\circ}} \\
& =4.68 \Omega \angle \mathbf{\Omega} \mathbf{~ (5 0 . 5 6 ^ { \circ }}
\end{aligned} \\
\text { d. The admittance diagram }
\end{aligned}
$$

Example:
For the network of Fig. shown below:
a. Find the admittance of each parallel branch.
b. Determine the input admittance.
c. Calculate the input impedance.
d. Draw the admittance diagram.

r^{t} Class

Basic of Electrical Engineering.

Sinusoidal Alternating

PARALLEL ac NETWORKS

Y_{T} and Z_{T}

$$
\begin{aligned}
\mathbf{Y}_{T} & =\mathbf{Y}_{R}+\mathbf{Y}_{L}+\mathbf{Y}_{C}=G \angle 0^{\circ}+B_{L} \angle-90^{\circ}+B_{C} \angle 90^{\circ} \\
& =\frac{1}{3.33 \Omega} \angle 0^{\circ}+\frac{1}{1.43 \Omega} \angle-90^{\circ}+\frac{1}{3.33 \Omega} \angle 90^{\circ} \\
& =0.3 \mathrm{~S} \angle 0^{\circ}+0.7 \mathrm{~S} \angle-90^{\circ}+0.3 \mathrm{~S} \angle 90^{\circ} \\
& =0.3 \mathrm{~S}-j 0.7 \mathrm{~S}+j 0.3 \mathrm{~S} \\
& =0.3 \mathrm{~S}-j 0.4 \mathrm{~S}=\mathbf{0 . 5 \mathrm { S }} \angle-\mathbf{5 3 . 1 3}{ }^{\circ}
\end{aligned}
$$

$$
\mathbf{Z}_{T}=\frac{1}{\mathbf{Y}_{T}}=\frac{1}{0.5 \mathrm{~S} \angle-53.13^{\circ}}=\mathbf{2} \Omega \angle 53.13^{\circ}
$$

$$
\mathbf{I}=\frac{\mathbf{E}}{\mathbf{Z}_{T}}=\mathbf{E} \mathbf{Y}_{T}=\left(100 \mathrm{~V} \angle 53.13^{\circ}\right)\left(0.5 \mathrm{~S} \angle-53.13^{\circ}\right)=\mathbf{5 0} \mathbf{A} \angle 0^{\circ}
$$

$I_{R^{\prime}} I_{L}$, and I_{C}

$$
\begin{aligned}
\mathbf{I}_{R} & =(E \angle \theta)\left(G \angle 0^{\circ}\right) \\
& =\left(100 \mathrm{~V} \angle 53.13^{\circ}\right)\left(0.3 \mathrm{~S} \angle 0^{\circ}\right)=\mathbf{3 0} \mathbf{A} \angle \mathbf{5 3 . 1 3}{ }^{\circ} \\
\mathbf{I}_{L} & =(E \angle \theta)\left(B_{L} \angle-90^{\circ}\right) \\
& =\left(100 \mathrm{~V} \angle 53.13^{\circ}\right)\left(0.7 \mathrm{~S} \angle-90^{\circ}\right)=\mathbf{7 0} \mathbf{A} \angle \mathbf{- 3 6 . 8 7} 7^{\circ} \\
\mathbf{I}_{C} & =(E \angle \theta)\left(B_{C} \angle 90^{\circ}\right) \\
& =\left(100 \mathrm{~V} \angle 53.13^{\circ}\right)\left(0.3 \mathrm{~S} \angle+90^{\circ}\right)=\mathbf{3 0} \mathbf{A} \angle \mathbf{1 4 3 . 1 3}{ }^{\circ}
\end{aligned}
$$

Kirchhoff's current law: At node a,

$$
\mathbf{I}-\mathbf{I}_{R}-\mathbf{I}_{L}-\mathbf{I}_{C}=0
$$

Phasor diagram

Admittance diagram:

${ }^{p t}$ Class

Basic of Electrical Engineering.

