
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 J. P. Holman, “Heat Transfer”, McGraw-Hill Book Company, 6
th

 Edition, 

2006. 

 T. L. Bergman, A. Lavine, F. Incropera, D. Dewitt, “Fundamentals of Heat 

and Mass Transfer”, John Wiley & Sons, Inc., 7th Edition, 2007. 

 Vedat S. Arpaci, “Conduction Heat Transfer”, Addison-Wesley, 1
st
 Edition, 

1966. 

 P. J. Schneider, “Conduction Teat Transfer”, Addison-Wesley, 1955. 

 D. Q. Kern, A. D. Kraus, “Extended surface heat transfer”, McGraw-Hill 

Book Company, 1972. 

 G. E. Myers, “Analytical Methods in Conduction Heat Transfer”, McGraw-

Hill Book Company, 1971. 

 J. H. Lienhard IV, J. H. Lienhard V, “A Heat Transfer Textbook”, 4
th
 

Edition, Cambridge, MA : J.H. Lienhard V, 2000. 

University of Anbar 

College of Engineering 

Mechanical Engineering Dept. 

Advanced Heat Transfer/ I 

Conduction and Radiation 

Handout Lectures for MSc. / Power 

Chapter Three 

 Heat Transfer from Extended Surfaces 

Course Tutor  

Assist. Prof. Dr. Waleed M. Abed 

https://www.google.iq/search?tbo=p&tbm=bks&q=inauthor:%22Paul+J.+Schneider%22
https://www.google.iq/search?tbo=p&tbm=bks&q=inauthor:%22Donald+Quentin+Kern%22
https://www.google.iq/search?tbo=p&tbm=bks&q=inauthor:%22Allan+D.+Kraus%22


 Heat Transfer from Extended Surfaces                                                                   Chapter: Three 

2 

 

 
 

Chapter Three 

Heat Transfer from Extended Surfaces 

 

3.1 Introduction 

The term "extended surface" is commonly used to depict an important special case 

involving heat transfer by conduction within a solid and heat transfer by 

convection (and/or radiation) from the boundaries of the solid. 

Consider first a wall at temperature Tw transferring heat by convection to an 

ambient at temperature T∞. Therefore, the rate of heat transfer from this wall may 

be evaluated in terms of a heat transfer coefficient in the form, 

         (     )                                                                                (3-1) 

Clearly, qconv. of Eq. (3.1) may be increased by increasing: 

(i) The temperature difference between the wall and the ambient. 

(ii) The heat transfer coefficient. 

(iii) The heat transfer area.  

The first case needs no explanation; the second case is the subject matter of texts 

on convective heat transfer; the third case is the concern of this section. 

Examples of extended surfaces (fins) applications are easy to find around us. 

Consider the arrangement for cooling engine heads on motorcycles and lawn 

mowers or for cooling electric power transformers (see Figure 3.1). Consider also 

the tubes with attached fins used to promote heat exchange between air and the 

working fluid of an air conditioner. Two common finned-tube arrangements are 

shown in Figure 3.1. 
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3.2  Analysis of extended surfaces (fins) 

Consider the extended surface of Figure 3.2. The analysis is simplified if certain 

assumptions are made. We choose to assume one-dimensional conditions in the 

longitudinal (x-) direction, even though conduction within the fin is actually two-

dimensional. The rate at which energy is convected to the fluid from any point on 

the fin surface must be balanced by the net rate at which energy reaches that point 

due to conduction in the transverse (y-, z-) direction. However, in practice the fin is 

thin, and temperature changes in the transverse direction within the fin are small 

Figure 3.1: Fin configurations. (a) Straight fin of uniform cross section. (b) Straight fin of non-uniform 

cross section. (c) Annular fin. (d) Pin fin, and Schematic of typical finned-tube heat exchangers. 
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compared with the temperature difference between the fin and the environment. 

Hence, we may assume that the temperature is uniform across the fin thickness, 

that is, it is only a function of x.  

We will consider steady-state conditions and also assume that the thermal 

conductivity is constant, that radiation from the surface is negligible, that heat 

generation effects are absent, and that the convection heat transfer coefficient h is 

uniform over the surface. Steady state (T , q ≠ f (t) ). Homogeneous material. 

