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Chapter Five 

Transient Conduction Heat Transfer 

 

5.1 Introduction 

Many heat transfer problems are time dependent. Such unsteady, or transient, 

problems typically arise when the boundary conditions of a system are changed. 

For example, if the surface temperature of a system is altered, the temperature at 

each point in the system will also begin to change. The changes will continue to 

occur until a steady-state temperature distribution is reached. Consider a hot metal 

billet that is removed from a furnace and exposed to a cool airstream. Energy is 

transferred by convection and radiation from its surface to the surroundings. 

Energy transfer by conduction also occurs from the interior of the metal to the 

surface, and the temperature at each point in the billet decreases until a steady-state 

condition is reached. The final properties of the metal will depend significantly on 

the time-temperature history that results from heat transfer. Controlling the heat 

transfer is one key to fabricating new materials with enhanced properties. 

Our objective in this chapter is to develop procedures for determining the time 

dependence of the temperature distribution within a solid during a transient 

process, as well as for determining heat transfer between the solid and its 

surroundings. The nature of the procedure depends on assumptions that may be 

made for the process. If, for example, temperature gradients within the solid may 

be neglected, a comparatively simple approach, termed the lumped capacitance 

method, may be used to determine the variation of temperature with time. 

Transient problems can be classified with respect to their dependence on space (as 

lumped or distributed), and since then formulated them accordingly. Also, these 
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problems may be classified with respect to their dependence on time (as transient 

or periodic). Thus,  

 

 

 

 

 

 

Where, each transient or periodic problem involves a starting, a steady, and an 

ending time interval as shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: The behavior of unsteady transient and unsteady periodic. 
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5.2 The Lumped Capacitance Method 

A simple transient conduction problem is one for which a solid experiences a 

sudden change in its thermal environment. Consider a hot metal forging that is 

initially at a uniform temperature Ti and is quenched by immersing it in a liquid of 

lower temperature T∞ < Ti (see Figure 5.2). If the quenching is said to begin at time 

t = 0, the temperature of the solid will decrease for time t > 0, until it eventually 

reaches T∞. This reduction is due to convection heat transfer at the solid–liquid 

interface. The essence of the lumped capacitance method is the assumption that 

"the temperature of the solid is spatially uniform at any instant during the transient 

process". This assumption implies that temperature gradients within the solid are 

negligible. 

 

 

 

 

 

 

 

 

From Fourier’s law, heat conduction in the absence of a temperature gradient 

implies the existence of infinite thermal conductivity. Such a condition is clearly 

impossible. However, the condition is closely approximated if the resistance to 

conduction within the solid is small compared with the resistance to heat transfer 

between the solid and its surroundings. For now we assume that this is, in fact, the 

case. 

In neglecting temperature gradients within the solid, we can no longer consider the 

problem from within the framework of the heat equation, since the heat equation is 

Figure 5.2: Cooling of a hot metal forging. 
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a differential equation governing the spatial temperature distribution within the 

solid. Instead, the transient temperature response is determined by formulating an 

overall energy balance on the entire solid. This balance must relate the rate of heat 

loss at the surface to the rate of change of the internal energy. 

                                                                                                       (5-1) 

Or,         (    )      
  

  
                                                               (5-2) 

Introducing the temperature difference 

                                                                                                      (5-3) 

and recognizing that (dθ/dt) = (dT/dt) if T∞ is constant, it follows that 

   

   
 
  

  
                                                                                                 (5-4) 

Separating variables and integrating from the initial condition, for which t = 0 and 

T(0) = Ti , we then obtain 

   

   
 ∫

  

 

 

  
   ∫   

 

 
                                                                                        (5-5) 

Where,         , thus, evaluating the integrals, it follows that 

   

   
   

  

 
                                                                                                       (5-6) 

 

  
  

     

      
  

* (
   
   

) +
                                                                                   (5-7) 

Equation (5.6) may be used to determine the time required for the solid to reach 

some temperature T, or, conversely, Equation 5.7 may be used to compute the 

temperature reached by the solid at some time t. 

