7^{t} Class

Basic of Electrical Engineering.

Methods of Analysis

Methods of Analysis

SOURCE CONVERSIONS

When applying the methods to be discussed, it may be necessary to convert a current source to a voltage source, or a voltage source to a current source. This source conversion can be accomplished in much the same manner as for dc circuits, except now we shall be dealing with phasors and impedances instead of just real numbers and resistors.

Example:
Convert the voltage source to a current source.

$$
\begin{aligned}
\mathbf{I} & =\frac{\mathbf{E}}{\mathbf{Z}}=\frac{100 \mathrm{~V} \angle 0^{\circ}}{5 \Omega \angle 53.13^{\circ}} \\
& =\mathbf{2 0} \mathrm{A} \angle-\mathbf{5 3 . 1 3} 3^{\circ}
\end{aligned}
$$

Example:
Convert the current source to a voltage source.

$$
\begin{aligned}
\mathbf{Z}=\frac{\mathbf{Z}_{C} \mathbf{Z}_{L}}{\mathbf{Z}_{C}+\mathbf{Z}_{L}} & =\frac{\left(X_{C} \angle-90^{\circ}\right)\left(X_{L} \angle 90^{\circ}\right)}{-j X_{C}+j X_{L}} \\
& =\frac{\left(4 \Omega \angle-90^{\circ}\right)\left(6 \Omega \angle 90^{\circ}\right)}{-j 4 \Omega+j 6 \Omega}=\frac{24 \Omega \angle 0^{\circ}}{2 \angle 90^{\circ}} \\
& =\mathbf{1 2} \mathbf{\Omega} \angle-\mathbf{9 0 ^ { \circ }} \quad[\text { Fig. 17.7(b) }] \\
\mathbf{E} & =\mathbf{I Z}=\left(10 \mathrm{~A} \angle 60^{\circ}\right)\left(12 \Omega \angle-90^{\circ}\right) \\
& =\mathbf{1 2 0} \mathrm{V} \angle-\mathbf{3 0}^{\circ}
\end{aligned}
$$

r^{t} Class
Basic of Electrical Engineering.
Methods of Analysis

MESH ANALYSIS

Example:
Using mesh analysis, find the current \mathbf{I}_{1}

Solution:

$$
\begin{aligned}
& \mathbf{Z}_{1}=+j X_{L}=+j 2 \Omega \\
& \mathbf{Z}_{2}=R=4 \Omega \\
& \mathbf{Z}_{3}=-j X_{C}=-j 1 \Omega \\
& \mathbf{E}_{1}=2 \mathrm{~V} \angle 0^{\circ} \\
& \mathbf{E}_{2}=6 \mathrm{~V} \angle 0^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& +\mathbf{E}_{1}-\mathbf{I}_{1} \mathbf{Z}_{1}-\mathbf{Z}_{2}\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right)=0 \\
& -\mathbf{Z}_{2}\left(\mathbf{I}_{2}-\mathbf{I}_{1}\right)-\mathbf{I}_{2} \mathbf{Z}_{3}-\mathbf{E}_{2}=0 \\
& \hline
\end{aligned}
$$

or
so that

$$
\begin{gathered}
\mathbf{E}_{1}-\mathbf{I}_{1} \mathbf{Z}_{1}-\mathbf{I}_{1} \mathbf{Z}_{2}+\mathbf{I}_{2} \mathbf{Z}_{2}=0 \\
-\mathbf{I}_{2} \mathbf{Z}_{2}+\mathbf{I}_{1} \mathbf{Z}_{2}-\mathbf{I}_{2} \mathbf{Z}_{3}-\mathbf{E}_{2}=0 \\
\hline \mathbf{I}_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)-\mathbf{I}_{2} \mathbf{Z}_{2}=\mathbf{E}_{1} \\
\mathbf{I}_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)-\mathbf{I}_{1} \mathbf{Z}_{2}=-\mathbf{E}_{2} \\
\hline
\end{gathered}
$$

which are rewritten as

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)-\mathbf{I}_{2} \mathbf{Z}_{2}=\mathbf{E}_{1} \\
&-\mathbf{I}_{1} \mathbf{Z}_{2}+\mathbf{I}_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)=-\mathbf{E}_{2} \\
& \hline
\end{aligned}
$$