Sinusoidal Alternating

Time domain:

$$
\begin{aligned}
i & =\sqrt{2}(50) \sin \omega t=70.70 \sin \omega t \\
i_{R} & =\sqrt{2}(30) \sin \left(\omega t+53.13^{\circ}\right)=42.42 \sin \left(\omega t+53.13^{\circ}\right) \\
i_{L} & =\sqrt{2}(70) \sin \left(\omega t-36.87^{\circ}\right)=\mathbf{9 8 . 9 8} \sin \left(\omega t-36.87^{\circ}\right) \\
i_{C} & =\sqrt{2}(30) \sin \left(\omega t+143.13^{\circ}\right)=\mathbf{4 2 . 4 2} \sin \left(\omega t+\mathbf{1 4 3 . 1 3}^{\circ}\right)
\end{aligned}
$$

A plot of all the currents and the impressed voltages appears ain following figure

Power: The total power in watts delivered to the circuit is

$$
\begin{aligned}
P_{T} & =E I \cos \theta=(100 \mathrm{~V})(50 \mathrm{~A}) \cos 53.13^{\circ}=(5000)(0.6) \\
& =3000 \mathrm{~W}
\end{aligned}
$$

or

$$
P_{T}=E^{2} G=(100 \mathrm{~V})^{2}(0.3 \mathrm{~S})=3000 \mathrm{~W}
$$

or, finally,

$$
\begin{aligned}
P_{T} & =P_{R}+P_{L}+P_{C} \\
& =E I_{R} \cos \theta_{R}+E I_{L} \cos \theta_{L}+E L_{C} \cos \theta_{C} \\
& =(100 \mathrm{~V})(30 \mathrm{~A}) \cos 0^{\circ}+(100 \mathrm{~V})(70 \mathrm{~A}) \cos 90^{\circ} \\
& =3000 \mathrm{~W}+0+0 \\
& =3000 \mathrm{~W}
\end{aligned}
$$

Power factor: The power factor of the circuit is

$$
\begin{aligned}
& F_{p}=\cos \theta_{T}=\cos 53.13^{\circ}=0.6 \text { lagging } \\
& F_{p}=\cos \theta_{T}=\frac{G}{Y_{T}}=\frac{0.3 \mathrm{~S}}{0.5 \mathrm{~S}}=0.6 \text { lagging }
\end{aligned}
$$

Impedance approach: The input current I can also be determined by first finding the total impedance in the following manner:

$$
\mathbf{Z}_{T}=\frac{\mathbf{Z}_{R} \mathbf{Z}_{L} \mathbf{Z}_{C}}{\mathbf{Z}_{R} \mathbf{Z}_{L}+\mathbf{Z}_{L} \mathbf{Z}_{C}+\mathbf{Z}_{R} \mathbf{Z}_{C}}=\mathbf{2} \boldsymbol{\Omega} \angle \mathbf{5 3 . 1 3 ^ { \circ }}
$$

and, applying Ohm's law, we obtain

$$
\mathbf{I}=\frac{\mathbf{E}}{\mathbf{Z}_{T}}=\frac{100 \mathrm{~V} \angle 53.13^{\circ}}{2 \Omega \angle 53.13^{\circ}}=\mathbf{5 0} \mathrm{A} \angle 0^{\circ}
$$

${ }^{p t}$ Class

Basic of Electrical Engineering.

Sinusoidal Alternating

Example:
For the circuit shown below, determine the I_{R} and I_{L}, phasor and admittance diagrams, time domain representation, power and power factor.

Example:

For the circuit shown below, determine the I_{R} and I_{C}, phasor and admittance diagrams, time domain representation, power and power factor.

CURRENT DIVIDER RULE

The basic format for the current divider rule in ac circuits is exactly the same as that for dc circuits; that is, for two parallel branches with impedances $\mathbf{Z} 1$ and $\mathbf{Z} 2$ as shown

$$
\mathbf{I}_{1}=\frac{\mathbf{Z}_{2} \mathbf{I}_{T}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \quad \text { or } \quad \mathbf{I}_{2}=\frac{\mathbf{Z}_{1} \mathbf{I}_{T}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}}
$$

Example:

Using the current divider rule, find the current through each impedance of following Figure.