The foregoing results indicate that the difference between the solid and fluid 

temperatures must decay exponentially to zero as t approaches infinity. This 

behavior is shown in Figure 5.3. From Equation 5.7 it is also evident that the 

quantity (ρVC/hAs) may be interpreted as a thermal time constant expressed as 

   (
 

   
) (   )                                                                                      (5-8) 
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where, Rt is the resistance to convection heat transfer and Ct is the lumped thermal 

capacitance of the solid. Any increase in Rt or Ct will cause a solid to respond more 

slowly to changes in its thermal environment. This behavior is analogous to the 

voltage decay that occurs when a capacitor is discharged through a resistor in an 

electrical RC circuit. 

 

 

 

 

 

 

 

 

 

 

 

To determine the total energy transfer Q occurring up to sometime t, we simply 

write 

   ∫         
 

 
∫     

 

 
                                                                          (5-9) 

Substituting for θ from Equation 5.7 and integrating, we obtain 

  (   )  [   
* (

   
   

) +
]   (   )  [   

[
  

  
]
]                              (5-10) 

The quantity Q is, of course, related to the change in the internal energy of the 

solid. 

                                                                                                        (5-11) 

Figure 5.3: Transient temperature response of lumped capacitance solids for different thermal time 

constants t. 
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For quenching, Q is positive and the solid experiences a decrease in energy. 

Equations 5.6, 5.7, and 5.10 also apply to situations where the solid is heated (θ < 

0), in which case Q is negative and the internal energy of the solid increases. 

 

5.3 Validity of the Lumped Capacitance Method 

From the foregoing results it is easy to see why there is a strong preference for 

using the lumped capacitance method. It is certainly the simplest and most 

convenient method that can be used to solve transient heating and cooling 

problems. Hence it is important to determine under what conditions it may be used 

with reasonable accuracy. 

To develop a suitable criterion considers steady-state conduction through the plane 

wall of area A (Figure 5.4). Although we are assuming steady-state conditions, the 

following criterion is readily extended to transient processes. One surface is 

maintained at a temperature Ts,1 and the other surface is exposed to a fluid of 

temperature T∞ < Ts,1. The temperature of this surface will be some intermediate 

value Ts,2, for which T∞ < Ts,2 < Ts,1. Hence under steady-state conditions the 

surface energy balance reduces to 

 

 

 

 

 

 

 

 

          

 Figure 5.4: Effect of Biot number on steady-state temperature distribution in a plane wall with 

surface convection. 
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(          )     (       )                                                             (5-12) 

where k is the thermal conductivity of the solid. Rearranging, we then obtain 

          

        
  

(   ⁄ )

(   ⁄ )
 

        

        
 

  

 
                                                             (5-13) 

The quantity (hL/k) appearing in Equation 5.13 is a dimensionless parameter. It is 

termed the Biot number, and it plays a fundamental role in conduction problems 

that involve surface convection effects. According to Equation 5.13 and as 

illustrated in Figure 5.4, the Biot number provides a measure of the temperature 

drop in the solid relative to the temperature difference between the solid’s surface 

and the fluid. From Equation 5.13, it is also evident that the Biot number may be 

interpreted as a ratio of thermal resistances. In particular, if Bi << 1, the resistance 

to conduction within the solid is much less than the resistance to convection across 

the fluid boundary layer. Hence, the assumption of a uniform temperature 

distribution within the solid is reasonable if the Biot number is small. 

Although we have discussed the Biot number in the context of steady-state 

conditions, we are reconsidering this parameter because of its significance to 

transient conduction problems. Consider the plane wall of Figure 5.5, which is 

initially at a uniform temperature Ti and experiences convection cooling when it is 

immersed in a fluid of T∞ < Ti. The problem may be treated as one-dimensional in 

x, and we are interested in the temperature variation with position and time, T(x, t). 