Using determinants, we obtain

$$
\begin{aligned}
\mathbf{I}_{1} & =\frac{\left|\begin{array}{cc}
\mathbf{E}_{1} & -\mathbf{Z}_{2} \\
-\mathbf{E}_{2} & \mathbf{Z}_{2}+\mathbf{Z}_{3}
\end{array}\right|}{\left|\begin{array}{lc}
\mathbf{Z}_{1}+\mathbf{Z}_{2} & -\mathbf{Z}_{2} \\
-\mathbf{Z}_{2} & \mathbf{Z}_{2}+\mathbf{Z}_{3}
\end{array}\right|} \\
& =\frac{\mathbf{E}_{1}\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)-\mathbf{E}_{2}\left(\mathbf{Z}_{2}\right)}{\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)-\left(\mathbf{Z}_{2}\right)^{2}} \\
& =\frac{\left(\mathbf{E}_{1}-\mathbf{E}_{2}\right) \mathbf{Z}_{2}+\mathbf{E}_{1} \mathbf{Z}_{3}}{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}}
\end{aligned}
$$

Substituting numerical values yields

$$
\begin{aligned}
\mathbf{I}_{1} & =\frac{(2 \mathrm{~V}-6 \mathrm{~V})(4 \Omega)+(2 \mathrm{~V})(-j 1 \Omega)}{(+j 2 \Omega)(4 \Omega)+(+j 2 \Omega)(-j 2 \Omega)+(4 \Omega)(-j 2 \Omega)} \\
& =\frac{-16-j 2}{j 8-j^{2} 2-j 4}=\frac{-16-j 2}{2+j 4}=\frac{16.12 \mathrm{~A} \angle-172.87^{\circ}}{4.47 \angle 63.43^{\circ}} \\
& =3.61 \mathrm{~A} \angle-\mathbf{2 3 6 . 3 0 ^ { \circ }} \text { or } 3.61 \mathrm{~A} \angle \mathbf{1 2 3 . 7 0 ^ { \circ }}
\end{aligned}
$$

${ }^{p t}$ Class

Basic of Electrical Engineering.

Methods of Analysis

Example:

Using mesh analysis, find the current I_{2}

Solution:

$$
\begin{aligned}
& \mathbf{Z}_{1}=R_{1}+j X_{L_{1}}=1 \Omega+j 2 \Omega \\
& \mathbf{Z}_{2}=R_{2}-j X_{C}=4 \Omega-j 8 \Omega \\
& \mathbf{Z}_{3}=+j X_{L_{2}}=+j 6 \Omega \\
& \mathbf{E}_{1}=8 \mathrm{~V} \angle 20^{\circ} \\
& \mathbf{E}_{2}=10 \mathrm{~V} \angle 0^{\circ} \\
& \begin{array}{r}
\mathbf{I}_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)-\mathbf{I}_{2} \mathbf{Z}_{2}=\mathbf{E}_{1}+\mathbf{E}_{2} \\
\mathbf{I}_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)-\mathbf{I}_{1} \mathbf{Z}_{2}=-\mathbf{E}_{2} \\
\hline
\end{array} \\
& \begin{array}{r}
\mathbf{I}_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)-\mathbf{I}_{2} \mathbf{Z}_{2} \quad=\mathbf{E}_{1}+\mathbf{E}_{2} \\
-\mathbf{I}_{1} \mathbf{Z}_{2}+\mathbf{I}_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)=-\mathbf{E}_{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{I}_{2} & =\frac{\left|\begin{array}{cc}
\mathbf{Z}_{1}+\mathbf{Z}_{2} & \mathbf{E}_{1}+\mathbf{E}_{2} \\
-\mathbf{Z}_{2} & -\mathbf{E}_{2}
\end{array}\right|}{\left|\begin{array}{cc}
\mathbf{Z}_{1}+\mathbf{Z}_{2} & -\mathbf{Z}_{2} \\
-\mathbf{Z}_{2} & \mathbf{Z}_{2}+\mathbf{Z}_{3}
\end{array}\right|} \\
& =\frac{-\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right) \mathbf{E}_{2}+\mathbf{Z}_{2}\left(\mathbf{E}_{1}+\mathbf{E}_{2}\right)}{\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)-\mathbf{Z}_{2}^{2}} \\
& =\frac{\mathbf{Z}_{2} \mathbf{E}_{1}-\mathbf{Z}_{1} \mathbf{E}_{2}}{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{I}_{2} & =\frac{(4 \Omega-j 8 \Omega)\left(8 \mathrm{~V} \angle 20^{\circ}\right)-(1 \Omega+j 2 \Omega)\left(10 \mathrm{~V} \angle 0^{\circ}\right)}{(1 \Omega+j 2 \Omega)(4 \Omega-j 8 \Omega)+(1 \Omega+j 2 \Omega)(+j 6 \Omega)+(4 \Omega-j 8 \Omega)(+j 6 \Omega)} \\
& =\frac{(4-j 8)(7.52+j 2.74)-(10+j 20)}{20+(j 6-12)+(j 24+48)} \\
& =\frac{(52.0-j 49.20)-(10+j 20)}{56+j 30}=\frac{42.0-j 69.20}{56+j 30}=\frac{80.95 \mathrm{~A} \angle-58.74^{\circ}}{63.53 \angle 28.18^{\circ}} \\
& =\mathbf{1 . 2 7} \mathbf{A} \angle-\mathbf{8 6 . 9 2 ^ { \circ }}
\end{aligned}
$$

