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CHAPTER ONE

INTODUCTION AND FUNDAMENTAL CONCEPTS

1. Introduction
Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid statics)

and the subsequent effects of the fluid upon the boundaries, which may be either solid surfaces
or interfaces with other fluids.

There are two classes of fluids, liquids and gases. The distinction is a technical one concerning
the effect of cohesive forces. A liquid, being composed of relatively close-packed molecules
with strong cohesive forces, tends to retain its volume and will form a free surface in a

gravitational field. Since gas molecules are widely spaced with negligible cohesive forces.

2. Civil Engineering Fluid Mechanics
Why are we studying fluid mechanics on a Civil Engineering course? The provisions of

adequate water services such as the supply of potable water, drainage, sewerage are essential for
the development of industrial society. It is these services which civil engineers provide.

Fluid mechanics is involved in nearly all areas of Civil Engineering either directly or indirectly.
Some examples of direct involvement are those where we are concerned with manipulating the
fluid :

 Sea and river (flood) defenses;

Water distribution /sewerage (sanitation) networks;

Hydraulic design of water/sewage treatment works;

* Dams;

Irrigation;
* Pumps and Turbines;

+ Water retaining structures.
And some examples where the primary object is construction - yet analysis of the fluid

mechanics is essential:
* Flow of air in /around buildings;

* Bridge piers in rivers; + Ground-water flow.
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3. System of units
Thus far we have used familiar fluid properties such as pressure and density without definition.

Before defining these and other fluid properties more precisely in the next chapter, it is
worthwhile to review their dimensions and unit systems. Fluid mechanics embodies a wealth of
fluid properties, many with distinctive units, and in a global economy it is important for an
engineer to be able to work confidently in any customer’s preferred unit system. A dimension is
a physical variable used to specify some characteristic of a system. Examples include mass,
length, time, and temperature. In contrast, a unit is a particular amount of a physical quantity or
dimension. For example, a length can be measured in units of inches, centimeters, feet, meters,
miles, furlongs, and so on. Consistent units for a variety of physical quantities can be grouped
together to form a unit system.

There are three widely used systems of units in the word. These are

I. British or English system (it's not in official use now in Briton)

Il. Metric system.

I1l. SI system (System International of Unites or International System of Units).

To avoid any confusion on this course we will always use the SI (metric) system - which you
will already be familiar with. It is essential that all quantities are expressed in the same system or
the wrong solutions will results.

The SI system consists of six primary units, from which all quantities may be described. For
convenience secondary units are used in general practices which are made from combinations of
these primary units.

In fluid mechanics there are only four primary dimensions from which all other dimensions can
be derived: mass, length, time, temperature. These dimensions and their units in both systems are
given in Table 1.1.

Notice how the term ’Dimension’ of a unit has been introduced in this table. This is not a
property of the individual units, rather it tells what the unit represents. For example a meter is a
length which has a dimension L but also, an inch, a mile or a kilometer are all lengths so have
dimension of L.(The above notation uses the MLT system of dimensions, there are other ways of

writing dimensions — We will see more about this in the section of the course on dimensional

analysis.)
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Table 1.1: Primary dimensions in Sl and BG system

Primary SI Unit BG Conversion
Dimension Unit Factor
Mass Kilogram(kg) Slug 1slug =
(M) 14.5939 kg
Length Meter (m) Foot 1ft =
(L) (ft) 0.3048 m
Time Second Second 1sec=1sec
(M (sec) (sec)
Temperature Kelvin Rankin 1IK=18(R)
(6) (K) CR)

Although a specific base dimension set may be freely chosen, other aspects of a valid
dimensional system are restricted by the laws of physics. Every valid physical law can be cast in

the form of a dimensionally homogeneous equation; i.e., the dimensions of the left side of the

equation must be identical to those of the right side. Consider Newton’ s second law in the form

F=mXa

We define the Newton and pound is the dimension of force

1 Newton of force = 1N = 1 kg.nvs?

1 pound of force =1 Ibf = 1 slug. ft/s?> =4.4482 N

The following table (Table 1.2) shows the dimensions of a variety of physical quantities in terms
of the basic units mass, length, time (M,L,T) or force, length, time (F,L,T). The table also shows
the preferred units for those quantities in both the International System (S.l.) and the British
System of units. Additional units commonly used for the quantities listed are shown in the last
column of the table.

A list of some important secondary variables in fluid mechanics with dimensions derived as
combinations of the four primary dimensions is given in Table 1.2. A more complete list of

conversion factors is given in the end of this chapter.
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Table 1.2: Dimensions and units of measurement
Dimensions Preferred units Other
Quantity (M.L.T) (FLT) S.l. E.S. units
Length (L) L L m ft in, mi
Time (T) T T s s h, d
Mass (M) M FTPL' kg slug
Area (A) L2 L2 m? ft? Ac
Volume (Vol) L3 L m’ ft* Ac-t
Velocity (V) LT LT m/s  ft/s or fps -
Acceleration (a) LT * LTZ? m/s? ft/s? -
Discharge (Q) LT LT m¥s  ftUsorcfs -
Kinematic viscosity (v) L7 LT ms ft’/s st
Force (F) MLT * F N Ib -
Pressure (p) MLTT?  FL? Pa Ib/ft? psi, atm
Shear stress (1) MLTT?  FL? Pa Ib/ft? psi
Density (p) ML®  FTL™® kgm®  slug/t® -
Specific weight (o) ML*T?  FL® N b/t -
Energy/Work/Heat (E) MLT 2 FL J Ib ft -
Power (P) MLT?  FLT W b ft/s hp

Dynamic viscosity (u)

MLTT' FTL? Ns/m? b s/ft?

The symbols for the units used in Table 1.2 are listed next:

Ac :acre, a unit of area

Ac-ft : acre X feet

Atm. : atmosphere

cfs : cubic feet per second
fps : feet per second

ft : foot or feet

hp : horse power

in : inch

J: joule

kg : kilogram

cfs : cubic feet per second

Ib : pound

m: meter
N : newton
mi : mile
P : poise
Pa : Pascal (N/m?)
psi : pounds per square inch
sec : second
St : stokes
W : watt

6
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4. Properties of Fluids
The properties outlines below are general properties of fluids which are of interest in

engineering. The symbol usually used to represent the property is specified together with some
typical values in Sl units for common fluids. Values under specific conditions (temperature,

pressure etc.) can be readily found in many reference books.

4.1 Mass Density (p)
Mass Density, p (rho) , is defined as the mass of substance per unit volume.

Units: Kilograms per cubic meter, kg / md

Dimensions: ML3 (FT?L*)

Typical values:Water = 1000 kg/m®  Mercury = 13600 kg/m?

(At pressure =1.013 X105 N/m? and Temperature =288.15°K “20°C”)

4.2Weight Density; Specific Weight (y)
The specific weight; weight density, y (gamma) is defined as the weight of fluid per unit volume

at the standard temperature and pressure, or the force exerted by gravity, g, upon a unit volume
of the substance.
The Relationship between g and y can be determined by Newton’s 2" Law, since
Weight per unit volume = mass per unit volume X g
y=pXg Where g is the gravitational acceleration
Units: Newton’s per cubic metre, N/ m3
Dimensions: ML2T -2 (F/L3)
Typical values: 7ywater = 9800N/m?

4.3 Specific Gravity (r.d.)
The specific gravity of any substance is the ratio of the density of the substance to the density of

the water. Specific density is usually represented by the symbol (sp.gr.) or sometimes by (r.d.)

referring to the relative density. i.e.

(sp.gr.); rd. = r.d.liquid = pPliquid /pw = pliquid /1000

poffluid
p

It is also described as (y / ywater )

Units: None, since a ratio is a pure number

Dimensions: 1.

Typical values: Water = 1, Mercury = 13.6
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4.4 Specific volume (V)
The specific volume v is the volume occupied by unit mass of fluid, thus

1

V= > (nfikg)

4.5 Temperature (T)
The temperature is a measure of the internal energy level of a fluid.

4.6 Pressure (P)
The pressure is the stress at a point in a static fluid, and is the differences or gradients in pressure

after drive a fluid flow especially in ducts.

Units: atm. , Pa, bar,

4.7 Surface Tension (c)
The phenomenon of surface tension, o (sigma) arises due to the two kinds intermolecular forces.

I. Cohesion Force:- the force of attraction between the molecules of a liquid due to, they are
bound to each other to remain as one assemblage of particles is known as the force of cohesion.
Il. Adhesion Force:- The force of attraction between unlike molecules, ie, between the
molecules of different liquids or between the molecules of a liquid and those of solid body when
they are in contact with each other.

Surface tension may also be defined as the work per unit area (N.m / m?) or (N/m) required
creating unit surface of the liquid.

When a liquid is in contact with a solid, if the forces of adhesion between the molecules of the
liquid and the solid are greater than the forces of cohesion among the liquid molecules
themselves, the liquid molecules crowd towards the solid surface. The area of contact between

the liquid and solid increases and the liquid thus wets the solid surface

onD or D
\ ‘{
/‘
pis
h D D

o LR W3
Capillary risc Capillary depression

Adhesion>cohesion Adhesion<cohesion

Liquid wets the surface Liguid stays away

from the surface
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The reverse phenomenon takes place when the force of cohesion is greater than the force of
adhesion. These adhesion and cohesion properties result in the phenomenon of capillarity by
which a liquid either rises or falls in a tube dipped into the liquid depending upon whether the
force of adhesion is more than that of cohesion or not.

Units: N/m

Dimensions: F/L.

Example

Derive an expression for the change in high (h) in a circular tube of a liquid with surface tension
(o) and contact angle (0). As in figure below.

Sol.

The vertical component of the ring surface tension force at the interface in the tube must balance
the weight of column of fluid of height (h).

2nR.c. cosO=p.g.m.R2.h o

Solving for h, we have the desired result ‘>/

h= 20c0s0 _ 4ocos6 =
YR 12%

Suppose that, the fluid is water having o = 0.073 N/m,
0 = 0° p=1000 kg/m® and R=1mm, then find the

capillary rise for the water-air-glass

interface.

4.8 Compressibility (E)
The compressibility is the measure of its change in volume under the action of external forces.

The degree of compressibility of a substance is characterized by the bulk modulus of elasticity E,

defined as:
_ Ap . . . . ..
E= —AV/V ; the negative sign is to make (E) positive

The values of (E) for liquids are very high as compared with those of gases. Therefore the liquids
are usually termed as incompressible fluids.
For example  Ewater = 2*106 kKN/n?

Eair = 101 KN/n?
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Indicates that the air is about (20000) times more compressible than water. Hence water can be
treated as incompressible.
Units: N/m?

Dimensions: F/L?

Example
A liquid compressed in a cylinder has a volume of 1000 cm® at IMN/n? and a volume of

995 cm? at 2 MN/m2. What is its bulk modulus of elasticity (E)?

Sol.

- _ bp _ (2-1) x 106 ~
E= AV/V  (995-1000)x10~6/ (1000x 10~6) = 200Mpa
Example

If E=2.2 GPa is the bulk modulus of elasticity for water, what pressure is required to reduce a
volume by 0.6 percent?
Sol.

E=- 2  2ox100= - 220
AV/V ~0.006

. p2= 13.2 MPa

4.9Viscosity (W)
Viscosity, i (mu), is the property of a fluid, due to cohesion and interaction between molecules,

which offers resistance to shear deformation. Different fluids deform at different rates under the
same shear stress. Fluid with a high viscosity deforms more slowly than fluid with a low
viscosity such as water.

A fluid is defined as a material which will continue to deform with ¥

the application of a shear force. However, different fluids deform at u(y) i
different rates when the same shear stress (force/area) is applied. Velocity
If the force F acts over an area of contact A, then the shear stress t i profile
(tao) is defined as T=F/A . —
h 1@} T=pgs

All fluids are viscous, “Newtonian Fluids” obey the linear
relationship given by Newton’s law of viscosity.