This variation is a strong function of the Biot number, and three conditions are 

shown in Figure 5.5. Again, for Bi << 1 the temperature gradients in the solid are 

small and the assumption of a uniform temperature distribution, T(x, t) ≈ T(t) is 

reasonable. Virtually all the temperature difference is between the solid and the 

fluid, and the solid temperature remains nearly uniform as it decreases to T∞. For 

moderate to large values of the Biot number, however, the temperature gradients 

within the solid are significant. Hence T = T(x, t). Note that for Bi >> 1, the 
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temperature difference across the solid is much larger than that between the surface 

and the fluid. 

We conclude this section by emphasizing the importance of the lumped 

capacitance method. Its inherent simplicity renders it the preferred method for 

solving transient heating and cooling problems. Hence, when confronted with such 

a problem, the very first thing that one should do is calculate the Biot number. If 

the following condition is satisfied 

   

 
                                                                                                    (5-14) 

The error associated with using the lumped capacitance method is small. For 

convenience, it is customary to define the characteristic length of Equation 5.14 as 

the ratio of the solid’s 

volume to surface area Lc = V/As. Such a definition facilitates calculation of Lc for 

solids of complicated shape and reduces to the half-thickness L for a plane wall of 

thickness 2L (Figure 5.5), to ro/2 for a long cylinder, and to ro/3 for a sphere. 

However, if one wishes to implement the criterion in a conservative fashion, Lc 

should be associated with the length scale corresponding to the maximum spatial 

temperature difference. Accordingly, for a symmetrically heated (or cooled) plane 

wall of thickness 2L, Lc would remain equal to the half-thickness L. However, for a 

long cylinder or sphere, Lc would equal the actual radius ro, rather than ro/2 or ro/3. 

 

 

 

 

 

       

 
Figure 5.5: Transient temperature distributions for different Biot numbers in a plane wall 

symmetrically cooled by convection. 
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Finally, we note that, with Lc = V/As, the exponent of Equation 5.7 may be 

expressed as 

     

   
 

  

    
 

   

 

 

  
 

 

  
  

   

 

  

  
                                                       (5-15) 

 

Example: A steel ball bearing (diameter = 25 mm, ρSteel = 7833 kg/m
3
 and CSteel = 

0.465 kJ/kg.°C) is heated in a furnace to a temperature of 750 °C. It is then 

removed to be quenched in water at 25 °C. If the time required for transferring the 

ball bearing between the furnace and the water is 8 sec through the atmospheric air 

environment (air temperature 20 °C). Determine by using lumped system analysis, 

the time it takes the ball bearing to cool to 200 °C. Taking, convection heat transfer 

coefficients in the air and water are 30 W/m
2
.°C and 3000 W/m

2
.°C, respectively. 

Solution:  

 ( )   
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5.4 Distributed Systems Having Stepwise Disturbances 

5.4.1 Cartesian Geometry:  

For distributed systems having stepwise disturbances, no mathematic beyond that 

introduced in Chapter 4 is needed. Difficulties arising from nonhomogeneous 

boundary conditions or differential equations may be eliminated, as with steady 

problems, by introducing a change in temperature level or by superposition. Some 

remarks no non-homogeneities may, however, be helpful. In this connection, let us 

consider the following four problems. 

Therefore, with no internal generation and the assumption of constant thermal 

conductivity, the energy equation can then be reduced to, 

   

   
  

 

 
 
  

  
                                                                                                     (5-16) 

To solve Equation 5.16 for the temperature distribution T(x, t), it is necessary to 

specify an initial condition and two boundary conditions. For the typical transient 

conduction problem of Figure 5.5, the initial condition is 

 (   )      

and the boundary conditions are 

  

  
|
   

    

and, 

  
  

  
|
   

  [ (   )    ]   

( (   )    ) presumes a uniform temperature distribution at time t = 0; (
  

  
|
   

 

 ) reflects the symmetry requirement for the midplane of the wall; and 

(  
  

  
|
   

  [ (   )    ]) describes the surface condition experienced for time t 

> 0. From Equations 5.16 through initial and boundary conditions above, it is 
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evident that, in addition to depending on x and t, temperatures in the wall also 

depend on a number of physical parameters. In particular 

T = T(x, t, Ti , T∞, L, k, α, h) 

 

Example 1: A plate of thickness 2L having the 

uniform initial temperature To is plunged suddenly into 

a bath at the constant temperature T∞ as shown in 

Figure 5.6. The heat transfer coefficient is large. Find 

the unsteady temperature of the plate.  

