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Chapter Four 

Steady-State Two-Dimensional Conduction Heat Transfer 

 

4.1 Introduction 

In many cases such problems are grossly oversimplified if a one-dimensional 

treatment is used, and it is necessary to account for multidimensional effects. In 

this chapter, we will focus on "analytical method" for treating two-dimensional 

systems under steady-state conditions. 

 

4.2 Boundary-value problems and characteristic-value problems 

Consider an ordinary differential equation of second order which may result from 

the differential formulation of a steady one-dimensional conduction problem. The 

solution of this equation involves two arbitrary constants which are determined by 

two conditions, each specified at one boundary of the problem. Problems of this 

type are called boundary-value problems to distinguish them from initial-value 

problems, in which all conditions are specified at one location. Reconsider the 

differential equation  

   

   
                                                                                                          (4-1) 

Assume that this homogeneous equation involves a parameter "λ" as 

   

   
                                                                                                         (4-2) 

And is subject to homogeneous boundary conditions 

 ( )    , and  ( )    then the general solution of Equation (4-2) is 

                                                                                                              (4-3) 

The use of ( ( )   ) results in      and ,            
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From ( ( )   ), combined with            , gives          . The 

problem has nontrivial solutions only if λ satisfies the (       ). Therefore, 

   
  

 
,                                              where n= 1, 2, 3, ……,                          (4-4) 

And the corresponding solutions of  (          ) are, 

       ( ) ,        ( )     (
  

 
)                                                                (4-5) 

Note that no new solutions are obtained when "n" assumes negative integer values. 

Thus, the foregoing boundary-value problem has no solution other than the trivial 

solution y= 0, unless λ assumes one of the characteristic values given by Equation 

4-4. Corresponding to each characteristic value of λn there exists a characteristic 

function   ( ) given by Equation 4-5, such that any constant multiple of this 

function is a solution of the problem. It is important to note that the boundary-

value problem given by 

   

   
       ;                 ( )     ,     ( )    

has no solution other than the trivial solution y= 0 corresponding to λ= 0. Hence 

there does not exist any set of characteristic values and characteristic functions for 

this problem. This illustrates the fact that a boundary-value problem may or may 

not be a characteristic-value problem. A boundary-value problem is a 

characteristic-value problem when it has particular solutions that are periodic in 

nature; the period and amplitude of these solutions may or may not be constant. 

Therefore, in the next three sections the general properties of characteristic 

functions are investigated. 

 

4.3 Orthogonality of Characteristic Functions 

By definition, two functions   ( ) and   ( ) are said to be orthogonal with 

respect to a weighting function  ( ), over a finite interval (a, b), if the integral of 

the product  ( )  ( )  ( ) over that interval vanishes as  
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∫  ( )  ( )  ( )  
 

 
   ,         where m ≠ n                                        (4-6) 

Furthermore, a set of functions is said to be orthogonal in (a, b) if all pairs of 

distinct functions in the set are orthogonal in (a, b). The word orthogonality comes 

from vector analysis. Let   (  ) denote a vector in 3D space whose rectangular 

components are   (  ),   (  ), and   (  ). Two vectors,   (  ) and   (  ), 

are said to be orthogonal, or perpendicular to each other, if  

  (  )    (  )   ∑   (  )    (  )
 
                                                  (4-7) 

When the units of length on the coordinate axes vary from one axis to another, the 

foregoing scalar product assumes the form 

  (  )    (  )   ∑  (  )   (  )   (  )
 
                                          (4-8) 

Where the weighting numbers  (  ),  (  ), and  (  ) depend upon the units of 

length used along the three axes. The vectors in an N-Dimensional space having 

components   (  ),   (  ), i= 1, 2, 3, ……, N are said to be orthogonal with 

respect to the weighting numbers  (  ). 

It will now be shown that the characteristic functions of a characteristic-value 

problem are orthogonal over a finite interval with respect to a weighting function. 

To establish this fact, consider the characteristic-value problem composed of the 

linear homogenous second-order differential equation of the general form 

   

   
   ( )

  

  
    ( )      ( )                                                         (4-9) 

This equation, multiplied through by the factor (  ∫   ( )     ( )) and with the 

functions defined as   ( ) ( )   ( ) and   ( ) ( )   ( ), may be rearranged 

in the form 

 

  
* ( )

  

  
+    ( )     ( )                                                                (4-10) 

Which is more convenient for the following discussion. 
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Let   ,    be any two distinct characteristic numbers, that is, m ≠ n and let   ( ), 

  ( ) be the corresponding characteristic functions. Since     ( ) and 

    ( ) are solutions of Equation (4-10), 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                        (4-11) 

 

Since both     ( ) and     ( ) are particular solutions of Equation 4-10, 

the right-hand side of Equation 4-11 vanishes when one of the following 

conditions is prescribed at each end of the interval (a, b): 

                                                                                                                   (4-12) 

  

  
                                                                                                                 (4-13) 

  