NODAL ANALYSIS

Example

Determine the voltage across the inductor for the network

For the application of Kirchhoff's current law to node \mathbf{V}_{1} :

$$
\begin{gathered}
\Sigma \mathbf{I}_{i}=\Sigma \mathbf{I}_{o} \\
0=\mathbf{I}_{1}+\mathbf{I}_{2}+\mathbf{I}_{3} \\
\frac{\mathbf{V}_{1}-\mathbf{E}}{\mathbf{Z}_{1}}+\frac{\mathbf{V}_{1}}{\mathbf{Z}_{2}}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{\mathbf{Z}_{3}}=0 \\
\mathbf{V}_{1}\left[\frac{1}{\mathbf{Z}_{1}}+\frac{1}{\mathbf{Z}_{2}}+\frac{1}{\mathbf{Z}_{3}}\right]-\mathbf{V}_{2}\left[\frac{1}{\mathbf{Z}_{3}}\right]=\frac{\mathbf{E}_{1}}{\mathbf{Z}_{1}}
\end{gathered}
$$

For the application of Kirchhoff's current law to node \mathbf{V}_{2} :

$$
\begin{gathered}
0=\mathbf{I}_{3}+\mathbf{I}_{4}+\mathbf{I} \\
\frac{\mathbf{V}_{2}-\mathbf{V}_{1}}{\mathbf{Z}_{3}}+\frac{\mathbf{V}_{2}}{\mathbf{Z}_{4}}+\mathbf{I}=0
\end{gathered}
$$

Rearranging terms:

$$
\mathbf{V}_{2}\left[\frac{1}{\mathbf{Z}_{3}}+\frac{1}{\mathbf{Z}_{4}}\right]-\mathbf{V}_{1}\left[\frac{1}{\mathbf{Z}_{3}}\right]=-\mathbf{I}
$$

Grouping equations:

$$
\begin{aligned}
& \mathbf{V}_{1}\left[\frac{1}{\mathbf{Z}_{1}}+\frac{1}{\mathbf{Z}_{2}}+\frac{1}{\mathbf{Z}_{3}}\right]-\mathbf{V}_{2}\left[\frac{1}{\mathbf{Z}_{3}}\right]=\frac{\mathbf{E}}{\mathbf{Z}_{1}} \\
& \mathbf{V}_{1}\left[\frac{1}{\mathbf{Z}_{3}}\right] \quad-\mathbf{V}_{2}\left[\frac{1}{\mathbf{Z}_{3}}+\frac{1}{\mathbf{Z}_{4}}\right]=\mathbf{I} \\
& \hline
\end{aligned}
$$

$$
\frac{1}{\mathbf{Z}_{1}}+\frac{1}{\mathbf{Z}_{2}}+\frac{1}{\mathbf{Z}_{3}}=\frac{1}{0.5 \mathrm{k} \Omega}+\frac{1}{j 10 \mathrm{k} \Omega}+\frac{1}{2 \mathrm{k} \Omega}=2.5 \mathrm{mS} \angle-2.29^{\circ}
$$

$$
\frac{1}{\mathbf{Z}_{3}}+\frac{1}{\mathbf{Z}_{4}}=\frac{1}{2 \mathrm{k} \Omega}+\frac{1}{-j 5 \mathrm{k} \Omega}=0.539 \mathrm{mS} \angle 21.80^{\circ}
$$

and

$$
\begin{array}{ll}
\mathbf{V}_{1}\left[2.5 \mathrm{mS} \angle-2.29^{\circ}\right] & -\mathbf{V}_{2}\left[0.5 \mathrm{mS} \angle 0^{\circ}\right] \\
\mathbf{V}_{1}\left[0.5 \mathrm{mS} \angle 0^{\circ}\right] & -\mathbf{V}_{2}\left[0.539 \mathrm{mS} \angle 21.80^{\circ}\right]=4 \mathrm{~mA} \angle 0^{\circ} \\
\hline
\end{array}
$$