Solution: 

In terms of (θ = T - T∞) and the x-axis of Figure 5.6, the 

formulation of the problem is, 

 
   

   
 

 

 
 
  

  
  

 (   )              

  (   )

  
|
   

     

 (   )     

Assume the existence of a product solution of the form (Eq. 5.16) 

 (   )   ( )  ( )                                                                                              

Note that only the x-axis yields a characteristic-value problem; then, with the 

proper choice of separation constant, the product solution ( (   )   ( )  ( )) gives, 

   

   
                     →       

  ( )

  
|
   

    and     ( )     

                    

                         

From B.C. [
  ( )

  
|
   

  ]  →           (   )         (   ) →      

Figure 5.6 
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From B.C. [ ( )   ] →            →          → 

     (    )  
 

 
                                     (Characteristic values) 

   (    )  
 

  
  

             

  

  
        →  

  

 
          →    ( )      

         →     ( )          
   

Therefore, the product solution becomes,         (   )   ∑                 
   

     

Let            →    (   )   ∑               
   

     

Finally, introducing the initial condition [ (   )    ] into transient temperature 

distribution ( (   )) gives 

    ∑               
 ( ) 

        →         ∑          
     

The above equation is the Fourier cosine series expansion of    over the interval 

(0, L). The coefficient (  ) may be evaluated in the usual manner. The result is 

    (  )    

   
  

Thus, the unsteady temperature of the plate to be as, 

 (   )

  
  

 (   )   

     
   ∑

(  ) 

   
     

          
     

 

Example 2: The constant heat flux (q") is applied to 

both surfaces of a flat plate of thickness 2L as shown in 

Figure 5.7.The initial temperature of the plate is T∞. 

Find the unsteady temperature of the plate.  

Solution:  

In terms of (θ = T - T∞) and the x-axis of Figure 5.7, the 

formulation of the problem is, 
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 (   )      

  (   )

  
|
   

     

 
  (   )

  
     

Let us try to solve the problem by the assumption of below equation as, 

 (   )   (   )    ( )                                                                                              

The separation constant that is selected to make the x-axis of  (   ) a 

characteristic-value problem forces  (   ) to be an exponentially decaying 

function in time, hence in the limit  (   )    and  (   )    ( ) as    . This 

result violates the physics of the problem, the temperature of the plate should 

increase without limit as    . To satisfy this condition, we modify the above 

equation by the addition of the term  ( ) such that  ( )    as    . Thus the 

proper assumption is, 

 (   )   (   )    ( )   ( )  

Now in terms of above equation, the formulation of the problem becomes 

   

   
 

 

 
 
  

  
 ,         (   )      ( )   ( ) ,        

  (   )

  
|
   

  ,        
  (   )

  
|
   

   

   

   
 

 

 
 
  

  
 ,                           

  ( )

  
|
   

  ,                       
  ( )

  
     

Since  ( ) and  ( ) can vary independently, (
   

   
 

 

 
 
  

  
) holds when it is equal to 

a constant, say C. Then the general solution of (
   

   
 

 

 
 
  

  
) is obtained in the form 

 ( )           

 ( )   
 

 
            

Here C2 and C may readily be evaluated by introducing ( ( )) equation into 

(  
  ( )

  
   ) equation. The result is C2= 0,       ⁄ . Hence,  ( )  

Figure 5.7 
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       ⁄     and  ( )          ⁄     , where C1 and C3 are the remaining 

constants. However, noting that the solution of  (   ) depends on  ( ) and  ( ), 

may arbitrarily set these constants equal to zero. Thus,  

 ( )  
   