  
                                                                                                           (4-14) 

Where B is an arbitrary parameter.  
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The fact that Equation (4-11) vanishes when Equation (4-14) is satisfied may be 

clarified by rearranging the right-hand member of Equation (4-11) in the form 

   ́     ́     ́     ́          ( ́     )    ( ́  

   )                                                                                                    (4-15) 

Particularly, if  ( )    when     or    , the right-hand side of Equation (4-

11) vanishes, and the condition given by Equation 4-12, 4-13, or 4-14 satisfied at 

    or     can be dropped from the problem provided y and (
  

  
) are finite at 

that point. If  ( )   ( ), the orthogonality continues to exist when the boundary 

conditions are replaced by the conditions  ( )   ( ) and  ́( )   ́( ), which 

are called the periodic boundary conditions. 

As an example, reconsider the characteristic-value problem given by Equation (4-

1). Comparison of Equations (4-1) and (4-10) gives  ( )   , and the condition of 

the orthogonality for this problem is 

∫   ( )   ( )  
 

 
  ∫    (

   

 
)    (

   

 
)   

 

 
               m ≠ n               (4-16) 

Which can also be verified independently by direct integration. 

We wish to expand an arbitrary function f(x) into a series of this set as 

 ( )      ( )      ( )      ( )    ∑     ( ) 
                      (4-17) 

By multiplying both sides of Equations (4-17) by  ( )  ( ) and integrating the 

result over the interval with the assumption that the integral of the infinite sum is 

equivalent to the sum of the integrals,  

∫  ( ) ( )
 

 
  ( )   ∑   ∫  ( )  ( )  ( )  

 

 
 
                            (4-18) 

All terms in the sum on the right of Equation 4-18 are zero except the term 

corresponding to n = m. 

   
∫  ( ) ( )

 

 
  ( )  

∫  ( )
 

 
  

 ( )  
                                                                                 (4-19) 
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4.4 Fourier series 

In general, one must somewhere in the problem, express a function (for example 

f(x)) by a series of eigen functions (for example    (   )). More generally, if the 

eigen functions are denoted by   ( ) the expression is then given by; 

 ( )  ∑   
 
     ( )                                                                                    (4-20) 

  ( ) can usually be expected to be orthogonal with respect to some weighting 

function w(x). In other words; 

∫  ( )
 

 
  ( )   {

             (       )
            (       )

                                                   (4-21) 

Multiply f(x) by ( ( )   ( )) and integrate; 

∫  ( ) ( )
 

 
  ( )   ∫ ∑   

 
    ( )   ( )  ( )  

 

 
 

∑   ∫  ( )  ( )  ( )  
 

 
 
               (Integral = 0 for m ≠ n, and = C for m = n) 

Thus, ∫  ( ) ( )
 

 
  ( )        

 

 
∫  ( ) ( )

 

 
  ( )                                                                          (4-22) 

Thus the coefficients have been found since all functions in the integral are known 

and the integral can be evaluated. 

Example 1: 

Consider the Fourier sine series of the function as; 
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Example 2: Consider now the Fourier cosine series of the previous example, 

where the coefficients of the series are  

 

 

 

 

 

 

 

 

 

 

 

Example 3: 

Express a function f(x), which is piecewise continuous in the interval (-L, L), in 

terms of both sine and cosine having the common period 2L (where the function 

repeats its behavior periodically for all values of x as shown in Figure below). 
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4.5 Homogeneous Problems 

A differential equation is linear if it contains no products of the dependent variable 

or its derivatives (u
4
 or uux terms are not permitted). 

(            )                Nonlinear Equation 

A boundary condition is linear if it contains no products of the dependent variable 

or its derivatives. 
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4.6 The Method of Separation of Variables: Steady, Two-dimensional 

Cartesian Geometry 

For two-dimensional, steady-state conditions with no generation and constant 

thermal conductivity, this form is, from Equation 1.17, 

   

   
  

   

   
                                                                                                       (4-1) 

To appreciate how the method of separation of variables may be used to solve two-

dimensional conduction problems, we consider the system of Figure 4.1. Three 

sides of a thin rectangular plate or a long rectangular rod are maintained at a 

constant temperature T1, while the fourth side is maintained at a constant 

temperature T2 ≠ T1. Assuming negligible heat transfer from the surfaces of the 

plate or the ends of the rod, temperature gradients normal to the x–y plane may be 
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neglected (      ⁄   ) and conduction heat transfer is primarily in the x- and y-

directions.  

We are interested in the temperature distribution T(x, y), but to simplify the 

solution we introduce the transformation, 

 

   
     

      
                                           (4-2) 

By Substituting Equation 4.2 into Equation 

4.1, the transformed differential equation is 

then, 

 

   

   
  

   

   
                                      (4-3) 

 

 

Since the equation is second order in both x and y, two boundary conditions are 

needed for each of the coordinates. They are, 

 (   )    ,     (   )   ,    (   )    ,     (   )      

Note that, through the transformation of Equation 4.2, three of the four boundary 

conditions are now homogeneous and the value of θ is restricted to the range from 

0 to 1. We now apply the separation of variables technique by assuming that the 

desired solution can be expressed as the product of two functions, one of which 

depends only on x while the other depends only on y. The essential features of the 

method will now be illustrated by means of a steady two- dimensional example. 