MNo slip at wall

d .
T=U = Where 71 is the shear stress (N/m?)
dy

dv/dy represent the velocity gradient (1/sec.)
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%+ The Coefficient of Dynamic Viscosity, |, is defined as the shear force, per unit area,
(or shear stress 1), required to drag one layer of fluid with unit velocity past another layer
a unit distance away.
Units: Newton seconds per square meter, (N.sec) / m? or Kilograms per meter per second,
kg/(m.sec) .
(Although note that p is often expressed in Poise, where 10 Poise = 1 kg/(m. sec.))

>

+«¢ Ideal Fluid such a fluid having zero viscosity (p=0) is called an ideal fluid and the
resulting motion is called ideal fluid or in viscid flow. From this definition there is no
existence of shear force.

% Real Fluid, All fluids in reality having viscosity (1 > 0.0) are termed real fluid and their
motion is known as viscous flow.

% A classic problem is the flow induced between a fixed lower plate and an upper plate

moving steadily at velocity V, as shown in Fig. below. The clearance between plates is h,

and the fluid is newtonian and does not slip at either plate.

Example
Suppose that the fluid being sheared in Fig. is SAE 30 oil at 20°C (p= 0.29 kg/(m.s). Compute

the shear stress in the oil if the velocity (v) is 3 m/s and (h) is 2 cm.

¥

Moving
plate:
[ —— u=V
Viscous
] fuid
ue0 Fixed plate
Sol.
dv \'% [0.29 kg/(m.sec)](3m/sec)
™= — = — = =
H dy H h 0.02m

43kg/(m.sec? ) = 43N/m? =43Pa.
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% Kinematic Viscosity (v)
Kinematic Viscosity, v (nu), is defined as the ratio of dynamic viscosity to mass density.

v=£
p
Units: square meters per second, m? /sec
(Although note that n is often expressed in Stokes, St, where 10 Stoke = 1 n /sec.)

Dimensions: L2/T.

Multiplicative Prefix

factor

1012 tera

- e |

10° g Secondary dimension SI unit BG unit Conversion factor

106 mega

— k'Ig Area (L) m i ' = 10764

" Volume {13} m P Im*=35315

10 hecto Velocity (LT~} ms fus [ fts = 03048 mvs

10 deka Acceleration |LT ™) ms” fus? I fus? = 03048 ms?

102 deci Pressure or stress

= — (ML'TY Pa=Nm’ Dbl I Ibfft: = 47.88 Pa

. _ Angular velocity {T™') 5! y 57! =1g

10 mill Energy, heat, work
10° micro (MLTY J=N'm ft- Ibf [ ft-Ibf = 13558 ]

107 v Power {ML'T™3) W=l ft - Ibfs I ft- Ibfls = 13558 W
L o Density {ML™) ke/m® shugs/ft I shug/ft’ = 5154 ky/m’®

. Viscosity (ML™'T™") kel(m - 5) shogs(ft-s) 1 slug/(ft - 5) = 4788 kgfim - )

10 femto Specific heat [L'T%07") s+ K) RS- °R) I mls*+ K) = 5.980 f(s” - °R)
10718 atto
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Volume:
cm’® ft in® U.S Gallon U.K Gallon m’ Liter
cm’ 1.0 3.531467e-5 0.061024 0.0002641721 0.0002199692 le-6 0.001
ft’ 28316.85 1.0 1728 7.480519 6.228833 0.02831685 28.31685
in® 16.38706 0.0005787037 1.0 0.004329004 0.003604649 1.6387e-5 0.016387
[",'S 3785.412 0.1336806 231 1.0 0.8326738 0.00378541 3.785412
Gallon
[",'k 4546.092 0.1605437 277.4196 1.20095 1.0 4.5461e-3  4.5461
Gallon
Length:
cm ft in vard mile meter km
cIm 1.0 0.0328084 0.3937008 0.01093613 6.213712E-6 0.01 1E-5
ft 3048 1.0 12.0 0.3333333 0.0001893939 0.3048 0.0003048
in 2.54 0.08333333 1.0 0.02777778 1.578283E-5 0.0254 2.54E-5
vard |91.44 3.0 36.0 1.0 0.0005681818 0.9144 0.0009144
mile 1609344 5280 63360 1760 1.0 1609.344 1.600344
meter]100.0 3.28084 39.37008 1.093613 0.0006213712 1.0 0.001
Km 100000 3280.84 39370.08 1093.613 0.6213712 1000 1.0




14
FLUID MECHANICS Dr.Yasir Al-Ani

CHAPTERTWO
FLUID STATICS

1. Pressure Distribution in Fluids
Many fluid problems do not involve motion. They concern the pressure distribution in a static

fluid and its effect on solid surfaces and on floating and sub- merged bodies. When the fluid
velocity is zero, denoted as the hydrostatic condition, the pressure variation is due only to the
weight of the fluid. Assuming a known fluid in a given gravity field, the pressure may easily be
calculated by integration. Important applications in this chapter are:
I. Pressure distribution in the atmosphere and the oceans
Il. The design of manometer pressure instruments.
I11. Forces on submerged flat and curved surfaces.
The general rules of statics (as applied in solid mechanics) apply to fluids at rest. From earlier we
know that:

e astatic fluid can have no shearing force acting on it, and that

e Any force between the fluid and the boundary must be acting at right angles to the

boundary.

Fy

Note that this statement is also true for curved surfaces; in this case the force acting at any point
is normal to the surface at that point. The statement is also true for any imaginary plane in a
static fluid. We use this fact in our analysis by considering elements of fluid bounded by

imaginary planes.
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We also know that:
e For an element of fluid at rest, the element will be in equilibrium - the sum of the
components of forces in any direction will be zero.
e The sum of the moments of forces on the element about any point must also be zero.
e Ifthe force exerted oneach unit area ofa boundary is the same, the pressure is said to be
uniform.
It is common to test equilibrium by resolving forces along three mutually perpendicular axes and

also by taking moments in three mutually perpendicular planes and to equate these to zero.

o Force
PIESSUIE = Area over which the force is applied
F
Py

Units: Newton’s per square meter, N/ m?, kg/ (m. sec.)
(The same unit is also known as a Pascal, Pa, i.e. 1Pa=1 N/n?)
(Also frequently used is the alternative Sl unit the bar, where 1lbar = 10° N/m?).

2. Pressure at point (Pascal’s Law)
(Proof that pressure acts equally in all directions.)

Consider a small wedge fluid element at rest of size (Ax, Azby AS) and depth (b) into the paper
by definition there is no shear stress, but we postulate that the pressures px, pz and pn as shown

in Figure below.
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Z (up)
A

Element weight:
dW=pgbAxA2)

o) AN —
Width & into paper
P,
Equilibrium of a small wedge of fluid at rest.
Summation of forces must equal zero (no acceleration) in both x &z directions
Y Fx=0=p,b Az-p,bAssin€
1
NFz =0=p. b Ax - p, bAS cosO - 5 ybAx Az (2.1)

But the geometry of the wedge 1s such that
As sin@ = Az , As cos0 = Ax (2..2)
Substitution mto Eq. (2.1) and rearrangement give

1
Px :pn » P:: pn—l_; :’A: (23)

From relation 2.3 illustrate two important principles of hydrostatic
a) There is no pressure change in the horizontal direction.
b) There is a vertical change in pressure proportional to the density, gravity and depth change.

In the limit as the fluid wedge shrinks to a (point) Az — 0.Then, Eq. 2.3 become
px=pz=pn=p (2.4)

Since 0 is arbitrary, we conclude that the pressure p at a point in a static fluid is independent of
orientation.

In fluid under static conditions pressure is found to be independent of the orientation of the area.
This concept is explained by Pascal's law which states that the pressure at a point ina fluid at rest

is equal in magnitude in all directions.
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3. Pressure Force on a Fluid Element.
Let the pressure vary arbitrarily p = p(x,y,zt) consider the pressure acting on the two x-faces as

in Figure below . The net force in the x-direction on the element is given by

-

dF, = pdyv dz— (p+ C:_p dx)dy dz = - tip dx dy d-= (2.6)
ox ox

. . 0 d
In like manner the net force dFy involves (— a—p ), and the net force dF; concerns (— a—p)
y z

the total net —force vector on the element due to pressure is

cp ép  p

AF press =(-i— -j—— -k— ) d= dv d= (2.7)
ox oy cz
Z
|
v
i
| p
pdydz - ! &+ ﬁdr} dy o
dz
————— —
\ “-«MHH“
\‘\.\_. fdx
J‘

Net x force on an element due to pressure variation.

Rewrite Eq. 2.7 as the net force per unit element volume and is denoted by ( f)

foress= — Vp (2.8)

Thus is the pressure gradient causing a net force which must be balanced by gravity or
acceleration.

The pressure gradient is a surface force which acts on the sides of the element. Also, may be a
body force, due to electromagnetic or gravitational potentials acting on the entire mass of the

element. Consider only the gravity force or weight of element
(AF gy = pgddydz | (2.9)
l_ fg?'(?‘l-‘ = »ﬁ)g ‘
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For an incompressible fluid with constant viscosity the net viscous force is or (viscous stress)
)

= u(——+
X

2 ~ 277

+——)=uvv (2.10)
y oz

ol

87
Pl
o
.
g
I

f

¢
Vs N
s,

(B
(o]

iy

Where the subscript ( vs ) stands for viscous force,note that the term (g) in Eq. 2.9 denotes the
acceleration of gravity, a vector acting toward the center of the earth. On earth the average
magnitude of (g) is 32.174 ft/sec? = 9.807 m/sec? in our lectures and exercises we use the
approximate numerical value of g =32.2 ft/sec? = 9.81m/sec?.

The total vector resultant of these three forces which are pressure, gravity, and viscous stress
must either keep the element in equilibrium or cause it to move with acceleration (a).

Form Newton’s law of motion per unit volume:

SF=pa =Ffiestfum Fu=-Vp+ pg + uV-wy (2.11)
Rewrite Eq. 2.11 as follows
Vp =plg —a) + uvav (2.12)

1- Flow at rest or at constant velocity: The acceleration and viscous terms vanishes
identically, and p depends only upon gravity and density. This is the hydrostatic
condition.

2- When the fluid at rest or at constant velocity, a = 0 and V2 V Eq.2.12 for the pressure

distribution reduces to Vp = pg (2.13)

This is a hydrostatic distribution formula and is correct for all fluid at rest. Where (g) is the
magnitude of local gravity, Eq. 2.13 has the pressure components are

ap
ay

dp

=0, —= -pg = =y (2.14)

dap
— =0
! 0z

ox

: : . . G,
Where the coordinate system z is up i.e (p) is independent of x&y. Hence £ can be replaced by

.. d . ..
the total derivative d—p and the hydrostatic condition reduce to
yA

dp

e (2.15)
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Equation 2.15 is the fundamental equation for fluids at rest and can be used to determine how
pressure change with elevation. This equation indicates that the pressure gradient in the vertical
direction is negative; that is, the pressure decrease as we move upward in a fluid at rest.

This leads to the statement,

I. The pressure will be the same at the same level in any connected static fluid and at all points
on a given horizontal plane whose density is constant or a function of pressure only.

Il. The pressure increases with depth of fluid.

I1l. The pressure is independent of the shape of the container and the free surface of a liquid will
seek a common level in any container, where the free surface is everywhere exposed to the same

pressure. Equation 2.15 is the solution to the hydrostatic problem.

3.1 Incompressible Fluid
For liquids the variation in density is usually negligible, even over large vertical distances, so

that the assumption of constant specific weight when dealing with liquids is a good one. For this

instant, Eq. 2.15 can be directly integrated
fpplz dp = — f;lz ydz toyields P2 —p1=—Y(22 —7)

or p —p2=V(2—7) (2.16)

Where p1 and p2 are pressures at the vertical elevation, zz and z as illustrated in Figure below.