   
                          and                            ( )  

    

   
 

On the other hand, the product solution  (   )   ( ) ( ) applied to (
   

   
 

 

 
 
  

  
) 

results in  

   

   
       ,                      

  ( )

  
   ,                            

  ( )

  
   

The solution of above equation is, 

  ( )                                                      Characteristic functions 

   
  

 
              where, n= 0, 1, 2, 3, …..           Characteristic values 

  

  
         

The solution of above equation is, 

          
    

Thus the product solution of  (   ) yields 

 (   )     ∑        
   

           

Where, ao= AoCo and an= AnCn 

Finally, the initial value of above equation, which is equal to   ( ), gives  

 
    

   
    ∑   

 
           

The coefficients ao and an are, 

    
   

  
                 and               (  )     

 (   ) 
  

Therefore, the unsteady temperature disturibution of the plate is, 

 (   )

    ⁄
  

  

  
  

 

 
(
 

 
)
 
 

 

 
  ∑

(  ) 

(   ) 
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5.4.2 Cylindrical Geometry  

Example 3: An infinitely long rod of radius R having 

the uniform initial temperature To is plunged suddenly 

into a bath at temperature T∞ as shown in Figure 5.8. 

The heat transfer coefficient is large. Find the 

expression of unsteady temperature disturibution of the 

rod. 

Solution:  

In terms of (θ = T - T∞) and the r-axis of Figure 5.8, the 

formulation of the problem is, 

 

 
 
 

  
(  

  

  
)  

 

 
 
  

  
  

 (   )                

 (   )      

  (   )

  
|
   

    

The product solution  (   )    ( ) ( ) introduced into formulation equation results 

in 

 

  
(  

  

  
)          ;             ( )     ,        

  ( )

  
|
   

    

The solution of above equation is, 

  ( )
     (   )                                            Characteristic functions 

And the zeros of (  (   )   ) are the characteristic values. The solution of 

equation (
  

  
       ) is, 

  ( )
        

    

Hence the product solution becomes 

 (   )  ∑        
   

     (   )  

Figure 5.8 
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Where ,         

The initial value of above equation is, 

   ∑   
 
     (   )  

The above equation is the Fourier-Bessel series expansion of   . Here the 

coefficient    may be calculated in the usual manner. The result is, 

   
   

(   )   (   )
  

Thus, introducing the    equation into  (   ) equation, the unsteady temperature 

disturibution of the rod is, 

 (   )   
  (   )    

      
  ∑

     
     (   )

(   )   (   )
 
     

 

5.4.3 Spherical Geometry  

Example 4: A solid sphere of radius R having the uniform initial temperature To is 

plunged suddenly into a bath at temperature T∞ as shown in Figure 5.9. The heat 

transfer coefficient is large. Find the expression of unsteady temperature 

disturibution of the sphere. 

 

 

 

 

 

 

 

 

 

Solution:  

Figure 5.9 
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The formulation of the problem in terms of (θ = T - T∞) is, 

 

  
 
 

  
(   

  

  
)  

 

 
 
  

  
  

 (   )                

 (   )      

  (   )

  
|
   

      or     (   )           

The product solution  (   )    ( ) ( ) introduced into formulation equation yields 

 

  
(   

  

  
)           ;             ( )     ,        

  ( )

  
|
   

    

Particular solutions corresponding to the differential equation of above equation 

are, 

  
 ⁄
(  )    ⁄⁄                      and                              

 ⁄
(  )    ⁄⁄  

Furthermore, noting from Bessel series properties that 

  
 ⁄
(  )           ⁄⁄                     and                        

 ⁄
(  )           ⁄⁄  

The solutions of above equations may be rearranged to give, 

                                        and                                

This result explains the use of the well-known transformation 

 (   )   (   )    

   

   
 

 

 
 
  

  
  

 (   )        (      )    

 (   )      

 (   )      

Hence, the problem is reduced to a problem of Cartesian geometry. 