Consider the second-order partial differential equation, 

  ( )
   

   
   ( )

  

  
   ( )    ( )

   

   
   ( )

  

  
   ( )            (4-4) 

Figure 4.1: Two-dimensional conduction problems, 

sides of a thin rectangular plate or a long rectangular 
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A more generalized form of this equation which involves coefficients as functions 

of both independent variables is not suitable for the separation of variables. That is, 

assume the existence of a product solution of the form 

 (   )   ( )  ( )                                                                                               (4-5) 

Where X is a function of x alone and Y is a function y. This assumption becomes 

meaningful when the two functions X and Y actually satisfy separate differential 

equations. 

Introducing Eq. (4.5) into Eq. (4.4) and dividing the result by XY yields 

*  ( )
   

   
   ( )

  

  
   ( ) +

 

 
  *  ( )

   

   
   ( )

  

  
   ( ) +

 

 
                                                                                                                                     

                                                                                                                    (4-6)   

It is evident that the differential equation is, in fact, separable. That is, the left-hand 

side of the equation depends only on x and the right-hand side depends only on y. 

Hence the equality can apply in general (for any x or y) only if both sides are equal 

to the same constant. Identifying this, as yet unknown, separation constant or 

separation parameter as (+λ
2
) or (- λ

2
), we then have 

  ( )
   

   
   ( )

  

  
    ( )                                                            (4-7) 

  ( )
   

   
   ( )

  

  
    ( )                                                             (4-8) 

The method of separation of variables is applicable to steady two-dimensional 

problems if and when, 

i. One of the directions of the problem is expressed by a homogeneous 

differential equation subject to homogeneous boundary conditions (the 

homogeneous direction), while the other direction is expressed by a 

homogeneous differential equation subject to one homogeneous and one 

nonhomogeneous boundary condition (the nonhomogeneous direction). 
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ii. The sign of λ
2
 is chosen such that the boundary-value problem of the 

homogeneous direction leads to a characteristic-value problem. 

The solutions obtained by the separation of variables are in the form of a sum or 

integral, depending on whether the homogeneous direction is finite or extends to 

infinity, respectively. 

   

   
                                                                                                     (4-9) 

   

   
                                                                                                     (4-10) 

The partial differential equation has been reduced to two ordinary differential 

equations. Note that the designation of λ
2
 as a positive constant was not arbitrary. If 

a negative value were selected or a value of λ
2
 = 0 was chosen, it would be 

impossible to obtain a solution that satisfies the prescribed boundary conditions. 

The general solutions to Equations 4.9 and 4.10 are, respectively, 

                                                                                                 (4-11) 

      
       

                                                                                        (4-12) 

in which case the general form of the two-dimensional solution is 

   (               )(   
       

   )                                           (4-13) 

The classical method of separation of variables is restricted to linear homogeneous 

P.D.E. 

Example 1: A two-dimensional rectangular plate is subjected to the boundary 

conditions shown in Figure 4.1. Derive an expression for the steady-state 

temperature distribution θ(x, y). 

Solution:  

The transformed differential equation (applying Eq. 4.3) as, 

   

   
  

   

   
                                      

The boundary conditions are needed for each of the coordinates as, 
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 (   )    ,     (   )   ,    (   )    ,     (   )      

Assume the existence of a product solution of the form (Eq. 4.5) 

 (   )   ( )  ( )                                                                                              

Where X is a function of x alone and Y is a function y. The solutions obtained by 

the separation of variables are in the form of a sum or integral, depending on 

whether the homogeneous direction is finite or extends to infinity, respectively. 

   

   
                                                                                                     

   

   
                                                                                                      

The general form of the two-dimensional solution is, 

 (   )   (               )(   
       

   )                                    (4-14) 

Applying the condition that θ(0, y)= 0, it is evident that C1= 0. In addition from the 

requirement that θ(x, 0)= 0, we obtain 

       (     )     

which may only be satisfied if C3= -C4. Although the requirement could also be 

satisfied by having C2= 0, this would result in θ(x, y)= 0, which does not satisfy the 

boundary condition θ(x, W)= 1. If we now invoke the requirement that θ(L, y)= 0, 

we obtain 

         (        )    ,  

The only way in which this condition may be satisfied (and still have a nonzero 

solution) is by requiring that assume discrete values for which sinλL= 0. These 

values must then be of the form, 

   
  

 
                      

where the integer n= 0 is precluded, since it implies θ(x,y)= 0. The desired solution 

may now be expressed as 
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( 

   

   
    

 )   

Combining constants and acknowledging that the new constant may depend on n, 

we obtain 

 (   )       
   