Uniform free stream temperature ( T∞ ). Uniform base temperature. Negligible 

contact resistance. No heat generation. By applying the conservation of energy 

requirement, 
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where Ac is the cross-sectional area, which may vary with x. dAs is the surface area 

of the differential element.  
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Figure 3.2: Energy balance for an extended surface. 
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This result provides a general form of the energy equation for an extended surface. 

Its solution for appropriate boundary conditions provides the temperature 

distribution, which may be used to calculate the conduction rate at any x. 

 

3.2.1 Extended surfaces with constant cross sections 

 

To solve Equation 3.5 it is necessary to be more specific about the geometry. We 

begin with constant (uniform) cross-sectional area such as the simplest case of 

straight rectangular and pin fins (see Figure 3.1 and Figure 3.3). Each fin is 

attached to a base surface of temperature T(x= 0)= Tb and extends into a fluid of 

temperature T∞. 

 

For the prescribed fins, Ac is a constant and As= Px, where As is the surface area 

measured from the base to x and P is the fin perimeter. Accordingly, with dAc /dx=  

0 and dAs/dx= P, Equation 3.5 reduces to 

   

   
 

  

    
(     )                                                                                           (3-6) 

 

To simplify the form of this equation, we transform the dependent variable by 

defining an excess temperature θ as, 

 ( )    ( )                                                                                              (3-7) 

 

where, since T∞ is a constant, dθ/dx = dT/dx, and     (     ⁄ ), Substituting 

Equation 3.7 into Equation 3.6, we then obtain 

   

   
                                                                                                             (3-8) 
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Equation 3.8 is a linear, homogeneous, second-order differential equation with 

constant coefficients. Its general solution is of the form 

 ( )      
      

                                                                                       (3-9) 

Or,     ( )                                                                                (3-10) 

To evaluate the constants C1 and C2 of Equation 3.9 and C3 and C4 of Equation 

3.10, it is necessary to specify appropriate boundary conditions. One such 

condition may be specified in terms of the temperature at the base of the fin (x= 0), 

 (   )                                                                                            (3-11) 

The second condition, specified at the fin tip (x = L), may correspond to one of 

four different physical situations. 

 

Case A: considers convection heat transfer from the fin tip. Applying an energy 

balance to a control surface about this tip (Figure 3.4), we obtain 

   ( (   )    )      
  

  
|
   

                                or     ( )    
  

  
|
   

 

Solving for C1 and C2, it may be shown, after some manipulation, that 

Figure 3.3: Straight fins of uniform cross section. (a) Rectangular fin. (b) Pin fin. 
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                                                           (3-12) 

 

 

 

 

 

 

 

The form of this temperature distribution is shown schematically in Figure 3.4. 

Note that the magnitude of the temperature gradient decreases with increasing x. 

This trend is a consequence of the reduction in the conduction heat transfer qx(x) 

with increasing x due to continuous convection losses from the fin surface. We are 

particularly interested in the amount of heat transferred from the entire fin. From 

Figure 3.4, it is evident that the fin heat transfer rate qf may be evaluated in two 

alternative ways, both of which involve use of the temperature distribution. The 

simpler procedure, and the one that we will use, involves applying Fourier’s law at 

the fin base. That is, 

           
  

  
|
   

      
  

  
|
   

                                                     (3-13) 

Hence, knowing the temperature distribution, θ(x), qf may be evaluated, giving 

   √       
       (    )       

        (    )       
                                                          (3-14) 

Case B: corresponds to the assumption that the convective heat loss from the fin 

tip is negligible, in which case the tip may be treated as adiabatic and 

Figure 3.4: Conduction and convection in a fin of 

uniform cross section. 
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|
   

    

Using this boundary condition to solve for C1 and C2 and substituting the results 

into Equation 3.9, we obtain 

 

  
  

     (   )

      
                                                                                             (3-15) 

Using this temperature distribution with Equation 3.13, the fin heat transfer rate is 

then 

   √                                                                                             (3-16) 

 

Case C: where the temperature is prescribed at the fin tip. That is, the second 

boundary condition is θ(L) = θL, and the resulting expressions are of the form 

 