The product solution  (   )   ( ) ( ) applied to (
   

   
 

 

 
 
  

  
) yields  
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       ,                     ( )                     and                ( )    

The solution of above equation is, 

  ( )                                                      Characteristic functions 

   
  

 
              where, n= 0, 1, 2, 3, …..           Characteristic values 

The solution of equation (
  

  
       ) is, 

  ( )
        

    

Hence the product solution becomes 

 (   )  ∑        
   

       (   )  

Where ,         

    ∑   
 
       (   )  

The coefficient    is 

   (  )      

  
  

Finally, the unsteady temperature disturibution of the sphere is found to be, 

 (   )   
  (   )    

      
  ∑ (  )         
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5.5 The Numerical Method of Transient Heat Conduction 

Analytical solutions to transient problems are restricted to simple geometries and 

boundary conditions, such as the one-dimensional cases considered in the 

preceding sections. For some simple two- and three-dimensional geometries, 

analytical solutions are still possible. However, in many cases the geometry and/or 

boundary conditions preclude the use of analytical techniques, and recourse must 

be made to finite-difference (or finite-element) methods. 

5.1.1 Discretization of the Heat Equation:  

 The Explicit Method 

Once again consider the two-dimensional system of Figure 5.10. Under transient 

conditions with constant properties and no internal generation, the appropriate 

form of the heat equation, Equation 1-18-b, is 

   

   
  

   

   
  

 

 
 
  

  
                                                                                              (5-17) 

 

 

 

 

 

 

 

 

 

To obtain the finite-difference form of this equation, we may use the central-

difference approximations to the spatial derivatives prescribed as, 

 

Figure 5.10: Two-dimensional conduction, Nodal network. 
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|
      ⁄

  
           

  
                                     

  

  
|
      ⁄

  
           

  
 

   

   
|
   

  

  

  
|
      ⁄

    
  

  
|
      ⁄

  
  

Therefore, 

   

   
|
   

  
                   

(  ) 
                                                                      (5-18) 

Proceeding in a similar fashion, it is readily shown that 

   

   
|
   

  
                   

(  ) 
                                                                      (5-19) 

Once again the m and n subscripts may be used to designate the x- and y-locations 

of discrete nodal points. However, in addition to being discretized in space, the 

problem must be discretized in time. The integer p is introduced for this purpose, 

where,                                

and the finite-difference approximation to the time derivative in Equation 5.17 is 

expressed as 

  

  
|
   

  
    

      
   

  
                                                                                 (5-20) 

The superscript p is used to denote the time dependence of T, and the time 

derivative is expressed in terms of the difference in temperatures associated with 

the new (p+1) and previous (or old) (p) times. Hence calculations must be 

performed at successive times separated by the interval △t, and just as a finite-

difference solution restricts temperature determination to discrete points in space, it 

also restricts it to discrete points in time. 

If Equations 5.18, 5.19 and 5.20 is substituted into Equation 5.17, the nature of the 

finite-difference solution will depend on the specific time at which temperatures 

are evaluated in the finite-difference approximations to the spatial derivatives. In 

the explicit method of solution, these temperatures are evaluated at the previous (p) 
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time. Hence Equation 5.20 is considered to be a forward-difference approximation 

to the time derivative. Evaluating terms on the right-hand side of Equations 5.17 at 

p and substituting into Equation 5.17, the explicit form of the finite-difference 

equation for the interior node (m, n) is 

  
        

         
   

(  ) 
   

  
        

         
   

(  ) 
  

 

 
 
    

      
   

  
        (5-21) 

Solving for the nodal temperature at the new (p+1) time and assuming that △x = 

△y, it follows that 

    
       (  

        
        

        
     )  (     )  

    

(5-22) 

where Fo is a finite-difference form of the Fourier number, which is the ratio 

of diffusive or conductive transport rate to the quantity storage rate. 