 
    

   

 
   

where we have also used the fact that ( 
   

   
    

 )       (
   

 
). In this form 

we have really obtained an infinite number of solutions that satisfy the differential 

equation and boundary conditions. However, since the problem is linear, a more 

general solution may be obtained from a superposition of the form 

 (   )  ∑      
   

 
    

   

 
 
       

To determine Cn we now apply the remaining boundary condition, which is of the 

form 

 (   )    ∑      
   

 
    

   

 
 
                                                               (4-15)   

Although the above equation would seem to be an extremely complicated relation 

for evaluating Cn, a standard method is available. It involves writing an infinite 

series expansion in terms of orthogonal functions. An infinite set of functions 

g1(x), g2(x), … , gn(x), … is said to be orthogonal in the domain a ≤ x ≤ b if 

∫   ( )  ( )    
 

 
                              m ≠ n 

Many functions exhibit orthogonality, including the trigonometric functions 

sin(nπx/L) and cos(nπx/L) for 0 ≤ x ≤ L. Their utility in the present problem rests 

with the fact that any function f(x) may be expressed in terms of an infinite series 

of orthogonal functions 

 ( )  ∑     ( ) 
                                                                                      (4-16) 

The form of the coefficients An in this series may be determined by multiplying 

each side of the equation by gm(x) and integrating between the limits a and b. 
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∫  ( )  ( )   ∫   ( )∑     ( ) 
     

 

 

 

 
  

However, from above equation it is evident that all but one of the terms on the 

right-hand side of equation 4.16 must be zero, leaving us with 

∫  ( )  ( )     ∫   
  

 
( )  

 

 
                                                            (4-17) 

Hence, solving for Am, and recognizing that this holds for any An by switching m to 

n: 

   
∫  ( )  ( )  

 

 

∫   
  

 
( )  

  

The properties of orthogonal functions may be used to solve equation 4.15 for Cn 

by formulating an infinite series for the appropriate form of f(x). From equation 

4.16 it is evident that we should choose f(x)= 1 and the orthogonal function gn(x)= 

sin(nπx/L). Substituting into equation 4.17 we obtain, 

   
∫    

   

 
  

 

 

∫        

 

 

 
  

 
 

 
 
(  )     

 
                                                                         

Hence from equation 4.16, we have 

  ∑
 

 
 
(  )     

 
    

   

 
 
                                                                            (4-18) 

which is simply the expansion of unity in a Fourier series. Comparing equations 

4.15 and 4.18 we obtain 

   
  (  )      

      (
   

 
)
                         n= 1, 2, 3, ….                                             (4-19) 

Substituting equation 4.19 into equation 4.14, we then obtain for the final solution 
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 (   )  
 

 
∑

(  )     

 
   

   

 
 
   

    
   

 

    
   

 

     (4-20)  

The above equation is a convergent series, from 

which the value of θ may be computed for any x and 

y. Representative results are shown in the form of 

isotherms for a schematic of the rectangular plate 

(see Figure 4.2).     

 

 

Example 2: 

Derive an expression for the steady-state 

temperature distribution θ(x, y) of the extended 

surface as shown in Figure (4-3) for a finite heat 

transfer coefficient (h). 

Solution:  

The transformed differential equation (applying Eq. 4.3) as, 

   

   
  

   

   
                                      

The boundary conditions are needed for each of the coordinates as, 

 (   )     ,     (   )   ,   
  (   )

  
   ,      

  (   )

  
   (   )   

Assume the existence of a product solution of the form (Eq. 4.5) 

 (   )   ( )  ( )                                                                                              

 

Figure 4.2: Isotherms and heat flow lines for two-

dimensional conduction in a rectangular plate. 

Figure 4.2: 2D extended surface. 
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Where X is a function of x alone and Y is a function y. The solutions obtained by 

the separation of variables are in the form of a sum or integral, depending on 

whether the homogeneous direction is finite or extends to infinity, respectively. 

   

   
                 ,  (   )     ,     (   )                                                                                      

   

   
                ,   

  (   )

  
   ,      

  (   )

  
   (   )                                                                                      

The general form of the two-dimensional solution is, 

 (   )   (   
       

  )(               )                                    (4-21) 

Applying the condition that 
  (   )

  
  , So 

  (   )

  
 (   

       
  )(                   )                               (4-22) 

  (   )

  
   (   

       
  )(       (   )         (   ))                                 

From this condition, it is evident that C4= 0. Therefore, the characteristic function 

is (     ). In addition from the requirement that   
  (   )

  
   (   ), we obtain 

   (   
       

  )(       (  ))    (   
       

  )(       )                                 

      
 

 
 

 

 
 

 

 
 

 

  
   or         

  

  
 ,   where Bi is Biot number (

  

 
   ) 

The characteristic values are the roots of [        
  

  
 or        

   

  
] as 

shown, 
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Now, by applying the condition in x-axis ( (   )   ) as 

 (   )   (   
        

   )(        )    , From this condition, it is 

evident that C2= 0. 