Eqg. 2.16 can be written in compact form

Free surface
{pressure = p)

N
'y P2
T h=z-1
s M
4
y l -\.-

pp —p2=yXx((h) Or p1 =y %X (h) +p, (2.17)



20
FLUID MECHANICS Dr.Yasir Al-Ani

Where h is the distance, z2-zi. This type of pressure distribution is commonly called a

hydrostatic distribution. Eq. 2.17 shows that in an incompressible fluid at rest the pressure varies

linearly with depth. It can also be observed from Eq. 2.17 that the pressure difference between

two points can be specified by the distance A since

h= P12 (2.18)
Y

Where h is called the pressure head and is interpreted as the height of a column of fluid of
specific weight Y to give a pressure difference (p1— p2).
If po is the reference pressure would be the pressure acting on the free surface, then from

Eq. 2.17 the pressure at any depth h below the free surface is given by the following:
p=po+v(h) 219

Example
We can quote a pressure of 500K N/ n? in terms of the height of a column of water.

Sol.

p  500x10° 5095 of wat
— =T =2U.%: O waler
pe  1000%981 "

&

h=

And in terms of Mercury with density. p=13.6x10 kgm ™.

500x10°

== 3 g =375 ferc
1= 136X 10° X 981 m of Mercury

Example
The deepest point in the ocean is (11034 m) in the pacific. At this depth y=10520 N/m?. Estimate

the absolute pressure at this depth.
Sol.

Pabsolute = ]/(h) + Patm.  10520*11034 + 101350= 116179030 N/m? = 116.18 MPa

Example



21
FLUID MECHANICS Dr.Yasir Al-Ani

A closed tank contains 1.5 m of SAE 30 oil (y = 8720N/m3), 1m of water, 20 cm of mercury
(y = 133100N/m?) and an air space on top all at 20°C. If prottom= 60000 Pa, what is the pressure in
the air space.

Sol.

Apply the hydrostatic formula down through the three layers of fluid.

P bottom — Pair + A:’roil:::h o1l + ﬂf‘ warer$]1 water + ‘;r"mercur}':::ll mercury

60000 = pair + 8720 * 1.5+ 9800 * 1 + 133100 * 0.2 — pair= 10580 Pa

3.2 Pressure Measurements
The unit of pressure in the SI system is (N/m?) also called Pascal (Pa). The atmospheric pressure

is approximately (10° N/m?) is and designated as "bar". From above definition the pressure at a
point within a fluid mass will be designated as either an absolute pressure or a gauge pressure.

Absolute pressure is measured relative to a perfect vacuum (absolute zero pressure), where as
gauge pressure is measured relative to the local atmospheric pressure. Thus, a gauge pressure of
zero corresponds to a pressure that is equal to the local atmospheric pressure. Absolute pressures
are always positive, but gage pressure can be either positive or negative depending on whether
the pressure is above or below atmospheric pressure. A negative gauge pressure is also referred
to as a suction or vacuum pressure. The concept of gauge and absolute pressure is illustrated
graphically in figure below for two typical pressures located at points 1 and 2. Gauge pressure is

the difference between the value of the pressure and the local atmospheric pressure (patm.)

Pgauge= P — Patm.

1
e
Gage pressure @ 1
Local atmospheric
pressure reference
é (Gage pressure @ 2

(swction or vacuum)

Pressure

Absolute pressune
@1
Absolute pressure
@2

Absolute zero reference



22
FLUID MECHANICS Dr.Yasir Al-Ani

The measurement of atmospheric pressure is usually accomplished with a mercury barometer,
which in its simplest form consists of a glass tube closed at one end with the open end immersed
in a container of mercury as shown in figure below. The tube is initially filled with mercury
(inverted with its openend up) and then turned upside down (open end down) with the open end
in the container of mercury. The column of mercury will come to an equilibrium position where
its weight plus the force due to the vapor pressure (which develops in the space above the
column) balances the force due to the atmospheric pressure. Thus,

Patm. = yh + Pvapor

The vapor pressure pvapor can be neglected in most practical cases in comparison to patm., since
it’s very small for mercury, pvapor= 0.16*patm.. S0 that,

Patm. = ph

1.0132+105(N/ )

p*g 13560 (kg/mE)*g.m (kag) =0.761mof (Hg)

[f water was used the value of /z will be equal to 10.32 m

h = Patm.

Ll iy

Example
What will be the (a) the gauge pressure , (b) the absolute pressure of water at depth 12m below

the surface ?

Sol.
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(@) DPgage = pPgh =1000+9.81 % 12 = 117720%, (Pa)
(b)  Pabs. = Pgage + Patm, = (117720 + 101 + 10°) = 218720% =

- ~ KN
218.72—, (kPa)

4. Manometers.
The manometers are the standard technique for measuring pressure involves the use of liquid

columns in vertical or inclined tubes. Pressure measuring devices based on this technique are
called manometers. Three common types of manometers include the piezometer tube, the U-tube

manometer, and the inclined-tube manometer.

4.1 Piezometer Tube
The simplest type of manometer consists of a vertical tube, open at the top, and attached to the

container in which the pressure is desired, as illustrated in figure below. Since manometers
involve columns of fluids at rest, the fundamental equation describing their use is Eq. 2.19
P =po+yh

This gives the pressure at any elevation within a homogeneous fluid in terms of a reference
pressure po and the vertical distance h between p and po. Remember that in a fluid at rest
pressure will increase as we move downward and will decrease as we move upward. Application
of this equation to the piezometer tube of figure shown indicates that the pressure pa can be
determined by a measurement of h through the relationship

PAa =1vy1ht
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Open

;i]
Li!

A
+ o —1 (1)

The tube is open at the top, the pressure po can be set equal to zero as using a gauge pressure,
with the height hi measured from the meniscus at the upper surface to point (1) then

_M

h, =
1" pg

4.2 The “U”-Tube Manometer
Manometers are devices in which columns of a suitable liquid are used to measure the

difference in pressure between two points or between a certain point and the atmosphere.
Manometer is needed for measuring large gauge pressures. It is basically the modified form of
the piezometric tube. A common type manometer is like a transparent "U-tube" as shown in

figure below.

Fluid density p

Manometric fluid density p
m

an

A “U”-Tube manometer
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Pressure in a continuous static fluid is the same at any horizontal level so,
Pressure at B = Pressure at C
P8 =Pc
For the left hand arm
Pressure at B = pressure at A + pressure due to height hi of fluid being measured
Pp = Pat Yhy
For the right hand arm
Pressure at C = pressure at D + pressure due to height h2 of manometric fluid
Pc = Parm. T Yhe
As we are measuring gauge pressure we can subtract p,.,,, , then we can calculate p, as
Pa = Y2h, — nhy
If the fluid being measured is a gas, the density will probably be very low in comparison to the

density of the manometric fluid. In this case the term y, h, can be neglected.

4.3Manometers to Measure Pressure Difference

Pt

p1 + (v +x)pwg =02 + YPwg + pmgx
Py — P2 = (Pm — Pw)gx

Example
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A closed tank contains oil and compressed air (r.d.oit = 0.9) as is shown in the following figure, a
U-tube manometer using mercury is connected to a tank as shown. For column heights

h1=914.5mm, h2=152.4mm and hs= 228.6mm. Determine the pressure reading in Pa of the gauge.

%, Pressure
' gage

Sol.
The pressure at level (1) is equal to the pressure at level (2), since these two points are at the
same elevation in a homogeneous fluid at rest. The pressure at level (1) is
P1 = Pair T Your (hq + 1)
The pressure at level (2) is
P2 = Yug X hs
Thus, the manometer equation can be expressed as
Pair + Vou(hy + hy) — Yug hy =0
Or
Pair + T- AotV (hy + hy) — rodygvhy =0
p,ir= —0.9 * 9800 * (0.9145 + 0.1524) + 13.6 * 9800 * 0.2286 = =21079.23 N/m?(Pa.)

Example

(@) At what depth below the surface of oil, specific gravity is 0.8 will produce a pressure of
120 kN/m??. (b) What depth of water is this equivalent to?.
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Sol.
(b) Sp.gr.= Poil Poil = Sp.or. * p,, = 0.8 *1000 = 800 kg/m*
w
* 3
(@) h = pi’g = 0 = 1529 m of oil
* 3
®) h =2 =12 _1223mof water

p+g  1000%9.81

Example

A manometer connected to a pipe indicates a negative gauge pressure of 50mm of mercury.
What is the absolute pressure in the pipe in Newtons per square meter?
Sol.

Pabs. = Pgauge + Patm. = Y() + Patm. = - 13.6 * 9800 *0.05 + 10° = 93329 (Pa)= 93.329 (kPa)

5. Hydrostatic Forces on Plane Surface.
Any hydro structure design required a computation of the hydrostatic forces on various solid

surfaces contact with fluid. We wish to determine the direction, location and magnitude of the

resultant force acting on one side of the surface area due to the liquid in contact.

Step 1. Find the resultant force.

b

J J

R

X

K K’
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Choose an element of area so that the pressure on it is uniform. Such an element is a horizontal
strip with a width equal to X, so, dA = xdy . Notice that the width of the surface is not constant.
Total force on the whole surface will equal to the summation of forces on all elements of dy:
Total force = F = ZdF

Force = pressure X area

F =XpdA

The mathematical equivalent to the summations is integration (when the strip height “dy” is too

small)

F=[pd, p=yh
h=ysind — p=y (ysind )

«F=[y(ysin®)d, > F =ysin8 [y d, h

fy d, is the mathematical expression for the first

moment of area.

The first moment of area equals to the sum of the "o

products of area times distance to the centroid.

Where:
Yc the distance from the fluid surface to the centroid of the plan surface along the inclined plan
surface (in vertical surfaces, yc = hc).
— F =ysin® (y, * A) ,buth=ysin 0
W“F=ysxh.*xA
Where:
F Pressure force (normal to the surface)
vy  Specific weight of fluid (for water, vy =9800 N/m?® or y = 62.4 lb/ft3
A Cross sectional area of the plan surface.

h. Vertical distance from the surface of fiuid to the centroid of the plan surface.
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1|k

JI’

—_— di‘

K!




30
FLUID MECHANICS Dr.Yasir Al-Ani

Force = pressure x area

dF = pdA p=71h h=ysiné = p=y(ysinb)

dF = y(ysin@)dA4

To find the point of application of the pressure force. take the summation of moments of forces at O:
D M,=) vdF

Substitute for the value of dF:

>, = yy(vsine)ldd

The summation can be replaced with integration when the step is too small:

> M, =[y(y*sin6p4

For the whole system to be stable. the sum of moments should equal to the moment of the pressure
force F (F xp)

Where 3, 1s the distance from the fluid surface to the center of pressure of the surface along the
inclined plan.

Fxy, :I;x{.j‘zsinﬁ‘_HA 2 Fxy, :ysinﬁfj‘sz
I_1-2dA 1s the second moment of area (moment of inertia of the area) about O =1,
And F =y A=y(y_ sin@)4

(7xy.sin@xA)y, =ysingxI,

I

P — a

. P i

v.A
The above equation can be expressed in another form:
I, = A_rf + 1. (Parallel axes theorem)

If a body has moment of inertia I, about an axis C through its center of mass (C. G.). and if O 1s
another axis parallel to C at a distance y. from it. then the body’s moment of inertia about @ is
I =Ay +1_.
Ay~ +1,
P 5

v. A4
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Then,

= +
yp yC yCA

Summary of Results

> HydrostaticForce: F = yx*h.xA

Ic
YcA

> Actingat Location: y, = y. +

Supplementary Notes

1- Forces on vertical plan surfaces:
a. The surface intersects with fluid surface

T Wae =
g B
};:ﬂ“‘

. . H =

Force magnitude: Fy = y*h.*A

Where cross sectional area of the plan surface (= distance AB X width).