$$
\begin{aligned}
\mathbf{I}_{R} & =\frac{\mathbf{Z}_{L} \mathbf{I}_{T}}{\mathbf{Z}_{R}+\mathbf{Z}_{L}}=\frac{\left(4 \Omega \angle 90^{\circ}\right)\left(20 \mathrm{~A} \angle 0^{\circ}\right)}{3 \Omega \angle 0^{\circ}+4 \Omega \angle 90^{\circ}}=\frac{80 \mathrm{~A} \angle 90^{\circ}}{5 \angle 53.13^{\circ}} \\
& =\mathbf{1 6} \mathbf{A} \angle \mathbf{3 6 . 8 7} 7^{\circ} \\
\mathbf{I}_{L} & =\frac{\mathbf{Z}_{R} \mathbf{I}_{T}}{\mathbf{Z}_{R}+\mathbf{Z}_{L}}=\frac{\left(3 \Omega \angle 0^{\circ}\right)\left(20 \mathrm{~A} \angle 0^{\circ}\right)}{5 \Omega \angle 53.13^{\circ}}=\frac{60 \mathrm{~A} \angle 0^{\circ}}{5 \angle 53.13^{\circ}} \\
& =\mathbf{1 2} \mathbf{A} \angle-\mathbf{5 3 . 1 3}
\end{aligned}
$$

r^{t} Class
Basic of Electrical Engineering.

Sinusoidal Alternating

Example:
Using the current divider rule, find the current through each parallel branch of Figure shown below.

EQUIV ALENT CIRCUITS

In a series ac circuit, the total impedance of two or more elements in series is often equivalent to an impedance that can be achieved with fewer elements of different values, the elements and their values being determined by the frequency applied. This is also true for parallel circuits.

$$
\begin{aligned}
\mathbf{Z}_{T} & =\frac{\mathbf{Z}_{C} \mathbf{Z}_{L}}{\mathbf{Z}_{C}+\mathbf{Z}_{L}}=\frac{\left(5 \Omega \angle-90^{\circ}\right)\left(10 \Omega \angle 90^{\circ}\right)}{5 \Omega \angle-90^{\circ}+10 \Omega \angle 90^{\circ}}=\frac{50 \mid \angle 0^{\circ}}{5 \angle 90^{\circ}} \\
& =10 \Omega \angle-90^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{Z}_{T} & =\frac{\mathbf{Z}_{L} \mathbf{Z}_{R}}{\mathbf{Z}_{L}+\mathbf{Z}_{R}}=\frac{\left(4 \Omega \angle 90^{\circ}\right)\left(3 \Omega \angle 0^{\circ}\right)}{4 \Omega \angle 90^{\circ}+3 \Omega \angle 0^{\circ}} \\
& =\frac{12 \angle 90^{\circ}}{5 \angle 53.13^{\circ}}=2.40 \Omega \angle 36.87^{\circ} \\
& =1.920 \Omega+j 1.440 \Omega
\end{aligned}
$$

${ }^{p t}$ Class

Basic of Electrical Engineering,

Sinusoidal Alternating

Example:
For the following network
a. Calculate the total impedance $\mathbf{Z}_{T \text {. }}$
b. Compute I.
c. Find the total power factor.
d. Calculate \mathbf{I}_{1} and \mathbf{I}_{2}.
e. Find the average power delivered to the circuit.

Example:
For the following network
a. Compute \mathbf{I}.
b. Find $\mathbf{I}_{1}, \mathbf{I}_{2}$, and \mathbf{I}_{3}.
c. Verify Kirchhoff's current law by showing that

$$
\mathbf{I}=\mathbf{I}_{1}+\mathbf{I}_{2}+\mathbf{I}_{3}
$$

d. Find the total impedance of the circuit.

${ }^{p t}$ Class

Basic of Electrical Engineering.

Sinusoidal Alternating

Tutorial:
1-Find the current i for the elements and sketch the waveforms for v and i on the same set of axes.

(a)

(b)

(d)

(e)

(c)

(f)

2-Calculate the total impedance and express your answer in rectangular and polar forms, and draw the impedance diagram.

(a)

(b)
\square

3-For the circuit shown below
a. Find the total impedance \mathbf{Z}_{T} in polar form.
b. Draw the impedance diagram.
c. Find the current \mathbf{I} and the voltages \mathbf{V}_{R} and \mathbf{V}_{L} in phasor form.
d. Draw the phasor diagram of the voltages $\mathbf{E}, \mathbf{V}_{R}$, and \mathbf{V}_{L}, and the current \mathbf{I}.
e. Verify Kirchhoff's voltage law around the closed loop.
f. Find the average power delivered to the circuit.
g. Find the power factor of the circuit, and indicate whether it is leading or lagging.
h. Find the sinusoidal expressions for the voltages and current if the frequency is 60 Hz .
i. Plot the waveforms for the voltages and current on the same set of axes.
4-Repeat problem 3 for the following circuit, replacing V_{L} with V_{C} in parts (c) and (d).