 (   )  ∑   
 
                                                                              (4-23)   

For last condition ( (   )    ), 

   ∑   
 
    (     )                                           

   ∑   
 
                                                                                        (4-24)   

Although the above equation (4-24) would seem to be an extremely complicated 

relation for evaluating An, a standard method is available. It involves writing an 

infinite series expansion in terms of orthogonal functions. An infinite set of 

functions g1(x), g2(x), … , gn(x), … is said to be orthogonal in the domain a ≤ x ≤ b 

if, ∫   ( )  ( )    
 

 
                              m ≠ n 

The form of the coefficients An in this series may be determined by multiplying 

each side of the equation by gm(x) and integrating between the limits a and b. 

∫  ( )  ( )   ∫   ( )∑     ( ) 
     

 

 

 

 
  

However, from above equation it is evident that all but one of the terms on the 

right-hand side of equation 4.16 must be zero, leaving us with 

∫  ( )  ( )     ∫   
  

 
( )  

 

 
            (m = n) 

Therefore,   ∫         
 

 
   ∫          

 

 
  

  

  
         

  
  

  
*
   

 
 

 

 
       +

 

 
                           

                                                         

   
         

                
                              

Hence, the steady-state temperature distribution θ(x, y) of the extended surface is, 

 (   )

  
  ∑ (

      

                
) 
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4.7 Nonhomogeneous Problems 

There are many engineering problems in which the P.D.Es. and/ or the B.Cs. are 

not homogeneous. An example would be a plane-wall, nuclear reactor fuel element 

which is suddenly turned on. The P.D.E. describing this problem is: 

   

   
  

 ̇

 
  

 

 

  

  
                                                                                           (4-25) 

The generation term (
 ̇

 
) makes the above equation non-homogenous. Another 

example would be a plane wall subjected to an ambient fluid whose temperature is 

fluctuating with time, defined as; 

   

   
  

 

 

  

  
 ;       

  (   )

  
     ,  (   )      (  )  

In this case, the P.D.E. is homogeneous as is the B.C. at (x= 0). The B.C. at (x= L) 

is non-homogeneous (but linear), and consequently the problem is non-

homogeneous, (but linear). The above examples cannot be made homogeneous by 

simply subtracting a constant from (T)              as can be done in the 

lumped heat capacity problem. This section will discuss two methods of handing 

these more complicated problems; 

 Partial Solutions.                                

 Variation of Parameters. 

 

 Partial Solutions 

A non-homogeneous problem can often be converted into a homogeneous one by 

the use of "Partial Solution" to the nonhomogeneous problem. A partial solution is 

one that satisfies only a part of the original problem. In a transient problem the 

most common partial solution would be the steady state solution. It satisfies the 

B.Cs. but not the initial condition. In addition, it deletes the time derivative from 

the P.D.E. 
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The steps in obtaining solutions to non-homogeneous problems by using the 

steady-state solution are; 

1. Let         where   the general solution,    is homogenous solution and 

   is partial solution. 

2. Determine the steady-state solution  . 

3. Introduce (       ) to make the problem homogeneous. 

4. Solve for (  ) in the usual manner (Separation of Variables). 

5. The complete solution is (       ). 

Example 3: 

Consider an electric heater made from a solid rod of rectangular cross section 

(2L×2l) and designed according to one of the forms shown in Figure 4.3. The 

temperature variation along the rod can be neglected. The internal energy 

generation ( ̇) in the heater is uniform. The heat transfer coefficient (h) is large. 

Find the steady-state temperature of the electric heater. 

 Solution: 

The formulation of the problem in Figure 4.3 is 

   

   
 

   

   
  

 ̇

 
                                  (4-26) 

The Boundary conditions are, 

  (   )

  
                    

  (   )

  
   

 (   )                   (   )    

The above partial differential equation, being  

Non-homogenous, is not separable. 

Therefore, the general solution of the problem is now assumed to be, 

 (   )     (   )    ( )                                                                            (4-27) 

Or,   (   )     (   )    ( )                                                                     (4-28) 

�̇� 

Figure 4.3: electric heater with rectangular 

cross section area. 
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  (   ) is solution of homogeneous part of the partial differential equation 

[      ] with neglecting ( ̇). 

  ( ) or   ( ) is partial solution part of the partial differential equation [
    

   
 

 
 ̇

 
  ] or [

    

   
  

 ̇

 
  ]. 

With the inclusion of the internal energy generation ( ̇) in the formulation of the 

One-dimensional problem,   ( ) or   ( ) , the differential equation to be satisfied 

by the Two-dimensional problem,   (   ), can be made homogeneous. 