  
  

(    ⁄ )              (   )

      
                                                                       (3-17) 

Using this temperature distribution with Equation 3.13, the fin heat transfer rate is 

then 

   √        
       (    ⁄ )

      
                                                                    (3-18) 

Case D: is an interesting extension of these results. In particular, as Infinite fin (L 

→ ∞, θ(L) → 0) and it is easily verified that 

 

  
                                                                                                            (3-19) 

   √                                                                                                   (3-20) 

 

Homework 1: 

Prove the following Equations,  

Equation 3.12, Equation 3.14, Equation 3.15, Equation 3.16, Equation 3.17, 

Equation 3.18, Equation 3.19, Equation 3.20.  
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Examples: 

Q1: A metal rod of length 2L, diameter D, and thermal conductivity k is inserted 

into a perfectly insulating wall, exposing one-half of its length to an airstream that 

is of temperature T∞ and provides a convection coefficient h at the surface of the 

rod as shown in Figure 3.5. An electromagnetic field induces volumetric energy 

generation at a uniform rate  ̇ within the embedded portion of the rod. 

(a) Derive an expression for the steady-state temperature Tb at the base of the 

exposed half of the rod. The exposed region may be approximated as a very long 

fin.  

(b) Derive an expression for the steady-state temperature To at the end of the 

embedded half of the rod.  

(c) Using numerical values provided in the schematic, plot the temperature 

distribution in the rod and describe key features of the distribution. Does the rod 

behave as a very long fin? 

 

 

 

 

 

 

 

Q2: Heat is uniformly generated at the rate of 2×10
5
 W/m

3
 in a wall of thermal 

conductivity 25 W/m K and thickness 60 mm. The wall is exposed to convection 

on both sides, with different heat transfer coefficients and temperatures as shown 

in Figure 3.6. There are straight rectangular fins on the right-hand side of the wall, 

with dimensions as shown and thermal conductivity of 250 W/mK. What is the 

maximum temperature that will occur in the wall? 

Figure 3.5 
Figure 3.6 
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Q3: A constant-area fin between surfaces at temperatures T1 and T2 is shown in 

Figure 3.7. If the external temperature, T∞(x), is a function of the coordinate x, find 

the general steady-state solution of the fin temperature T(x) for (a) T1 = T2 and (b) 

T1 ≠ T2.  

 

 

3.2.2 Bessel Functions 

In section 3.2.3, a class of one-dimensional problems associated with extended 

surfaces (fins, pins, or spines) will be discussed. When the cross section of an 

extended surface is variable, the formulation of the problem results in a second-

order linear differential equation with variable coefficients. This differential 

equation is a form of Bessel's equation, except in a special case which leads to the 

so-called equidimensional equation. The solution methods suitable to second-order 

linear differential equations with constant coefficients are not suitable to those with 

variable coefficients. We may, however, recall that equations with variable 

coefficients possess solutions expressible, over an appropriate interval, in terms of 

power series. This section is therefore devoted to a brief review of the power series 

solution of Bessel's equation. 

The general Bessel's equation is, 

  
   

   
 [(    )      ]

  

  
 [              (    )         ]     

The solution of Bessel's equation: 

       [    (  
 )      (  

 )]                                (when D is real)               

       [    (  
 )      (  

 )]                                (when D is imaginary)               

Where: 

   : Ordinary Bessel function of first kind of order n. 

   : Ordinary Bessel function of second kind of order n. 

T∞(x), h 

Figure 3.7 
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   : Modified Bessel function of first kind of order n. 

   : Modified Bessel function of second kind of order n. 

Ordinary Bessel Function: 

  ( )   ( ) : Ordinary Bessel function of first kind of order, zero and first order 

respectively. 

  ( )   ( ) : Ordinary Bessel function of second kind of order, zero and first order 

respectively. 

Modified Bessel function: 

  ( )   ( ) : Modified Bessel function of first kind of order, zero and first order 

respectively. 

  ( )   ( ) : Modified Bessel function of second kind of order, zero and first 

order respectively. 