HY.
f;:ﬁthxH}

W width of the plan surface (and you can take it equal to unity, and that will give results per unit

width)
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Fy :lv.H2

5
Point of action (location):

The line of action of the force is at distance H/3 from the bottom.
b. The plan surface does not intersect with the fluid surface:

AV

EE—

he

7
Force magnitude: Fy = y*h.*A
L
h,=H+—
2
Point of action (location):
The line of action of the force is at distance = yc, from the fluid surface:
I
V, =V, +—
. p - .
v..A
Where:
Vp The distance from the fluid surface to the center of pressure of the surface along the inclined
plan.
Ve the distance from the fluid surface to the centroid of the plan surface along the inclined plan

surface (in vertical surfaces. y. = h.).
I Moment of inertia of the plan surface along its centroidal axis.
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. . Location of
Shape Sketch Area Centroid Ic
h bh’
bxh y,=— =—
2 c 12
bh h bh’®
—~ Y. =3 Ia =—0
2 3 36
D? b = D B D*
4 Te2 ° 64
?nl:)z 4;. KD“
Vv =— e —
8 37 128
6}‘2 4y v ;'4 )
- = —sin— =
2 Ye 365 I S (6 +sin@)
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Example

Calculate the force (P) needed to maintain the gate as shown in “figure (1)”, where a layer ofoil
rests on top of water. The width of the gate is (6m) into the page. Neglect the weight of the gate.

sol.

0.8 * 9800 *2 = 15680Pa. /4— P

15680 =9800*y — y = 1.6m of water

Water = 1.6+6 = 7.6m
F=y*h*A

= 9800 * (7.6/2) * (8.775*6)

F =1960847.8N

YM, =0
1960847 * (8.775/3) = P * 10 sin 60

P =660766.7N
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6. Hydrostatic Forces on Curved Surface.
Consider the curved section ab of the opentank as in figure shown. We wish to find the resultant

force acting on this section with unit length perpendicular to the plane of the paper. The
horizontal plane surface bc and the vertical plane surface ac are the projection areas of the

curved surface ab. Fn & Fv are the forces components that the tank exerts on the fluid. W is the

specific weight (y) of the fluid times the enclosed volume acts through (cg), then,

T'r' 7

I
v

I Vertical forces Fv: the vertical force on a curved surface is given by the weight of the
liquid enclosed by the surface and the vertical force acts on horizontal free surface of the
liquid. The force acts along the center of gravity of the volume.

ii.  Horizontal forces Fn: the horizontal force equals the force on the projected area of the

curved surface and acts at the center of pressure of the projected area.
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+ Because of the curvature of the surface, the direction of the resultant force is not pre-
determined as in the previous case. One needs to decompose the force to its horizontal

and vertical components (Fx, and Fz) and find the points of application for each.

gt
‘ ?\‘4 0\'“_‘9' T -
P | <
— — I . = i
= | — |
| | | |
| . |
| : |
‘ | | I <
| : he : I ’
| | I 7
| W
| | AN / ! /
l - |
-
| —'—| X F. | W, /
/ Fl w/ L/
z |

F H=V* hc * A :
Where A'is the vertical projection area of the curved surface.

F,=vyV

Where V is the volume of water over the curved surface up to the water surface.

Resultant force

R=/ﬁ+$

The angle the resultant force makes to the horizontal is

0 =tan~?! (i)

Fy
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Example

Determine the resultant force exerted by sea water (sp.gr.=1.025) on the curved port in AB of an
oil tanker as shown in figure. Also determine the direction of action of the force. Consider 1m

width perpendicular to paper.

——
D C WL
—
OQil tanker :__:E:_;%EEEE——ELIBW
E| e
am Je=—=—s
— - )
A
Sol.
Fy=y*h.+xA =(1.025%9800) * 17 * (4*1) = 683060N —
F,=yV

V = Vgcpe + Vase

2
F,= (1.025%9800) { (15*4) + (% )} = 728929.2N |

R=/¥+$

= /(683060) + (728929.2)? = 998953.823N

F
6 =tan~ ! (—V)
Fy
_ _1 (728929.2
6 = tan ( 683060

) = 46.86°
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CHAPTER THREE
FLUID DYNAMICS (BASIC EQUATIONYS)

1. Introduction
This section discusses the analysis of fluid in motion - fluid dynamics. The motion of fluids can

be predicted in the same way as the motion of solids are predicted using the fundamental laws of
physics together with the physical properties of the fluid.

2. Types of flow
Under some circumstances the flow will not be as changeable as this. He following terms

describes the states which are used to classify fluid flow:

o Uniform flow: If the flow velocity is the same magnitude and direction at every point in the
fluid it is said to be uniform.

o Non-uniform: If at a given instant, the velocity is not the same at every point the flow is
non-uniform.

o Steady: A steady flow is one in which the conditions (velocity, pressure and cross-section)
may differ from point to point but DO NOT change with time.

o Unsteady: If at any point in the fluid, the conditions change with time, the flow is described
as unsteady.

Combining the above we can classify any flow in to one of four types:
1. Steady Uniform flow. Conditions do not change with position in the stream or with time.
An example is the flow of water in a pipe of constant diameter at constant velocity.
2. Steady Non-uniform flow. Conditions change from point to point in the stream but do not
change with time. An example is flow in a tapering pipe with constant velocity at the inlet -
velocity will change as you move along the length of the pipe toward the exit.
3. Unsteady Uniform flow. At a given instant in time the conditions at every point are the
same, but will change with time. An example is a pipe of constant diameter connected to a
pump pumping at a constant rate which is then switched off.
4. Unsteady Non-uniform flow. Every condition of the flow may change from point to point

and with time at every point. For example waves in a channel.
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3. Flow (Discharge)

3.1 Mass flow rate
If we want to measure the rate at which water is flowing along a pipe. A very simple way of

doing this is to catch all the water coming out of the pipe in a bucket over a fixed time period.
Measuring the weight of the water in the bucket and dividing this by the time taken to collect this
water gives a rate of accumulation of mass. This is known as the mass flow rate.

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket

weighs 8.0kg, then:

mass of fluid in bucket 8-2
mass flow rate m = - — = — =0.857 kg/sec.
time taken to collect the fluid 7

Performing a similar calculation, if we know the mass flow is 1.7kg/s, how long will it take to

fill a container with 8kg of fluid?

3.2 Volume flow rate - Discharge.
More commonly we need to know the volume flow rate - this is more commonly known as

discharge. (It is also commonly, but inaccurately, simply called flow rate). The symbol normally
used for discharge is Q. The discharge is the volume of fluid flowing per unit time. Multiplying
this by the density of the fluid gives us the mass flow rate. Consequently, if the density of the
fluid in the above example is 850kg/m® then

1 ffluid ffluid fl t 0.857 .
Q _ Yo um-e of fluid _ mass-o -u1 __ mass OTN rate _ — 0.001008 md/sec ~ 1 Ips (Iltre/s)
time densitytime density 850

3.3 Discharge and velocity
If we know the size of a pipe, and we know the discharge, we can deduce the velocity
Q=v-4
So if the cross-section area, A, is 1.2x10-3 n? and and the discharge, Q is 24 Vs then the velocity

. Q 24 x1073
(V)is Vv = AT or 20m/s
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4. Basicequations

4.1 Continuity equation
We can apply the principle of continuity to pipes with cross sections which change along their

length. Consider the diagram below of a pipe with a contraction:

Section 1 Section 2

Q:1=Q2=0Q3=....=Qn

This is the form of the continuity equation most often used. Where Q=v.A
A is the cross-sectional area of the flow section (pipe) and v is the mean velocity.
This equation is a very powerful tool in fluid mechanics and will be used repeatedly throughout
the rest of this course.
A liquid is flowing from left to right and the pipe is narrowing in the same direction. By the
continuity principle, the mass flow rate must be the same at each section - the mass going into
the pipe is equal to the mass going out of the pipe. So we can write:

Agvip1 = Axvap:
(With the sub-scripts 1 and 2 indicating the values at the two sections)
As we are considering a liquid, usually water, which is not very compressible, the density
changes very little so we cansay pi1 = p2= p This also says that the volume flow rate is
constant or that Discharge at section 1 = Discharge at section 2

Q1=0Q2

Avi = Avp

For example if the area A1=10*10-3 m? and A>=3*10-3 nm? and the upstream mean velocity is v1 is

2.1m/s ,then the downstream velocity can be calculated by

AV
vz == f:7m/s

2
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Notice how the downstream velocity only changes from the upstream by the ratio of the two

areas of the pipe. As the area of the circular pipe is a function of the diameter we can reduce the

calculation further,

T
A 2444

_ . 4 - _ 1 2
VZ—AV1—nd2V1—d2V1—d)V1

Now try this on a diffuser, a pipe which expands or diverges as in the figure below,

Sel:tjon | Secti{;n 2
If the diameter at section 1 is d1 = 30 mm and at section 2 d2 = 40 mm and the mean velocity at
section 2 is v2=3m /s. The velocity entering the diffuser is given by,
vi=(5)? x3=53ms
Another example of the use of the continuity principle is to determine the velocities in pipes

coming from a junction.

Total mass flow into the junction = Total mass flow out of the junction
p1Q1=p2 Q2+ p3 Qs
When the flow is incompressible (e.g. if it is water) p1 = p2=p

Q1=Q2+ Q3 — Avi = Apvo + Agvs
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If pipe 1 diameter = 50mm, mean velocity 2nvs, pipe 2 diameter 40mm takes 30% of total
discharge and pipe 3 diameter 60mm. What are the values of discharge and mean velocity in
each pipe?

Q1= AV = fd% * vy = 0.00392m3/s

Q2=0.3Q1 = 0.001178ms/s

Q1=Q2+Q3 , Q3= Q1-0.3Q1=0.7Q1 — Q3=0.00275 m®/s
Q2= AoV, — V, = 0.936m/s

Q3= AsVz — V3 = 0.972m/s

Example
As in figure the diameter at cross-section (1) is equal to (12 cm), the diameter at cross-section (2)

is equal to (8 cm). If the velocity at section (1) is 1.5 m/s, calculate the velocity at section (2).
Sol.

The cross-section area at (1) is A1= gdf = 2(0.12)2: 0.0113m?

A, =>df = (0.08)% =5.026*10"° n?

A 0.0113
Avi= AN, > v, = 2y = ——— *15=3.375m/s
A, 5.026%10

4.2 Energy equation (Euler equation)
The first law of Thermodynamics states that energy can be neither created nor destroyed, but it

can change from one form to another. It follows that all forms of energy are equivalent.
The flow conveyance between two points could happen because of acting of the following
energy types below:
1- Potential energy (m)
Potential energy depends on the object’s elevation above an arbitrary datum.

2- Flow energy (Pressure head) (m)

A fluid particle has energy due to its pressure that is greater than atmospheric pressure. = ;

2

3- Kinetic energy = Z—g (m)
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¢ Bernoulli’s Equation
This equation relates the pressure, velocity and height in the steady motion of an ideal fluid.

In driving Bernoulli’s equation, we will assume:

1

Viscous (friction) effects are negligible (Ideal fluid).
2- The flow is steady (constant with respect to time).
3

4- No energy is added or removed from the fluid.

The fluid is incompressible.

If we apply the three energies above on the figure below, then we will obtain:

E.L

\ Datum )
P V2 P V2
=+ + L+ +2 =2+ 2+ 2, = Constant
Y 2g Y 2g

The Energy Grade Line, also called the Energy Line or simply EL, is a plot of the sum

of the three terms in the work-energy equation, which is also the Bernoulli sum.

# If the fluid is static, the velocities are zero, and Bernoulli’s equation reduces to:

R=P+y(z,-z)
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s Applications of Bernoulli’s Equation
Applying Bernoulli to Points 1,2 in the fluid:
P, V? P, V7
— 4+ —+ L = — + —+ Zy
Yy 24 Yy 29

But, P1 = P2 = atmospheric pressure = 0 gage pressure.

v, = 0 = (Still water surface in a large tank with
small outlet pipe).
So,

Vlz
0O+ —4+2z2,=0+ 0+ 2
29
2
ZK; = (22— 21)
Or V, = /2gh where his (Z> — Z1)

% Step Method of Approaching Flow Problems

1- Choose a convenient datum.