${ }^{p t}$ Class

Basic of Electrical Engineering,

Methods of Analysis

with

$$
\begin{aligned}
& \mathbf{V}_{1}=\frac{\left|\begin{array}{rr}
24 \mathrm{~mA} \angle 0^{\circ} & -0.5 \mathrm{mS} \angle 0^{\circ} \\
4 \mathrm{~mA} \angle 0^{\circ} & -0.539 \mathrm{mS} \angle 21.80^{\circ}
\end{array}\right|}{\left|\begin{array}{cc}
2.5 \mathrm{mS} \angle-2.29^{\circ} & -0.5 \mathrm{mS} \angle 0^{\circ} \\
0.5 \mathrm{mS} \angle 0^{\circ} & -0.539 \mathrm{mS} \angle 21.80^{\circ}
\end{array}\right|} \\
& =\frac{\left(24 \mathrm{~mA} \angle 0^{\circ}\right)\left(-0.539 \mathrm{mS} \angle 21.80^{\circ}\right)+\left(0.5 \mathrm{mS} \angle 0^{\circ}\right)\left(4 \mathrm{~mA} \angle 0^{\circ}\right)}{\left(2.5 \mathrm{mS} \angle-2.29^{\circ}\right)\left(-0.539 \mathrm{mS} \angle 21.80^{\circ}\right)+\left(0.5 \mathrm{mS} \angle 0^{\circ}\right)\left(0.5 \mathrm{mS} \angle 0^{\circ}\right)} \\
& =\frac{-12.94 \times 10^{-6} \mathrm{~V} \angle 21.80^{\circ}+2 \times 10^{-6} \mathrm{~V} \angle 0^{\circ}}{-1.348 \times 10^{-6} \angle 19.51^{\circ}+0.25 \times 10^{-6} \angle 0^{\circ}} \\
& =\frac{-(12.01+j 4.81) \times 10^{-6} \mathrm{~V}+2 \times 10^{-6} \mathrm{~V}}{-(1.271+j 0.45) \times 10^{-6}+0.25 \times 10^{-6}} \\
& =\frac{-10.01 \mathrm{~V}-j 4.81 \mathrm{~V}}{-1.021-j 0.45}=\frac{11.106 \mathrm{~V} \angle-154.33^{\circ}}{1.116 \angle-156.21^{\circ}} \\
& \mathbf{V}_{1}=\mathbf{9 . 9 5} \mathrm{V} \angle \mathbf{1 . 8 8}
\end{aligned}
$$

$\Delta-Y, Y-\Delta$ CONVERSIONS

$$
\mathbf{Z}_{1}=\frac{\mathbf{Z}_{B} \mathbf{Z}_{C}}{\mathbf{Z}_{A}+\mathbf{Z}_{B}+\mathbf{Z}_{C}}
$$

$$
\mathbf{Z}_{2}=\frac{\mathbf{Z}_{A} \mathbf{Z}_{C}}{\mathbf{Z}_{A}+\mathbf{Z}_{B}+\mathbf{Z}_{C}}
$$

$$
\mathbf{Z}_{3}=\frac{\mathbf{Z}_{A} \mathbf{Z}_{B}}{\mathbf{Z}_{A}+\mathbf{Z}_{B}+\mathbf{Z}_{C}}
$$

$$
\mathbf{Z}_{B}=\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}}{\mathbf{Z}_{2}}
$$

$$
\mathbf{Z}_{A}=\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}}{\mathbf{Z}_{1}}
$$

$$
\mathbf{Z}_{C}=\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}}{\mathbf{Z}_{3}}
$$

${ }^{p t}$ Class

Basic of Electrical Engineering.

Methods of Analysis

Example:

Find the total impedance \mathbf{Z}_{T} of the network

$$
\begin{aligned}
\mathbf{Z}_{B}=-j 4 & \mathbf{Z}_{A}=-j 4 \quad \mathbf{Z}_{C}=3+j 4 \\
\mathbf{Z}_{1}= & \frac{\mathbf{Z}_{B} \mathbf{Z}_{C}}{\mathbf{Z}_{A}+\mathbf{Z}_{B}+\mathbf{Z}_{C}}=\frac{(-j 4 \Omega)(3 \Omega+j 4 \Omega)}{(-j 4 \Omega)+(-j 4 \Omega)+(3 \Omega+j 4 \Omega)} \\
= & \frac{\left(4 \angle-90^{\circ}\right)\left(5 \angle 53.13^{\circ}\right)}{3-j 4}=\frac{20 \angle-36.87^{\circ}}{5 \angle-53.13^{\circ}} \\
= & 4 \Omega \angle 16.13^{\circ}=3.84 \Omega+j 1.11 \Omega \\
\mathbf{Z}_{2}= & \frac{\mathbf{Z}_{A} \mathbf{Z}_{C}}{\mathbf{Z}_{A}+\mathbf{Z}_{B}+\mathbf{Z}_{C}}=\frac{(-j 4 \Omega)(3 \Omega+j 4 \Omega)}{5 \Omega \angle-53.13^{\circ}} \\
= & 4 \Omega \angle 16.13^{\circ}=3.84 \Omega+j 1.11 \Omega \\
\mathbf{Z}_{3} & =\frac{\mathbf{Z}_{A} \mathbf{Z}_{B}}{\mathbf{Z}_{A}+\mathbf{Z}_{B}+\mathbf{Z}_{C}}=\frac{(-j 4 \Omega)(-j 4 \Omega)}{5 \Omega \angle-53.13^{\circ}} \\
& =\frac{16 \Omega \angle-180^{\circ}}{5 \angle-53.13^{\circ}}=3.2 \Omega \angle-126.87^{\circ}=-1.92 \Omega-j 2.56 \Omega
\end{aligned}
$$

Replace the Δ by the Y (Fig. 17.49):

$$
\begin{array}{ll}
\mathbf{Z}_{1}=3.84 \Omega+j 1.11 \Omega & \mathbf{Z}_{2}=3.84 \Omega+j 1.11 \Omega \\
\mathbf{Z}_{3}=-1.92 \Omega-j 2.56 \Omega & \mathbf{Z}_{4}=2 \Omega \\
\mathbf{Z}_{5}=3 \Omega &
\end{array}
$$

Impedances \mathbf{Z}_{1} and \mathbf{Z}_{4} are in series:

$$
\begin{aligned}
\mathbf{Z}_{T_{1}} & =\mathbf{Z}_{1}+\mathbf{Z}_{4}=3.84 \Omega+j 1.11 \Omega+2 \Omega=5.84 \Omega+j 1.11 \Omega \\
& =5.94 \Omega \angle 10.76^{\circ}
\end{aligned}
$$

Impedances \mathbf{Z}_{2} and \mathbf{Z}_{5} are in series:

$$
\begin{aligned}
\mathbf{Z}_{T_{2}} & =\mathbf{Z}_{2}+\mathbf{Z}_{5}=3.84 \Omega+j 1.11 \Omega+3 \Omega=6.84 \Omega+j 1.11 \Omega \\
& =6.93 \Omega \angle 9.22^{\circ}
\end{aligned}
$$

Impedances $\mathbf{Z}_{T_{1}}$ and $\mathbf{Z}_{T_{2}}$ are in parallel:

$$
\begin{aligned}
\mathbf{Z}_{T_{3}} & =\frac{\mathbf{Z}_{T_{1}} \mathbf{Z}_{T_{2}}}{\mathbf{Z}_{T_{1}}+\mathbf{Z}_{T_{2}}}=\frac{\left(5.94 \Omega \angle 10.76^{\circ}\right)\left(6.93 \Omega \angle 9.22^{\circ}\right)}{5.84 \Omega+j 1.11 \Omega+6.84 \Omega+j 1.11 \Omega} \\
& =\frac{41.16 \Omega \angle 19.98^{\circ}}{12.68+j 2.22}=\frac{41.16 \Omega \angle 19.98^{\circ}}{12.87 \angle 9.93^{\circ}}=3.198 \Omega \angle 10.05^{\circ} \\
& =3.15 \Omega+j 0.56 \Omega
\end{aligned}
$$

Impedances \mathbf{Z}_{5} and $\mathbf{Z}_{T_{3}}$ are in series. Therefore,

$$
\begin{aligned}
\mathbf{Z}_{T}=\mathbf{Z}_{3}+\mathbf{Z}_{T_{3}} & =-1.92 \Omega-j 2.56 \Omega+3.15 \Omega+j 0.56 \Omega \\
& =1.23 \Omega-j 2.0 \Omega=\mathbf{2 . 3 5} \boldsymbol{\Omega} \angle-\mathbf{5 8 . 4 1} 1^{\circ}
\end{aligned}
$$

${ }^{p t}$ Class

Basic of Electrical Engineering,
Methods of Analysis
Tutorial
1-Write the mesh equations for the networks. Determine the current through the resistor R_{1}.

(a)
(b)

2-Write the mesh equations for the network, and determine the current through the $10 \mathrm{k} \Omega$ resistor.

3-Write the mesh equations for the network, and determine the current through the inductive element.

4- Determine the nodal voltages for the networks

r^{t} Class

Basic of Electrical Engineering.

Methods of Analysis

5-Determine the current \mathbf{I} for the networks