Graphical representation of the general behavior of Bessel functions. Graphs of the 

general behavior of Bessel functions are shown in Figure 3.8. Having thus 

completed our review of Bessel functions we may now proceed to demonstrate the 

use of these functions in the solution of problems related to extended surfaces. 
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Figure 3.8 

(d) (c) 

(b) 
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Example-1: 

  
   

   
  

  

  
          

Solution: 

The comparison between the above equation and Bessel functions yields to, 

  
   

   
 [(    )      ]

  

  
 [              (    )         ]     

Therefore, 

            
      
→        

                
      
→        

                
      
→        

             
      
→        

               
      
→        

 ( )      (  )      (  )  

Example-2: 

    
 

 
                     (×X

 2
) 

                              

Solution: 

The comparison between the above equation and Bessel functions yields to, 

  
   

   
 [(    )      ]

  

  
 [              (    )         ]     

Therefore, 

                
      
→        

                    
      
→        

                    
      
→        

              
      
→         

                 
      
→        

 ( )      (  )      (  )  
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3.2.3 Extended surfaces with variable cross sections 

The general formulation of problems of extended surfaces with variable cross 

sections has already been given by Eq. (3.4) [
 

  
(  

  

  
)  

    

    
   ]. Since Ac 

and As (Pdx) are no longer constant, this equation now becomes a differential 

equation with variable coefficients whose general solution can be determined only 

when Ac and As are specified. In most cases Eq. (3.4) is reduced to a form of 

Bessel's equation; a special case is that leading to the equidimensional equation. 

Cases which do not lead to either of these equations may be treated individually by 

employing the power series solutions of differential equations. 

 

Example 1: The geometry of a straight fin of triangular profile is described in 

Figure 3.8. The base temperature To of the fin is specified. The temperature 

distribution and the rate of heat transfer from this triangular fin can be determined 

as, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8  
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b/L << 1 

L/l << 1 (The temperature distribution of the present problem is One-dimensional 

or that the ends in the l-direction are insulated) 

Noting from Figure 3.8 that   (     ),    ( 
 

 
)    and    (

     

 
)    , 

inserting these values into Eq. (3.4), 
 

  
(  

  

  
)  

    

    
(     )   , and 

rearranging the result, we get 
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                (×X)      (3-21) 

where, m
2
= (h1+h2)L/kb. Comparison of Eq. (3.21) with the general form of Bessel 

function gives, 

  
   

   
 [(    )      ]

  

  
 [              (    )         ]     

                     
      
→        

                         
      
→        

                         
      
→      

 

 
 

                (
 

 
)                    √    √        

      
→           

                      
      
→        

       [    (  
 )      (  

 )]                          (Because D is imaginary)               

 ( )      (   
 

 )      (   
 

 )                                                         (3-22) 

Boundary conditions: 

               ( )                                             

Solution: 
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Since we have from Figure 3.8 (d),                      ( )      

Therefore, the finiteness of tip temperature implies C2= 0.  

Next, the use of the base temperature,                   ( )     (     )  

So,        (   
  ⁄ )⁄ . Inserting the values of Cl and C2 into Eq. (3.22), we find 

that the temperature distribution in the fin is 

 ( )

  
  

  (   
  ⁄ )

  (   
  ⁄ )

                                                                                                      (3-23) 

Again, the heat transfer from the fin may conveniently be obtained by considering 

the conduction through its base. Thus 

    [   (    ⁄ )   ] 

which may be evaluated from Eq. (3.23). It follows, in terms of (       ⁄ ), that 

 

 

  
[  ( )]  

 

  
[  ( )]

  

  
 

 

   ⁄
  (   

  ⁄ ), and the heat transfer from the fin is 

 

       
(     ⁄ )   (   

  ⁄ )

  (   
  ⁄ )

     →     
 

    
 

  
(    ⁄ )   (   

  ⁄ )

  (   
  ⁄ )

 

Example 2: Consider a straight fin of parabolic profile as shown in Figure 3.9. The 

thermal conductivity, base thickness, and length of the fin are k, 2b, and L, 

respectively. The heat transfer coefficient is h and the ambient temperature T∞. 

Find the steady temperature and the total heat transfer from the fin, assuming that 

parabola is given by       ⁄ , where C is a constant. 