2- Note locations/sections where the velocity is known.
* Reservoir (velocity at surface = 0)

* Continuity Equation: 0= 4T

3- Note locations/sections where pressure is known.

* Reservoir (Pressure at surface = atmospheric pressure = 0 gage pressure)

* Jet (pressure = 0)
* Simple Manometers
* Differential Manometers
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Example:
A 6m long pipe is inclined at angle of 20 with the horizontal. The smaller section of the pipe

which is at lower level is of 100mm and the larger section of pipe is of 300 mm diameter as
shown in figure. If the pipe is uniformly tapering and the velocity of water at the smaller section
is 1.8 m/s determine the difference of pressures between the two sections.

D>=300 mm

D,;=100 mm |
o _
wd1? 0.12 2
Ay =" = m+ 2= = 0.00785m
m
V=187
Z1 = 0m
dz == 0.3}'”

A, = E ¥ 0.32 = 0.0707m?
z, = 6sin20 = 6 * 0.342 = 2.05m
From C.E AV; = A, V5

2V, = ‘“;"’1 = 0.00785 + ——=0.2m/s

Applymg B.E. to both sections of pipe

V12 2 V22
+—+ 1=t 2

P1 — P2 = }’(-2 Vlz"‘ 32)

(n 22 _1.82

P, —py = 9810 + 205):18510%
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Example
a) Determine the velocity of efflux from the nozzle in the wall of the reservoir as in figure.

b) Find the discharge at the nozzle.

Sol. 1
L, _ Vi P2, —
a) 2g + ” + z; = > } v + z, Water
With pressure datum as local atmospheric H=4m dl:l 00 mm
pressure, p1=p2=0 & 2=0, z:=H, the velocity on I R =l
the surface of the reservoir is zero. Q
Vi
0+0+H=-=4+0+0 V, = J2gH =V2+9.81+4 =886"
24 s

b) Q= A,V, = m(0.05)%(8.86) = 0.07% =70

Ly | b=

Example

Water flows from a garden hose nozzle with a velocity of 15mvs. What is the maximum height
that it can reach above the nozzle?

(1]
Sol TS Eah
—+ —+z = —+ —+22
Yy 29 Yy 29
But , p1, p2, v2 are equal to zero

Thus () Zz,=0

2 2
h="=1"-115m
2g 2g
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Example
Water flows through the pipe contraction shown in figure. For the given 0.2m difference in

manometer level, determine the flow-rate as a function of the diameter of the small pipe, D

Sol. Stagnation
point

21=2,, Vi =0 (stagnation point)

Thus,

P1—D2

v, = 2 g , but p1:’Yh1 & p2=yh2

sothat pi—p2=v(i—hy) =0.2y

Then v, = Zg%/:vz = /2g%0.2

Or Q=Aov; ==D%v, =7D%/2g* 0.2 =1.56 D?> m3/s where D in m

Example
Water flows through the pipe contraction shown in figure. For the given 0.2m difference in

manometer level, determine the flow-rate as a function of the diameter of the small pipe, D
Sol.

P, V7 P, Vf
— 4+ —+z=—+ —+17
Yy 29 Yy 29
With
o
Avi=AN, OF vy = 41?171 = (%)2 2]

4 T2
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0.1 2
P1-P2 _ v% —v% _ {(F) -1} vy

Thus, z1=2,

29 2g

but p1:Yh1 & pzz'yhz so that P1i—pP2=vy (hl— hz) = 02’Y

Then
0.1 2
{(_) v 2gx0.2

= n= |5 and

14 9 {() -1
0.0156D2

= AV, =502 |[-29:02  or 0 = ——=— whereDinm
Q=Aw1 =(0.1) © Q 007D

4.3 Conservation of Momentum (Momentum equation)
In Newtonian mechanics, the conservation of momentum is defined by Newton’s second law of

motion. The 2"d law of motion states as:
e The rate of change of momentum of a body is proportional to the impressed action and
takes place in the direction of the impressed action.
e If aforce acts on the body, linear momentum is implied.
e If atorque (moment) acts on the body angular momentum is implied.
Newton’s 2nd Law can be written:
The Rate of change of momentum of a body is equal to the resultant force acting on the body,
and takes place in the direction of the force.
The force exerted by the fluid using Newton’s 2nd Law is equal to the rate of change of
momentum. So
Force = rate of change of momentum\
F=pQ (Vou=Vin) =p Q (V2= V1)
This force is acting in the direction of the flow of the fluid.

Vi

%
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This analysis assumed that the inlet and outlet velocities were in the same direction - i.e. a one
dimensional system. What happens when this is not the case?

Consider the two dimensional system in the figure below:

At the inlet the velocity vector, vi, makes an angle, 61 , with the x-axis, while at the outlet v2
make an angle 02. In this case we consider the forces by resolving in the directions of the
coordinate axes.

The force in the x-direction

Fx = Rate of change of momentum in x — direction

= Rate of change of mass X change in velocity in x — direction
=pQ(vax— Vi) = pQ(v2C0862 —V1COS61)

And the force in the y-direction
Fy =pQ (vay—Viy) = p Q (V2 sin 02 — vy Sin 1)

We then find the resultant force by combining these vectorially:

— , 2 2 F
F= Fx + Fy i ________ FResultant

- ()
X
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4.4Application of the Momentum Equation

4.4.1The forces due the flow around a pipe bend
Consider a pipe bend with a constant cross section lying in the horizontal plane and turning

through an angle of (0)

In summary we can say:

The total force exerted on the fluid = rate of change of momentum through the control volume
F=pQ (Vout — Vin)

Steps to analysis:

1. Draw a control volume

2. Decide on co-ordinate axis system

3. Calculate the total force

4. Calculate the pressure force

5. Calculate the body force

6. Calculate the resultant force

1. Draw a control volume

The control volume is draw in the above figure, with faces at the inlet and outlet of the bend and

encompassing the pipe walls.

x
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2. Decide on co-ordinate axis system
It is convenient to choose the co-ordinate axis so that one is pointing in the direction of the inlet

velocity. In the above figure the x-axis points in the direction of the inlet velocity.

3. Calculate the total force

In the x-direction:

Fr. =p Q (Vax ~ V1)
Vix = V1

Vox = V2 COS 0O

Fr =p Q(v2C0S6—Vi)

In the y-direction:

Fr, =p Q (Vay — Vay)
Viy= V1 SIN0=0
Voy= V2 SIN 0

Fr,=p Q (v2sin 0)

4. Calculate the pressure force

Fp = pressure force at 1— pressure force at 2

Fp, = p;A;c0s0 — p,A; cos@ = p A, — p,A, cosb
pr =p,A;sin0 — p,A,sinf = —p,A,sin0

5. Calculate the body force
There are no body forces in the x or y directions. The only body force is that exerted by gravity

(which acts into the paper in this example - a direction we do not need to consider).

Fg = Force exerted on the fluid body (e.g. gravity)
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6. Calculate the resultant force

Fr = Fp_ + Fp + Fy

Fp, = Fr — Fp —0=pQ(v2C086=V1) = p; A, + p,A, cosb

Fo = F, — F, —0=pQ(v2Sin 0) + p,4,sin8
Y Y F Resultant
And the resultant force on the fluid is given by

R = /FRXZ + Fp 2

And the direction of application is

FR
¢ =tan~1( =

The force on the bend is the same magnitude but in the opposite direction.

4.4.2 Force on a pipe nozzle
Force onthe nozzle at the outlet of a pipe. Because the fluid is contracted at the nozzle forces are

induced in the nozzle. Anything holding the nozzle (e.g. a fireman) must be strong enough to
withstand these forces.

The analysis takes the same procedure as above:
1. Draw a control volume

2. Decide on co-ordinate axis system

3. Calculate the total force

4. Calculate the pressure force
5. Calculate the body force

6. Calculate the resultant force

1 & 2 Control volume and Co-ordinate
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axis are shown in the figure.\

Notice how this is a one dimensional system which greatly simplifies matters.

3. Calculate the total force

Fr = FszpQ(VZ_Vl)

. 1 1
By continuity, Q = A1vi = A2vz, SO FTx = pQ2 e A_]
2 1

4. Calculate the pressure force
Fp = Fp_=pressure force at 1- pressure force at 2

We use the Bernoulli equation to calculate the pressure

The nozzle is horizontal, Z;=2Z, , and the pressure outside is atmospheric, p2=0,

And with continuity gives

pPQZ 1 1
p1= Y
2 laz a2

5. Calculate the body force
The only body force is the weight due to gravity in the y-direction - but we need not consider
this as the only forces we are considering are in the x-direction.

Fg = Force exerted on the fluid body (e.g. gravity)

6. Calculate the resultant force

1 1 pQ? [1 1
A, Al 2 a2z a2
2 1 2 1

Fp=Fg = sz[
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4.4.3Impact of a Jet on a Plane
We will first consider a jet hitting a flat plate (a plane) atanangle 0f90° , as shown in the figure

below. We want to find the reaction force of the plate i.e. the force the plate will have to apply to

stay in the same position.
Ua
Fr. = p Q (Vax = Vix) T

=-p Q Vix
As the system is symmetrical the forces in the

-
e

..‘
A it A i
T,

..‘
k=

S
T

¥

Yy

.
r}::}r
S

y-direction cancel i.e.

Fr =0

¥,
P
+.
.

)
-
)

.
.
o o A o T o
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R A A A

.
¥

\
i
N
ey
e

Sty

5
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P

Note: The pressure force is zero as the pressure at both the

ey

T

inlet and the outlets to the control volume are

s
o i)
e

Atmospheric and the control volume is small we can ignore uy ¢
the body force due to the weight of gravity.
The resultant force is exerted on the fluid.

Fp = Fp,==p Q Vix

The force on the plane is the same magnitude but in the opposite direction.

4.4 4Force due to a jet hitting an inclined plane

We have seen above the forces involved when a jet hits a plane at right angles. If the plane is

titted to an angle the analysis becomes a little more involved. This is demonstrated below.

Yy

o B R R R e e e L e '{\.{-‘\
-ffff-ffff(fff(fff(fff(fff(ff(’(f’f
'\.\, \'\:},‘1

b
— e e
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(Note that for simplicity gravity and friction will be neglected from this analysis.)
We want to find the reaction force normal to the plate so we choose the axis system as above so
that is normal to the plane. The diagram may be rotated to align it with these axes and help

comprehension, as shown below

(=3
YY)
e

ot
AR

)

-
A

-

,_
N
ENENENE

)Q s

I_I.1 )
A u3 ¢
We do not know the velocities of flow in each direction. To find these we can apply Bernoulli
equation
P, VE P. V2 P. V2
L+ tz = 2tz = 4+ Stz
Yy 29 Yy 29 Yy 29

The height differences are negligible i.e. z1=z2= zzand the pressures are all atmospheric = 0. So
VI=V2 =V3=V
By continuity
Qi=Q2+Q3 e Aivi =Acvo +Asvs —» Ar=Ac+ A3
Qi=Av1 & Qx=Axv
Q:3=(Ai—A) vV
Using this we can calculate the forces in the same way as before.
1. Calculate the total force
2. Calculate the pressure force
3. Calculate the body force

4. Calculate the resultant force
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1. Calculate the total force in the x-direction.
Remember that the co-ordinate system is normal to the plate.
Fr.=p [(szzx + st3x) — Qv ]

Butv, = v; =0 as the jets are parallel to the plate with no component in the x-direction.

vy, = v, COSH ,So

F, = —p Q,v, COS O

2. Calculate the pressure force

All zero as the pressure is everywhere atmospheric.