Partial solution part: 

    

   
  

 ̇

 
               →           

 ̇

  
              

B.C.1:  
   (   )

  
           →          

B.C.2:  (    )          →       
 ̇

  
   

   
 ̇

  
  (  (

 

 
)
 

)                                                                                     (4-29) 

The homogeneous solution part: 

   

   
 

   

   
                                                                                                     (4-30) 

B.C.1:  
   (   )

  
            

B.C.2:   (   )          

B.C.3:  
   (   )

  
          

B.C.4:   (   )     ( )  

From Eq. 4.27,  (   )     (   )    ( ), 

  (   )   (   )    ( )             →            
   (   )

  
 

  (   )

  
 

   ( )

  
   

Now let,              (   )   ( )  ( )                                                           (4-31) 
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Applying Eq. 4.31 into Eq. 4.30, 

  ( )

 ( )
  

  ( )

 ( )
      

Therefore,   (   )  (               ) (                 )      (4-32) 

From B.C.1,           &      From B.C.3,      

Thus,   (   )                                                                             (4-33) 

From B.C.2:                                            

Since                                
 

 
(    )                                   (4-34) 

   
 

 

(    )

 
  

Thus,         (   )  ∑   
 
                                                              (4-35) 

From B.C.4:   ∑   
 
                  

 ̇

  
  (  (

 

 
)
 

)          (      ) 

         ∫          
 

 
  ∫

 ̇

  
  (  (

 

 
)
 

)         
 

 
  

         
 

 
  ∫

 ̇

  
  (  (

 

 
)
 

)         
 

 
   

   
  

       

 

 
∫

 ̇

  
  (  (

 

 
)
 

)         
 

 
     →  

   
  

       

 ̇ 

 
∫ (  (

 

 
)
 

)         
 

 
  

Now, taken: ∫ (  (
 

 
)
 

)         
 

 
= ∫         

 

 
 

 

  ∫           
 

 
 

Integrating left hand side, ∫         
 

 
 

 

  
       

 

  
   

    

 

 

 
  

 

  
(  )  

Integrating right hand side, ∫   ⏟
 

        ⏟      
  

 

 
 =         

  
+
 
 

  ∫
        

  

 

 
 

= 
        

  
+
 
 

 
 

  
( 

       

  
 ∫

        

  

 

 
) 

= 
        

  
+
 
 

 
 

  
       |  
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= 
        

  
|  
 
 

 

  
        |  

 
 

 

  
       |  

 
 

= 
        

  
 

 

  
         

 

  
        = 

  

  
(  )  

  

  
 ( )  

 

  
 (  )  

= (  ) (
  

  
 

 

  
 ) 

So, ∫ (  (
 

 
)
 

)         
 

 
= 

(  ) 

  
 

(  ) 

  
(
  

  
 

 

  
 ) = 

 

    
 (  )  

   
  

       

 ̇ 

 

 

    
 (  )  

   ̇

     
        

(  )   

 (   )   ∑
   ̇

     
        

(  ) 

 

   

              
 ̇  

  
(  (

 

 
)
 

) 

 (   )

 ̇  

  

  
 

 
(  (

 

 
)
 

)   ∑
(  ) 

(   ) 
 
   

       

       
        

 

 Variation of Parameters 

In some cases there may not be steady-state solution or you may not be able to find 

it. In these cases; variation of parameters method may be used. The procedure is 

outlined as follows; 

1. Set up a problem corresponding to the original one by simply setting all the non-

homogeneous terms equal to zero. 

2. Determine the eigen-functions and eigen-condition for the “corresponding 

homogeneous problem”. 

3. Construct a solution to the original non-homogeneous problem of the form; 

 (   )  ∑   ( )  ( )   

Where, the   ( ) is the eigen-functions you have obtained above from the 

corresponding homogeneous problem. 

4. Evaluate An(t) in the usual manner making use of the orthogonally of the   ( ). 

That is;      ∫  (   )
 

 
  ( )   ∑   

 
 ( ) ∫    ( )  ( )  

 

 
    ( ) 
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Or,   ( )  
 

 
∫  (   )

 

 
  ( )   

Here   is still unknown. 

5. Set up an O.D.E. and B.Cs. for   ( ). 

6. Solve for   ( ). 

7. Complete the solution;  (   )  ∑   ( )  ( )   

 

Example 4: 

Consider a plane wall whose initial normalized temperature is zero. The face (x= 0) 

is suddenly changed to a normalized temperature of unity at zero time, while the 

face at (x= 1) is maintained at the initial temperature. Determine the temperature 

distribution. 

Solution: 

(1) Set every non-homogeneous term equal to zero, thus the problem will be; 

 

     

 

 

 

 

 

 

(2) Determine the eigen-functions. 

     

 

 

 

 

 

 

 

 

 

Therefore; 
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(eigen-function corresponds to the homogenous problem) 

3- Construct a solution; 

 

     

 

 

 

5- Set up an O.D.E. for Am (t) by differentiating with respect to (t). Thus; 
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Equation (7) can be solved using integrating function ( I );      
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4.8 Cylindrical Geometry 

The inherent nature of cylindrical coordinates implies three types of 2-D problems 

in the form  (   ),  (   ) and  (   ), see Figure 4.4. 