Solution:  

      ⁄  , at x = L   then   y = b 

  
 

√ 
         (

 

√ 
)    ⁄   

            

        (    )⏟      
          
          

        

Figure 3.9 
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From energy balance, 
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Or Eq. (3.4) can be applied directly as, 
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Therefore, 
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By comparing the above equation with Bessel functions as, 
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Let,          
 

 
  

 

            (
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    Now, substituting into  ( )equation as, 
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( )      
 

( )]                                              

Boundary conditions: 

                       ( )                                

Since we have from Figure 3.8 (d),                      

 

( )      

The finiteness of tip temperature implies C2= 0.  

Next, the use of the base temperature,                   
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                                                                                           (3-24) 

Inserting the values of Cl and C2 into  ( ) equation, we find that the temperature 

distribution in the fin is 
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]    (3-25) 
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]                                                                                       (3-26) 

Again, the heat transfer from the fin may conveniently be obtained by considering 

the conduction through its base. Thus 

    [   (    ⁄ )   ] 

which may be evaluated from Eq. (3.26). It follows, in terms of (  
 

 
  

 

 ), that 
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 ), and the heat transfer from the fin is 
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3.2.4 Extended Surface Efficiency 

The maximum rate at which a fin could dissipate energy is the rate that would exist 

if the entire fin surface were at the base temperature. However, since any fin is 

characterized by a finite conduction resistance, a temperature gradient must exist 

along the fin and the preceding condition is an idealization. A logical definition of 

extended surface efficiency is therefore, the ratio of the actual to a hypothetical 

(Ideal) heat transfer: 

   
                                          

                                          
 

    

     
                                 (3-28) 

Ideal heat transfer from extended surface, it is the heat transfer at the base 

temperature,           (     ) where As total surface area of the fin 

The denominator of Eq. (3.28) denotes the heat transfer from an area of the wall 

equivalent to the base area of the extended surface; the heat transfer to be evaluated 

by numerator and denominator together is based on the same temperature 

difference, base minus ambient. Since the temperature of a wall and the heat 

transfer coefficient between the wall and the ambient are somewhat changed when 

an extended surface is attached to the wall, the efficiency defined by Eq. (3.28) is 

quite approximate. The error involved in this approximation depends on the length 

of the extended surfaces and the space between them. Therefore, rather than to 
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demonstrate the increased heat transfer from a wall by the use of extended 

surfaces, this efficiency may better be employed to compare different extended 

surfaces. The particular values of these efficiencies for specific cases are, 

Case D:         |             (   )
  

  √     

     
 √

  

   
                                     (3-29) 

Case B:         |                  
  

  √           

     
 √

  

   
                   (3-30) 

 

The efficiencies of extended surfaces have been extensively investigated in the 

literature. In practice, however, the technology involved may be a more important 

consideration than finding a 5-10% more efficient profile which is expensive to 

manufacture. 

In contrast to the fin efficiency ηf, which characterizes the performance of a single 

fin, the overall surface efficiency ηo characterizes an array of fins and the base 

surface to which they are attached. Representative arrays are shown in Figure 3.10, 

where S designates the fin pitch. In each case the overall efficiency is defined as, 

   
  

     
  

  

     
                                                                                        (3-31) 

where qt is the total heat rate from the surface area At associated with both the fins 

and the exposed portion of the base (often termed the prime surface). If there are N 

fins in the array, each of surface area Af, and the area of the prime surface is 

designated as Ab, the total surface area is 

                                                                                                     (3-32) 

The maximum possible heat rate would result if the entire fin surface, as well as 

the exposed base, were maintained at Tb. The total rate of heat transfer by 

convection from the fins and the prime (unfinned) surface may be expressed as 

                                                                                            (3-33) 
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where the convection coefficient h is assumed to be equivalent for the finned and 

prime surfaces and ηf is the efficiency of a single fin. Hence 

    [       (      )]      [  
   

  
(    )]                   (3-34)  

 

 

 

 

 

 

 

 

 

 

 

 

Substituting Equation (3.34) into (3.31), it follows that  

     
   

   
(    )                                                                              (3-35) 

From knowledge of ηo, Equation 3.31 may be used to calculate the total heat rate 

for a fin array. 