3. Calculate the body force

As the control volume is small, hence the weight of fluid is small, we can ignore the body forces.
4. Calculate the resultant force

Fr = Fy_+ Fp + Fg_

Fp = F, — 0-0= —p Q,v, COS6

The force on the plate is the same magnitude but in the opposite direction (p Q,v, COS6).

¢+ We can find out how much discharge goes along in each direction on the plate. Along the
plate, in the y-direction, the total force must be zero, Fr, =0
Also in the y-direction:

v, =v,SIN0 vy, =1y Vs

Fr,=p [(szzy + Q3v3y) - Q1v1y]
FTy =p [(Qv, — Q3v3) — Q,v,sinbd ]
As forces parallel to the plate are zero,
0 = pA,vi — pAv2 — pA,vi sinf
From above vi=v2 =3
0=A2—As—A1sind

and from above we have A1 = Az + A3
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0=d4,—4,—(4,+4,) Sino

= 4,(1-sin®) — 4,(1+ Sin 0)

4 4[1+si116‘]
2 Bl 1-sine

1+siné@
Q: = Q;

1-sin@
A .
S 1+smé@
V2 =V3 =V Q)l = £)3 1_511]9 + Q3
o [] 1+51'11t9]
= + .
=3 1-sin®

So we know the discharge in each direction

Example
A 600 mm diameter pipeline carries water under a head of 30 m with velocity of 3 m/s. This

water main is fitted with a horizontal bend which turns the axis of the pipeline through 75°.
Calculate the resultant force on the bend and its angle to the horizontal.( Gravity force = 0).
Sol.
AL=Ar =7 (3)? = 02837
vi=Vv2=3ms
p1=7y h=9800 * 30 = 294300N/m?
Avi = Avz = 0.283 * 3 = 0.849m3/sec
Fx=p Q (V2 COSO— V1) + p,A, cos 6 —p, A,
=1000 * (3*cos75 —3) + 294300 * 0.283 * cos75 — 294300 * 0.283 = —63.618 kN
Fy=p Q (v2Sin 0) + p,A, sin @
= 1000 * ( 3*sin75 ) + 294300 * 0.283 * sins75 = 82.9kN
Then Rx=63.618 kN Ry= —82.9kN

R= |[Fo2+F,? =4(63618)*+ (- 829)* =104.5kN

F —
=t (1) =t (222) =20
Ry :
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Example
A pipe bend tapers from a diameter d, of (500) mm at inlet to a diameter d2 of (250mm) at

outlet and turns the flow through an angle (8) of 45°. Measurements of (p1 & p2) at inlet and
outlet are 40 kN/m? and 23 kN/n?. If the pipe is conveying oil which has a density p=850 kg/m?.
Calculate the magnitude and direction of resultant force on the bend when the oil is flowing at
the rate of (0.45) m®/s. The bend is in a horizontal plan. (Gravity force=0)

Sol. P1
Vi

Fx=p Q (vax = Vix)—( p; A~ p, A, cos 6 )

_9Q _ 4 _ g1 .
V, = i 0.45 * T025)7 = 9.16m/s
_qQ LA .
vV, = i 0.45 = 05 = 2.29 m/s

Fx=850 * 0.45 ((9.16 * cos 45) —2.29 ) — (40*10° * = (0.5)* — 23*10° * = (0.25)” cos 45)
«= 7055.65N

Fy=p Q (v2y —Vv1y) + p,A4,sinf
=850 * 0.45 (9.16 * sin 45— 0) +23*10°* T (0.25)? *sin 45 = 18740.9N

— Ry =— 18740.9N

R= [Fp ?+Fg ? =/(705565)7 + (18740.9) = 20643 N

F _
¢ =tan~?! (%) =tan~! ( 1221:'9) = 65°
Ry -
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Example
Consider a jet that is deflected by a stationary vane, such as is given in figure. If the jet speed and

diameter are 25 m/s &25 cm, respectively and jet is deflected 60°, what force is exerted by the jet?

Sol.

First solve for Fy, the x-component of force of the vane on the jet
K = (va)x out — (va)x in

F = PQ(sz - Il/:L,vc)

V2x = V2 cos60 =25+ 0.5=125m/s

le =25 m/S

0 = V,A, = 25 + 1(0.25)2

= 1.227 M°/,

Therefore Fx = (1000) (1.227) (12.5-25) = —15.3398 kN
Similarly determined, the y-component of force on the jet is
Fy=pQ|(%)

since V,,, = Vsin60 = 25sin60 = 21.65 m/s
The resultant force 1s
F = .\/sz -+ F}? = -\/(—15.3398)2 + (—26.5646)2 = 30.67kN

— (Vy)m] = 1000 * 1.227(=21.65 — 0) = —26.5646 kN

out

Then the force on the vane will be the reactions to the forces of the vane on the jet as

Ry = —F, = +15.3398kN
R, = —F, = +26.5646kN
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CHAPTER FOUR
FLOW IN CONDUITS
1. Real Fluids

The flow of real fluids exhibits viscous effect, which are they tend to “stick” to solid surfaces
and have stresses within their body
You might remember from earlier in the course Newton’s law of viscosity:

dui

T oo —

dy
This tells us that the shear stress, t, in a fluid is proportional to the velocity gradient - the rate of

change of velocity across the fluid path. For a “Newtonian™ fluid we can write:

du
T :,UE
Where the constant of proportionality,, is known as the coefficient of viscosity (or simply
viscosity). We saw that for some fluids - sometimes known as exotic fluids - the value of p
changes with stress or velocity gradient. We shall only deal with Newtonian fluids.
In his lecture we shall look at how the forces due to momentum changes on the fluid and viscous

forces compare and what changes take place.

Laminar and turbulent flow
If we were to take a pipe of free flowing water and inject a dye into the middle of the stream,

what would we expect to happen? filameat of dye

Actually both would happen - but for different flow rates. /
P

The lower occurs when the fluid is flowing fast and the top when

it is flowing slowly.

Laminar (viscous)

The top situation is known as laminar flow and the lower as
turbulent flow.
In laminar flow the motion of the particles of fluid is very — """ ~—"

—_—

orderly with all particles moving in straight lines parallel to the Transitional

pipe walls.

But what is fast or slow? And at what speed does the flow — -

T

—

pattern change? And why might we want to know this?

Turbulent
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pvD vD
= —— or Re= —
U v

Where p= Mass density, v = mean velocity, D = diameter ,u = dynamic viscosity and

Re

v=kinematic viscosity.

This value is known as the Reynolds number, Re:

Laminar flow: Ee < 2000
Transitional flow: 2000 = BRe = 4000
Turbulent flow: Ee = 4000

What are the units of this Reynolds number? We can fill in the equation with SI units:
p =kg/m® v=nvsec D=m p=Kkg/(m.sec)

vD kg.m.m.s.m
Re = P = g =1
U m3.s. kg

I.e. it has no units. A quantity that has no units is knownas a non-dimensional (or dimensionless)
quantity. Thus the Reynolds number, Re, is a non-dimensional number.

We can go through an example to discover at what velocity the flow in a pipe stops being
laminar.

If the pipe and the fluid have the following properties:

water density = 1000 kg/m’

pipe diameter d=10.5m

(dynamic) viscosity, = 0.55x10° Ns/m’

We want to know the maximum wvelocity when the Re is 2000.

-3
Re = £22=2000 —— v = £3¢ = 25020 20,0022 mis

pD 1000 0.5

In practice it very rarely occurs in a piped water system - the velocities of flow are much greater.
Laminar flow does occur in situations with fluids of greater viscosity - e.g. in bearing with oil as
the lubricant.

We can say that the number has a physical meaning, by doing so it helps to understand some of
the reasons for the changes from laminar to turbulent flow.

pvD  inertial forces
Re = =

U viscous forces
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It can be interpreted that when the inertial forces dominate over the viscous forces (when the
fluid is flowing faster and Re is larger) then the flow is turbulent. When the viscous forces are
dominant (slow flow, low Re) they are sufficient enough to keep all the fluid particles in line,
then the flow is laminar.
In SUIIINAry.
Laminar flow

e Re < 2000

o ‘low’ velocity

¢ Dvye does not mix with water

Fluid particles move in straight lines

Simple mathematical analysis possible

e Rare in practice in water systems.

Transitional flow

e 2000>Re <4000

e ‘medium’ velocity

¢ Dye stream wavers 1n water - mixes slightly.

Turbulent flow
e Re=4000

‘high” velocity

e Dye mixes rapidly and completely

¢ Particle paths completely urregular

e Average motion 1s in the direction of the flow

e (Cannot be seen by the naked eye

¢ Changes/fluctuations are very difficult to detect. Must use laser.

e Mathematical analysis very difficult - so experimental measures are used

¢ Most common type of flow.
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2. Modified Bernoulli’s Equation
Bernoulli’s equation states that the sum of pressure energy, kinetic energy and potential energy

per unit mass is constant along a streamline. In most cases in closed pipes, all streamlines can be
assumed to have the same energy level.
Bernoulli, in his procedure to simplify his equation didn’t take into account:

1. The head loss by the fluid due to friction

2. The change in velocity distribution along any cross-section

3. He assumed that no energy is added or removed from the system, so, he didn’t consider

having pumps (adding energy) or turbines (extracting energy).

For those reasons, Bernoulli’s Equation can be modified to take account of friction effects, hs

1 I

=
T

|

Datum L]

7 3
v 7}
2 +:1+j—1:&+:3+ -+ h,
Y 2¢ 7 g
Where:

hs is the “head” loss due to friction.
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The head loss (hf) term in equation above is responsible for head loss due to fluid shear at the
pipe wall, called pipe friction, The head loss due to pipe friction is always present throughout
the length of the pipe.

And additional head loss caused by local disruptions of the fluid stream. The local disruptions,
called local losses, are caused by valves, pipe bends, and other such fittings. Local losses may
also be called minor losses if their effect, individually and/or collectively, will not contribute
significantly in the determination of the flow; indeed, sometimes minor losses are expected to be
inconsequential and are neglected. Or a preliminary survey of design alternatives may ignore the
local or minor losses, considering them only in a later design stage. Each type of head loss will

now be considered further.

DARCY-WEISBACH EQUATION
The completely general functional relation Tw = F(V, D, p, u, €) between the wall shear stress

and the mean velocity V, pipe diameter D, fluid density p, and viscosity p, and the equivalent

sand-grain roughness e can be reduced by dimensional analysis to

Ty (VD € ' D
5L e d
p v ; & 4L

h _fi”_ _ gL @

f =V pag = 7/ p2gaz

In this equation, the friction factor (f) is a function of the pipe Reynolds number (Re=pvD/p =

vD/v) and the equivalent sand-grain roughness factor(%).

For each pipe material either a single value or range of (%) values has been established; Table

below presents common values for several materials.

Material e, mm e, in
Riveted Steel 0.9-9.0 0.035 - 0.35
Concrete 0.30 - 3.0 0.012 - 0.12
Cast Iron 0.26 0.010
Galvanized Iron 0.15 0.006
Asphalted Cast Iron 0.12 0.0048
Commercial or Welded Steel | 0.045 0.0018
PVC, Drawn Tubing, Glass 0.0015 0.000 06
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The Moody diagram for the Darcy-Weisbach friction factor f.
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Because commercially available pipes of any material display some heterogeneity or unevenness
in roughness, any friction factor or its empirical equivalents cannot be known with multiple-digit
precision. The functional behavior of (f) is displayed fully in the Moody diagram.

In the Moody diagram, we see several zones that characterize different kinds of pipe flow. First
we note that the plot is logarithmic along both axes. Below the Reynolds number Re = 2100
(some authors prefer 2300) there is only one line, which can be derived solely from the laminar,
viscous flow equations without experimental input; the resulting friction factor for laminar flow
is f = 64/Re. Because there is only one line in this region, we say all pipes are hydraulically
smooth in laminar flow. Then for Reynolds numbers up to, say, 4000 is a so-called "critical”

zone in which the flow changes from laminar flow to weakly turbulent flow.