Since  (   ) has no physical significance (except in thin–walled tubes, which can 

be investigated in terms of Cartesian Coordinates), it is not considered here.  (   ) 

may depend on the expansion of an arbitrary function into a series in terms of 

cylindrical (Bessel) functions. Problems of the type  (   ), on the other hand, 

require no further mathematical background than that needed for Cartesian 

geometry. 

      

 

 

 

 

 

 

 

 

 

When a problem of type  (   ) is orthogonal in the (r-direction), it can be solved 

by the proper choice of the separation constant leading to a 2
nd

 order O.D.E. in (z) 

satisfied by hyperbolic function, and to Bessel equation in (r). If the z-direction is 

orthogonal, the problem do not need additional mathematics and can be solved by 

using circular functions in Z and the modified Bessel functions in (r). 

 

 

 

Figure 4.4: Infinitely long rod with cylindrical coordinates. 
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Example 5: 

The surface temperature of an infinitely long solid rod of radius R is specified as 

 ( ), see Figure 4.4. Find the steady-state temperature of the rod. 

Solution: 

For steady-state 
 

  
  , No heat generation  ̇   , 2D 

 

  
   

Thus: 
 

 

 

  
( 

  

  
)   

 

  
 (

   

   )                                                                      (4-36)   

 (
   

   )  
 

 
(
  

  
)   

 

  
 (

   

   )      

And the problem boundary condition as: 

 (   )         ,                                          (   )   ( ),  

 (   )   (      ),                               
  (   )

   
 

  (      )

   
 

The r-direction cannot be made orthogonal by any transformation. This leaves ( ) 

as the only possible orthogonal direction. Hence the product solution  (   )  

 ( ) ( ) with the proper choice of the separation constant yields 

 (   )   ( ) ( )                                                                                     (4-37)   

By substituting Equation 4.37 into Equation 4.36 to obtain that 

(
   ( )

   
 ( ))  

 

 
(
  ( )

  
 ( ))   

 

  
 (

   ( )

   
 ( ))          Dividing by ( ( ) ( )) 

(
   ( )

   
  ( ))  

 

 
(
  ( )

  
  ( ))   

 

  
 (

   ( )

   
  ( ))      

  (
   ( )

   
  ( ))   (

  ( )

  
  ( ))     (

   ( )

   
  ( ))       

   ( )

   
    ( )        with B.Cs.  (   )   (      ) & 

  (   )

   
 

  (      )

   
 

  (
   ( )

   )   (
  ( )

  
)     ( )                    with B.Cs.  (   )         

 ( )                                                                                       (4-38) 

                   (    )       (    )  

But,           (    )                           
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          (    )        where    ,                         

 ( )       (  )       (  )                                                                  (4-39)    
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4.9 Spherical Geometry 

When a spherical problem depends on the 

cone angle ( ), see the figure, its solution can 

be reduced to the expansion of arbitrary 

function into series of “Legendre 

Polynomial”. The linear 2
nd

 order differential 

equation with variable coefficients. 

The linear second-order differential equation 

with variable coefficients 

(    )
   

   
   

  

  
  (   )                                                            (4-40) 

Is known as “Legendre's Equation”, and its solutions are known as “Legendre’s 

Functions”. In particular, when (n= 0) or a positive integer, the solutions of (4-40) 

are called “Legendre Polynomial”. The solution of (4-40) may be obtained by the 

method of power series as; 

 ( )      ( )      ( )                                                                        (4-41) 

Where,  

  ( ) is Legendre Polynomial of degree (n) of the first kind. 

  ( ) is Legendre Polynomial of degree (n) of the second kind. 

Hence the Legendre Polynomials   ( ) are the characteristic functions of the 

characteristic value problem stated by [                                                           ]. 

These polynomials form an orthogonal set with respect to the weighting function 

 ( )    over the interval (-1, 1); that is    

                                                                                                              (4-42) 

 

 

 

Figure 4.5: Spherical coordinates. 
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                                                                                                                 (4-43) 

 

                                                                                                                 (4-44) 

 

If f(x) and its first n derivatives are continuous in the interval, integrating the right-

hand side of the above equation n times by parts gives 

 

                                                                                                                 (4-45) 

Now, replacing by in the above equation, and employing the n
th
 derivative of 

equation [                                               ].  

 

 

                                                                                                               (4-46) 

The right-hand side of the above equation integrated n times by parts yields 

                                                                                                                (4-47) 

 

Introducing Equation (4-47) into Equation (4-46), obtain 

 

                                                                                                                (4-48) 

Hence the coefficient (an) becomes, 

 

 

                                                                                                                 (4-49) 
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The second form of Equation (4.49) can be used only if f(x) and its first n 

derivatives are continuous in (-1, 1). 