3.2.5 Extended Surface Effectiveness 

Recall that fins are used to increase the heat transfer from a surface by increasing 

the effective surface area. However, the fin itself represents a conduction resistance 

to heat transfer from the original surface. For this reason, there is no assurance that 

the heat transfer rate will be increased through the use of fins. An assessment of 

this matter may be made by evaluating the fin effectiveness εf. It is defined as the 

Figure 3.10: Representative fin arrays. (a) Rectangular fins. (b) Annular fins. 
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ratio of the fin heat transfer rate to the heat transfer rate that would exist without 

the fin. Therefore 

   
                                          

                                         (           )
 

  

        
                 (3-36) 

 

where Ac,b is the fin cross-sectional area at the base. In any rational design the 

value of εf should be as large as possible, and in general, the use of fins may rarely 

be justified unless εf  ≥ 2. 

Subject to any one of the four tip conditions that have been considered, the 

effectiveness for a fin of uniform cross section may be obtained by dividing the 

appropriate expression for qf by        . Although the installation of fins will alter 

the surface convection coefficient, this effect is commonly neglected. Hence, 

assuming the convection coefficient of the finned surface to be equivalent to that of 

the unfinned base, it follows that, for the infinite fin approximation (Case D), the 

result is, 

   √
  

    
                                                                                          (3-37) 

Several important trends may be inferred from this result. Obviously, fin 

effectiveness is enhanced by the choice of a material of high thermal conductivity. 

Aluminum alloys and copper come to mind. However, although copper is superior 

from the standpoint of thermal conductivity, aluminum alloys are the more 

common choice because of additional benefits related to lower cost and weight. Fin 

effectiveness is also enhanced by increasing the ratio of the perimeter to the cross-

sectional area. For this reason, the use of thin, but closely spaced fins is preferred, 

with the proviso that the fin gap not be reduced to a value for which flow between 

the fins is severely impeded, thereby reducing the convection coefficient. Equation 

3.37 also suggests that the use of fins can be better justified under conditions for 
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which the convection coefficient h is small. Hence it is evident that the need for 

fins is stronger when the fluid is a gas rather than a liquid and when the surface 

heat transfer is by free convection. If fins are to be used on a surface separating a 

gas and a liquid, they are generally placed on the gas side, which is the side of 

lower convection coefficient. A common example is the tubing in an automobile 

radiator. Fins are applied to the outer tube surface, over which there is flow of 

ambient air (small h), and not to the inner surface, through which there is flow of 

water (large h). Note that, if εf ≥ 2 is used as a criterion to justify the 

implementation of fins, Equation 3.37 yields the requirement that (kP/hAc) ≥ 4. 

 

We can draw several important conclusions from equation (3.37) for consideration 

in the design and selection of the fins: 

1. The thermal conductivity of the fin material (k) should be as high as possible. 

The most widely used fins are made of aluminum. 

2. The ratio of the perimeter to the cross-section area of the fin should be as high as 

possible. This condition is satisfied by thin plate fins or slender pin fins. 

3. The use of fins is most effective in applications involving a low convective heat 

transfer coefficient (h). In liquid-to-gas heat exchanger such as the car radiator, 

fins are placed on the gas side. 
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Homework 2: Consider a straight fin of parabolic profile as shown in Figure 3.11. 

The thermal conductivity, base thickness, and length of the fin are k, 2b, and L, 

respectively. The heat transfer coefficient is h and the ambient temperature T∞. 

Find the steady temperature of and the total heat transfer from the fin, assuming 

that parabola is given by      , where C is a constant. 

 

 

 

 

 

 

 

 

 

 

Homework 3: Consider a straight fin of parabolic profile as shown in Figure 3.12. 

The thermal conductivity, base thickness, and inner and outer radii of the fin are k, 

2b, Ri and Ro, respectively. The heat transfer coefficient is h and the ambient 

temperature T∞. Find the steady temperature of and the total heat transfer from the 

fin, assuming that hyperbola is given by (a)     ⁄   , (b)       where C is a 

constant. 

Figure 3.11 Figure 3.12 