EMPIRICAL EQUATIONS
Empirical head loss equations have a long and honorable history of use in pipeline problems.

Their initial use preceded by decades the development of the Moody diagram, and they are still
commonly used today in professional practice. Some prefer to continue to use such an equation
owing simply to force of habit, while others prefer it to avoid some of the difficulties of
determining the friction factor in the Darcy-Weisbach equation.

Table below summarizes the relations that describe the Darcy-Weisbach friction factor (f).

DARCY-WEISBACH FRICTION EQUATIONS

Type of Flow Equation for f Range
- ——————————————————— |
Laminar = 04/Re Re < 2100
S th pi f > Re > 4000
mooth pipe 1/\f = 2logio(Re~/f) - 0.8 fe>an00
Transitional _ I [ e 0.35 Re > 4000
Colebrook-White Eq. —f =114 - 2!'9310(5 + o f
'\'I f"\."
Wholly Rough | e Re > 4000
- L4 - 2!0310(—}
VS D
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3. SimplePipeProblem
Six variables enter into the problem for incompressible fluid, which are Q, L, D, hs, v, and e.

Three of them are given (L, V, and e) and three will be find. Now, the problems type can be
solved as follows,

Problem Given To find (unknown)
| QL D,ve hr
Il he, L, D, v, e Q
i Q,L hsv, e D

In each of the above problem the following are used to find the unknown quantity
i.  The Darcy — Weisbach Equation.
ii.  The Continuity Equation.

iii.  The Moody diagram.

In place of the Moody diagram, the following explicit formula for (f) may be utilized with the
restrictions placed on it

10
Re

f =0.0055

1
)3] Moody equation

1+ (2000.5 +

45103 <R, < 107&5 < 0.01

1.325

In(—5_4374 2
(35 2g5)]

1% vyield diff-with Darcy equation
The following formula can be used without Moody chart 1s

1.11
1 6.9
69 (L) ]
Regy 3.7

f'l,."z
The last equation is given by Haaland which varies less than 2% from Moody chart.

f= 1070 <= <1072 | 5000 < R, < 10°

~ —1.8log
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3. Solution Procedures.
l. Solution for head loss (hf).

With Q, e, and D are known
vD
v
And fmay be looked up Moody diagram or calculated from empirical equations given.

vD
Re = ikt

Example
Determine the head (energy) loss (friction losses) for flow of 140 I/s of oil v=0.00001 m?/s

through 400 m of 200 mm, diameter cost—iron pipe (e=0.25m).

Sol.
0.14
V= %= z%z= Ty = 4456ms
oo Re =~ = MW ___ ggq27
vD 4.456 x0.2 mDu m(0.2)(0.00001)
ke = >~ 000001 = 89127

The relation roughness is e/D= 0.25/200= 0.00125 from a given diagram by interpolation
1.325

f=0.023 or by equation f = 5 =0.0234
s 283
37D " R0
hy = FE2 = 002352 x 2455 — 45 58m,
D 2g 0.2 29

I1. Solution for discharge (Q)

v & f Are unknown then Darcy — Weisbach equation and moody diagram must be used
simultaneously to find their values.
1. Givens: e/D
(f) Value is assumed by inspection of the Moody diagram.
2. Substitution of this trail finto the Darcy — equation produce a trial value of (v).
3. From v atrial Re is computed.
4. An improved value of (f)is found from moody diagram with help of Re.
5- When ( f) has been found correct the corresponding v and Q is determined by multiplying by

the area.



69
FLUID MECHANICS Dr.Yasir Al-Ani

Example
Water at 15 °C (v = 1.13*107% m?/s) flow through a 300mm diameter riveted steel pipe, e=3mm

with a head loss of 6 m in 300 m. Determine the flow.

Sol.

The relative roughness is e/d = 0.003/0.3=0.01, and from diagram a trial f is taken as (0.038). By
substituting into Darcy equation:

L v 300 v?

2
hy = f2 2 = 003822 x v =1.76ms
D 2g 03~ 2(9.81)
Re = 2 = —T2X00 = 467278

From the Moody diagram at (Re & e/D) 1=0.038

hf*xDx2 6x0.3%x2%9.81
And from Darcy — v = J L g = J = 1.76m/s
f*L 0.038%300

o [6+03x2%9.81 , 70.3% _
s Q=vA= |Freems x — o =0.1245ms

I11. Solution for Diameter (D)

Three unknowns in Darcy-equation f, v, D, two in the continuity equation v, D and three in the
Re number equation. To element the velocity in Darcy equation & in the expression for Re,

simplifies the problem as follows.

L @ 5 _ 8LQ° s FLQ® . :
hi=f— ———= Or D> = —— ~D°>= ——In S.lunits
f fD 29(D:n)2 hfgnzf (( 12.1hf ))

The solution is now affected by the following procedure:
1- Assume the value of ( f).

2-Solve for (D) using D° = %.

3- Find Re.

4- Find the relative roughness e/D.

5- With Re and e/D, Look up new ffrom Moody diagram.

6- Use the new f, and repeat the procedure.

7- When the value of f does not change in the two significant steps, all equations are satisfied and

the problem is solved.
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Example
Determine the size of clean wrought-iron pipe (e=0.00015 ft) required to convey 8.93 cfs oil,

v=0.0001 ft2/s , 10000 ft with a head loss of 75 ft .Ib/Ib.
Sol.

If f=0.02 (assumed value)

8L02 8%10000%8.932
ps = 8Le —f = —————%0.02 5> D=135ft .~ <=0.00011
hfgm 75+32.2% 12 D
—_v0 _ %1 __  4+893 1 _
Re = v  mvD  m+0.0001 1.35 81400

Applying % = 0.00011 & Re =81400 on Moody diagram we can get f value

~ f= 00191

In repeating the procedure, D =1.37 ft -— Re =82991 ——f=0.019
Therefore

D=1.382*12=16.6In.

4. Pumps & Turbines
Ifa pump is placed between the two points then the equation is modified to take account of the

energy addition due to the pump.

2 -2
T T -

Py " P, 2
+o+—+h="2+z,+—+h
y t2e Ty *2g 7

he is the pressure head rise through the pump.

Pp=vy*Q* hp (%* m;*m):i—m = Watt "W"

Where (Pp) is the power of pump and also named water power.

The mechanical power to operate the pump must be larger; it is called the brake horsepower

The power = ——2——="*
Efficiency n
N. ] | o
L Joul =Wart (Joul 1s the unit of work = Newton . m)
5 5
WOH ﬂ
Horse Power (HP) =——5€C
550

Ifa turbine is placed between
HP = 745.6999 watt
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the two points then the equation is further modified to take account of the energy extraction due

to the turbine:

il el
Ir e
&+-1+ —+ ], —hr_p}+-q+

4 Zg ¥ Zg

+hy

hr is the pressure head drop through the turbine.
N m3 N.m

PT:’Y * Q* hr (E* T*m) :T = Watt "W"

Where (Pt) is the power of turbine

The power = ZZ/icteney _ 1
T Pr
_ Power Output < 100%
Power Input
Pump efficiency
e
nP =222 . 100%
Input
Turbine efficiency
nT =241 100%
yOhy

Example

A pump delivers water (v=1.007*10 n?/s) from a tank (A) (water surface elevation=110m) to
tank B (water surface elevation= 170m). The suction pipe is 45m long and 35cm in diameter the
delivered pipe -is 950m long 25cm in diameter. Loss head due to friction hfy = 5mand hf; = 3m
If the piping are from

Pipe (1) = steel sheet metal (1= 0.05mm)

Pipe (2) = stainless — steel (e2= 0.002mm)

Calculate the following

[) The discharge in the pipeline i) The power delivered by the pump.
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Sol.
D1 =35cm=0.35m; D2 = 25cm = 0.25m
L1 =45m; L2 = 950m

ey _ 005 . 10 e, _ 0002 o
—_ = — = 1. * , — = =/ = O0*%
D, 350 D, 250
Assume f1=0.013; f»=0.008
L. v> 45 v?
=fi=2*-=+ 5= 0.013 X —— - v, =7.66m/s
D, 29 0.35  2(9.81)
Re, = 22 = T99903% _ 9662363 = 2.66*10°
v 1.007X10
L, v3 950 v3
=f,2-% . 3= 0.008 2— - v, =1.39m/s
D, 2g 0.25  2(9.81)
Re, = 22 = 132025 _ »569363 = 3.45+105
v 1.007x10~°
1t Trial

(Re; &%) 5> £,=00138  (Re;&2) »- f,=0.014
1 2

Then,
“hy, = 5= 001382 x Z(fgl) > v, =7435" > Re; = 2.58x 10°
cho=3= 0014220 Ut L _1051™ o Re, = 2.6% 10°
12 0.25" 2(9.81) 2 s 2
2nd Trial

(Re, &;—11) ~- f,=00165  (Re, &;—22) 5> f, =0.015

2

2 hy = 5= 0.0165-—= X —2

- v, =6.8? — Re, = 2.36%10°

1 0.35  2(9.81)
950 v3 m 5
hf2 = 3= 0.015—x - v, =1.01— - Re, = 2.52%10
0.25  2(9.81) s

34 Trial

(Re; &% ) >- f,=00169  (Re, &;—22) 55 f, =0.015

2
ahy = 5= 00169—x—— > v, =672
035 2(9.81) s
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.hy = 3= 0015 950 v 1012
. = v, = 1. —
0.25 2(9 g1y 2 s
Q= Axv2 = 0.6462 m?/s
From energy equation
P1 +_1+—+}1P_p- + I, + 7._ +I.=
0 +110+h,= 0

h, = 68m

-+ 170+ 8 Since p;=p>

=yQh, = 9810 * 0.6462 * 68m = 416.8 kW The power delivered by
the pump.

Example

In a pipeline of diameter 350mm and length 75m, water is flowing at a velocity of 2.8 m/s. Find

Sol.
hf = f—— D =0.35m, L =75m; v=2.8ms
1—— 10* stoke ~ v=0012x 10~ m_
vD 2.8%X0.35
Re = — =

0012x10~%

the head lost due to friction, using Darcy-Eq.& Moody chart, pipe material is Steel-Riveted
(e=3mm) ,kinematic viscosity v=0.012 stoke

, €/D= 0.003/0.35= 8.57*103

= 816666 ~ 8.1 x 10°

At Re & % we can find f from Moody diagram f =0.0358

2
#hy= 0035872 x 22 —30m
0.35  2(9.81)
e (111
By determine the value of f by —/ —1.8log [_ + (3D_7> ]
1

6.9
P —1.8log [8,1)(105 X0.35

Then f=0.036 i.e. fdifference =0.000

.

0.0033 111
0.35 > ] = 5.2646
3.7

2
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Example
Oil having absolute viscosity 0.1 Pa.s and relative density 0.85 flow through an iron pipe with

diameter 305mm and length 3048 m with flow rate 44.4*10-3 m3/s . Determine the head loss in

pipe.
Sol.

_Q_ Q@ _ 444x107°_ _ pvD _ 850%0.61x0.305
V=uT 2p2 (0305 =06tms  Re = TR 0.1 = 1580
L.e. the flow is Laminar
f=2="22=00407

Re 1580
b L v? 0.0407 3048 y (0.61)? 7 71
=] 5=V =7.71lm

=7/ D2g 0.305 " 2(9.81)

5. Minor Losses.
A local loss is any energy loss, in addition to that of pipe friction alone, caused by some

localized disruption of the flow by some flow appurtenances, such as valves, bends, and other
fittings. The actual dissipation of this energy occurs over a finite but not necessarily short
longitudinal section of the pipe line, but it is an accepted convention in hydraulics to lump or
concentrate the entire amount of this loss at the location of the device that causes the flow
disruption and loss. If a loss is sufficiently small in comparison with other energy losses and with
pipe friction, it may be regarded as a minor loss. Often minor losses are neglected in preliminary
studies or when they are known to be quite small, as will often happen when the pipes are very
long. However, some local losses can be so large or significant that they will never be termed a
minor loss, and they must be retained; one example is a valve that is only partly open.