Furthermore, noting that   ( ) is an even function of x when n is even, and an odd 

function when n is odd, we have 

For an Even function f(x),  

 

                                                                                                               (4-50) 

 

For an Odd function f(x) 

                                                                             

                                                                                                                (4-51) 

                                                                                                   

Example 6: 

The surface temperature of a sphere of radius R is specified in the form  ( ). Find 

the steady-state temperature distribution of the sphere. 

Solution: 

The formulation of the problem 

 

 

 

 

The missing boundaries in the θ-direction will be discussed later. 

Since θ is the only possible orthogonal direction, with the appropriate choice of 

separation constant the product solution [ (   )    ( ) ( )] yields     
 

 

                                                            and     
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First rearranged in the form 

 

Then transformed with         → [
 

  
 

  

  

 

  
     

 

  
] and [

  

  
 

  

  

  

  
 

    
  

  
], may be written as, 

  

 

 

 

 

 

Here the condition of finiteness specifying the characteristic functions and 

characteristic values takes care of the two missing boundary conditions in the θ-

direction. The general solution of the equidimensional equation given by: 

 

 

Thus,  

 

 

 

The use of                               and reduced the above equation to 
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4.10 Heterogeneous Solids (Variable Thermal Conductivity) 

Heterogeneous solids are becoming increasingly important because of the large 

ranges of temperature involved in problems of technology, as in reactor fuel 

elements, space vehicle components, solidification of castings …etc. The equation 

of heat conduction for heterogeneous solids; 

Cartesian coordinates 

 

  
( 

  

  
)   

 

  
( 

  

  
)   

 

  
( 

  

  
)    ̇      

  

  
             

Cylindrical Coordinates 

 

 

 

  
(  

  

  
)  

 

  
 

 

  
( 

  

  
)   

 

  
( 

  

  
)    ̇      

  

  
  

Spherical Coordinates 

 

  

 

  
(     

  
)  

 

       
 

 

  
( 

  

  
)   

 

      

 

  
(     

  

  
)    ̇      

  

  
  

 

If k, Cp,  ̇ are functions of space only, the above three equations become a linear 

differential equation with variable coefficients. If (k & Cp) are dependent on 

temperature but independent of space, however, the above equations become 

nonlinear and difficult to solve. Usually numerical methods have to be employed. 

A number of analytical methods are also available. One of these, Kirchhoff's 

method, is to a large extent general. 

Above equations may be reduced to a linear differential equation by introducing a 

new temperature θ related to the temperature T of the problem by the Kirchhoff 

transformation, 

  
 

  
∫  ( )

 

  
                                                                                      (4-52) 

where TR denotes a convenient reference temperature, and kR = k(TR) . TR and kR are 

introduced merely to give θ the dimensions of temperature and a definite value. It 

follows from Eq. (4-52) that 
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                                                                                                  (4-53) 

   
 

  
                                                                                                 (4-54) 

Inserting Eqs. (4-53) and (4-54) into energy equations, we have 

  

  
      (

 

  
)  ̇                                                                                (4-55) 

where a and  ̇ are expressed as functions of the new variable θ. For many solids, 

however, the temperature dependence of a can be neglected compared to that of k. 

In such cases, if  ̇ is independent of T, Eq. (4-55) becomes identical to Eq. (4-52) 

except for the different but constant coefficient of  ̇. Thus the solutions obtained 

for homogeneous solids may be readily utilized for heterogeneous solids by 

replacing T by θ and     by kR/a, provided that the boundary conditions prescribe 

T or 
  

  
. This remark does not hold if the boundary conditions involve the 

convective term h(To - T∞). The following one-dimensional example illustrates the 

use of the method. 

Example 7: 

A liquid is boiled by a flat electric heater plate 

of thickness 2L. The internal energy  ̇ 

generated electrically may be assumed to be 

uniform. The boiling temperature of the 

liquid, corresponding to a specified pressure, 

is Too (see Fig. 4.6). Find the steady-state 

temperature of the plate for 

(i) k = k(T); (ii) k = kR (l +(βT). 

Solution: 

The formulation of the problem is Figure 4.6: Details for Example 7. 

�̇� 
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( 

  

  
)   ̇                                                                                   (4-56) 

  ( )

  
             and        ( )     

Employing the one-dimensional form of Eq. (4-53),           
  

  
 

 

  

  

  
 

We may transform Eq. (4-56) to 

   

   
 

 ̇

  
                 

  ( )

  
             and        ( )     

where, according to Eq. (4-52),                        
 

  
∫  ( )

  

  
                                                                                

The solution of Eq. (4-56) is                        
 ( )   

 ̇     ⁄
   (

 

 
)
 
              (4-57) 

Introducing Eqs. ( ) and (  ) into Eq. (4-57), we obtain the temperature of the 

plate in terms of T as follows: 

 

  
∫  ( )

 

  
  

 ̇     ⁄
   (

 

 
)
 
 For the special case k = kR (l +(βT), the equation becomes 

  ( )     (
 

 
)   ( )   

  

 ̇     ⁄
   (

 

 
)
 
  

 

 

 

 

 

 

 

 