Normally, theory alone is unable to quantify the magnitudes of the energy losses caused by
these devices, so the representation of these losses depends heavily upon experimental data.

The losses which occur in pipelines because of bend, elbows, joints, valves, etc, are called
minor losses hm. the total losses in pipeline are
h.=hi+hn

2
Local losses are usually computed from the equation: h,, = k’z’—g
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Also, others minor losses can be explain as follows,

A. Losses due to sudden expansion in pipe.

v :

hm =kog Vi >V,

_ (1 A1>2—(1 D1)2 i AL

B A D, ; :

: . . D 2
If sudden expansion from pipe to a reservoir D—1 =0 Then h,= ’;—gl
2

B. Head loss due to a sudden contraction in the pipe cross section.
h,, = k%2

m T 2g c 2

1 2 _ |
k=(z-1) ]
CC - :
Ac is the cross — sectional area of the vena-contracts - 2 !

: . . A |
Cc is the coefficient of contraction is defined by C, = A—C
c 2

C. The head loss at the entrance to a pipe line.
From a reservoir the head losses is usually taken as

0.5V2 : L '
h,, = 20 1s the opening 1s square-edged

0.01V2  0.05V2 .
h,, = 0 " 2 if the rounded entrance

g

Table below lists the loss coefficient K for four types of valve, three angles of elbow fitting and
two tee connections. Fitting may be connected by either internal screws or flanges, hence the two
are listings.
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Fitting K;

Globe valve, fully open 10.0
Angle valve, fully open 5.0
Butterfly valve, fully open 04
Gate valve, fully open 0.2

3/4 open 1.0

1/2 open 3.6

1/4 open 17.0
Check valve, swing type, fully open 23
Check valve, lift type, fully open 12.0
Check valve, ball type, fully open 70,0
Foot valve, fully open 15.0
Elbow, 45° 04
Long radius elbow, 907 0.6
Medium radius elbow, 90 0.8
Short radius (standard) elbow , 90° 0.9
Close return bend, 1807 22
Pipe entrance, rounded, /D < 0.16 0.1
Pipe entrance, square-edged 0.5
Pipe entrance, re-entrant 0.8

Entrance losses are highly dependent upon entrance geometry, but exit losses are not. Sharp

edges or protrusions in the entrance cause large zones of flow separation and large losses as

shown in figure.

(@)
Entrance and exit loss

coefficients,

(@) Reentrant inlets,

(b) Rounded and
beveled inlets.

Exit losses are K=1.

)
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As in Fig. 7.10, a bend or curve in a pipe, always induces a loss larger than the simple Moody
friction loss, due to flow separation at the walls and a swirling secondary flow arising from

centripetal acceleration.

flow pattem:

due o bend

be added.)

Example
Water, p = 1.94 slugs/ft3, and v= 1.1*¥10° ft¥/s , is pumped between two reservoir at 0.2 ft3/s

through 400ft. of 2in. diameter pipe and several minor losses, as shown in figure. The roughness

ratio is e/D = 0.001. Compute the horse power required.

. . Fitting K
The minor loss coefficients are as shown .

Sharp entrance 0.5

Open globe valve 6.9

12-in bend 0.15

Regular 90 elbow 0.95
Half — closed gate valve | 3.8
Sharp exit 1
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Screwed st @
regular exit o
00° elbow =N
® N g
Half-open
gate valve

12-in
bend radius

' 2
400 ft of pipe, d= El’t

Sol.

Write the steady- flow energy equation between section 1 &2 the two reservoir surface:

Py g = (242 2) by + Sy — hy
pg 29 29 29
Where hp is the head increase across the pump & pi1=pz2,vi=w =0,

Solve for the pump head

2
hp:@—¢f+m+2hm=1m—20+%(f§+2K)

v=2=—22_-917
A 1.(2 s
4 12

D 9.17x=
Calculate the Re and pipe friction factor Re = —— = ——Z = 139000

v 1.1x10°5
z k=133

For e/D = 0.001, from the Moody chart read f=0.0216

2
o hp =100+ (917) [0.0216(400)

2(32.2) (12_2)
ft b

Pp=pg* Q* hp =1.94(32.2) * 0.2 * 184 = 2300 —

+ 13.3] ~ hp = 184ft head pump

1 h.p. =550 b then horsepower = B9 _ 42 h.p.
sec 550
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Example
Find the discharge through the pipeline as in below figure for H=10m,.(Kentrance = 0.5 , Keibow=

0.26 , Kvaive =10 ). Roughness =0.26mm. v = 1.01*107 n¢/s

H=10 203.2 mm —diam. Clean cast-iron @

y X
Water at X
‘ Globe valve
o]
20C (Partially open)

Standard elbows flanged type

y 90° regular
P ..... A
——

\ |« 30 +f< 60 m

Square- m
edge
entrance

v

sol.

The energy equation applied between points 1 & 2, including all the losses, may be written

1)

10+0+4+0= vz +0+0+05v22 +f 102 v; +2x0.26 1722+10v22
29 29 0.20322g T 29 29

2

210 = 22 (6324502 1

e/D =0.26/203.2 =1.28*103
Assume f=0.0205

Apply oneq" (1)
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v;
10 = E (6.324+ 502 x 0.0205) »— v, = 3.43m/s
vD 3.43x%X0.2032 _
e/D =0.00128 Re = - = Toixio6 391000

From Moody chart at (e/D =0.00128 & Re =391000) »— f=0.021
Repeating the procedure gives v2 = 2.6m/s

Re= 380000 & f =0.023

The discharge is

Q= Azv2 =7(0.2032)% X 2.6 = 84.31/s

6. Pipein Series
In this typical series—pipe system as in figure shown, the H (head) is required for a given Q or the

Q wanted for a given H. Applying the energy equation from Ato B including all losses gives:

A
H
B
Water
2 Water
/1__//
‘\K
v2 L. v: (v,—v,)% L,v: v?
H+0+0=0+0+0+K, -~ +f, —=— g+f2—2—2+—2
2g D,2g 2g D,2g 2g

From continuity eqn.
v,D} = v,D3

So,
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H =%{Ke +AE+ [1 - (z—:)z]z + fzg—z(ﬁ—y + (2—;)4} ......... (1)

For known lengths and sizes of pipes this reduces to

H = g(c1 FCofy 4 Cofy) e @)

Where C,,C,, and C, are known.

» Q is given then Re is computed and f may be looked up in Moody diagram then H is
found by direct substitution.
» Foragiven H, the values of vi, f1, f2 are unknown in the equation (2)
By Assuming values of f1& f> (may be equaled) then v is found 1%t trail and from vi — Re's are
determined and values of f1& f2 look up from Moody diagram.
From these values, a better vi is computed from Eq. (1)since f varies so slightly with Re the trial

solution converges very rapidly. The same procedures apply for more than two pieces in series.

Example

From figure in (Page 77), given : Ke = 0.5 , L1=300m, D1=600mm , e1=2mm , L>=240m
D2=1m, €2=0.3mm , v=3*10"° n?/s , and H=6m. Determine the discharge through the system.
Sol.

From energy equation:

4

2 212
Vg Ly <D1) L, (D1)
H=—43K + ff— +|1— |— + == +
29{ ‘ f1D1 l D, 2 D, \D,

o Vilosy 300 [ (0.6)2 ’ L 240 (0.6)4+ (0.6)4
29| EY: 1 7\7 1
After simplifying

2
6 = ;—; (1.0329 + 500f; + 31.104f,)
Fromei/D1 =0.0033 & e2/D2=0.0003, and Moody diagram values of f’s are assumed for the

fully turbulent range.
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f, =0.026 f,=0.015
By solving for V/; with these value ., V; = 2.848 ?, vV, = 1.025%
_ 2.848+0.6

Re, = 8 — 569600
310

Re, = 222220 — 341667
310

At these Re's and from Moody diagram, f; = 0.0265,f, = 0.0168. by
3

solving again for V4, V; = 2.819? and Q = 0.797%

7. Pipesin Parallel.
The second type of pipe- system is the parallel flow type, in this case as shown in figure below,

the head losses are same in any of the lines and the total flow is the sum of flow rate ineach pipe.
The minor losses are added into the lengths of each pipe as equivalent lengths. From the figure,

the conditions to be satisfied are

®

hy.

1

Qi=0,+0Q; + Q5 = Qg

z, & zg are the elevations of point A&B. Q is the discharge through the approach pipes.

=hf

2

p p
= hy, = 7A+zA—(7B+zB)

3

Two types of problems occur
1) The elevations of HGL at A&B are known, to find the discharge.
2) Q is known, to find the distribution of flow and the head loss, size of pipe, fluid properties and

roughness's are assumed to be known.
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Case-1. as the simple pipe problem. Since, head loss is the drop in HGL. These discharges are
added to determine the total discharge.
Case-2. The recommended procedure is as follows.
1. Assume adischarge Q' , through pipe 1.
2. Solve for hy; using assumed discharge.
3. Using h; find @', ,0',.
4. With the three discharges for a common head loss, now assume that the given Q is split
up among the pipes in the same proportion as Q', ,Q’2 , Q' thus
_Q : _ ¢ n @
Ql_lel Q ’ QZ_ZQZI Q 1Q3 _ZQB; Q
5. Check the correctness of these discharges by computing Ay, hr by, for the computing
Ql! QZ ’ Q3

Example
In the last figure , L1=3000ft , D1=1ft, e1=0.001ft.

L2=2000ft, D2=8in., e2= 0.0001ft
L3=4000ft, D3=16in., e3= 0.0008ft

slugs

fe
p, = 80psi ,z, = 100ft. ,z5; = 80ft.

For a total flow of 12 cfs, determine the flow through each pipe and the pressure at B.

Sol.

For pipe 1

2
p =2.00 v =0.00003"-

Assume Q' =3cfs , then v'; = 3.82ft/s

3.82Xx1

Re', = 2222 — 127000

;—1 = g 0.001 From Moody chart f' = 0.022
1

Lo e~ 3000 3.82°

& hfl = 0.022 o caa — 1497 ft
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For pipe 2

1497 = fj =2

Assume f' = 0.020 (Recommended fully turbulent flow)

4.01»%*1
0.00003

then V§ = 4015 — —— Rej = = 89000

D_2 = 0.00015
From Moody chart 2 f, = 0.019
Then from Eq. (a) V; = 4115 — —— @} = 1.44 ¢fs

For pipe 3
, 4000 V2
1497 = fiT =5 (b)
Assume £ = 0.019 then V. = 4015— —— Rel =222 — 178000
0.00003
€3
— = 0.0006
D

3
From Moody chart. At (Reé &?) ——— f3 =0.02 fiom Eq.(b).
3
I
Vi =408 Q5 =5.6cfs

The total discharge for the assumed conditions 1s
20"=30+144+56=10.04cfs

_ @, _ 300
O =5e-Q =100 12=358¢fs
0, —110”"” 12 = 1.72 cfs
Q; = 12 =6.7 cfs

10.04
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Check the values of hf ,hfz,hf3

e
Re, (152000)& D—1 (0001) ——-f,=0021 Then hy =204ft.

1

1.72 ft
— = 4937
9

e
Re, (109200)& D—Z (0.00015) —-- f, =0.019 Then hy =216ft.
2

6‘?

Vs =57 = 485

?

e
Re, (213000)& D—3 (0.0006) —-— f, = 0019 Then hy =204ft.
3

is about midway between 0.018 & 0.019. to satisfy the condition hy, = hy =

2

hy,

3

“if f = 0.018 then hy, = 20.4 ft  satisfying .
To find pp
r'I_A'|' Za :ﬂ_g'l' ZB+hf

0?7—80 ﬂ+ 100 — 80 — 20.4 = 178.1

In which the average head loss was taken. Then

178.1+64.4 ;
Pg = T = 79.6 pPsi