    
    

(  ) 
                                                                                                     (5-23) 

This approach can easily be extended to one- or three-dimensional systems. If the 

system is one-dimensional in x, the explicit form of the finite-difference equation 

for an interior node m reduces to 

    
     (  

      
   )  (     )  

                                       (5-24) 

Equations 5.22 and 5.24 are explicit because unknown nodal temperatures for the 

new time are determined exclusively by known nodal temperatures at the previous 

time. Hence calculation of the unknown temperatures is straightforward. Since the 

temperature of each interior node is known at t= 0 (p= 0) from prescribed initial 

conditions, the calculations begin at t= △t (p= 1), where Equation 5.22 or 5.24 is 

applied to each interior node to determine its temperature. With 

With temperatures known for t= △t, the appropriate finite-difference equation is 

then applied at each node to determine its temperature at t= 2△t (p= 2). In this way, 

https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Conduction_(heat)
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the transient temperature distribution is obtained by marching out in time, using 

intervals of △t.  

The accuracy of the finite-difference solution may be improved by decreasing the 

values of △x and △t. Of course, the number of interior nodal points that must be 

considered increases with decreasing △x, and the number of time intervals required 

to carry the solution to a prescribed final time increases with decreasing △t. Hence 

the computation time increases with decreasing △x and △t. The choice of △x is 

typically based on a compromise between accuracy and computational 

requirements. Once this selection has been made, however, the value of △t may not 

be chosen independently. It is, instead, determined by stability requirements. 

An undesirable feature of the explicit method is that it is not unconditionally 

stable. In a transient problem, the solution for the nodal temperatures should 

continuously approach final (steady-state) values with increasing time. However, 

with the explicit method, this solution may be characterized by numerically 

induced oscillations, which are physically impossible. The oscillations may 

become unstable, causing the solution to diverge from the actual steady-state 

conditions. To prevent such erroneous results, the prescribed value of △t must be 

maintained below a certain limit, which depends on △x and other parameters of the 

system. This dependence is termed a stability criterion, which may be obtained 

mathematically or demonstrated from a thermodynamic argument. For the 

problems of interest in this text, the criterion is determined by requiring that the 

coefficient associated with the node of interest at the previous time is greater than 

or equal to zero. 

In general, this is done by collecting all terms involving   
    to obtain the form 

of the coefficient. This result is then used to obtain a limiting relation involving 

Fo, from which the maximum allowable value of △t may be determined. For 
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example, with Equations 5.22 and 5.24 already expressed in the desired form, it 

follows that the stability criterion for a one-dimensional interior node is (1 - 2Fo) ≥ 

0, or     
 

 
  and for a two-dimensional node, it is (1 - 4Fo) ≥ 0, or    

 

 
 . 

For prescribed values of △x and α, these criteria may be used to determine upper 

limits to the value of △t. 

Equations 5.22 and 5.24 may also be derived by applying the energy balance 

method to a control volume about the interior node. Accounting for changes in 

thermal energy storage, a general form of the energy balance equation may be 

expressed as  

                                                                                                     (5-25)  

In the interest of adopting a consistent methodology, it is again assumed that all 

heat flow is into the node. 

 

Example 5: Consider the surface node of the one-dimensional system shown in 

Figure 5.11. To more accurately determine thermal conditions near the surface, this 

node has been assigned a thickness that is one-half that of the interior nodes. 

Assuming convection transfer from an adjoining fluid and no generation, it follows 

from Equation 5.25 that 

 

  

 

 

 

 

 

 
Figure 5.11: Surface node with convection and one-dimensional transient conduction. 
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  (     
 
)  

  

  
(  

 
   

 
)     

  

 

(  
   

   
 
)

  
                                      (5-26) 

or, solving for the surface temperature at t + △t, 

  
   

 
    

    
(     

 
)  

    

   (  
 

   
 
)    

 
                                           (5-27) 

Recognizing that (2h△t/ρC△x) = 2(h△x/k)(α△t/△x
2
) = 2BiFo and grouping terms 

involving   
 
, it follows that 

  
   

    (  
 
     )  (           )  

 
                                      (5-28) 

The finite-difference form of the Biot number is 

   
   

 
  

Recalling the procedure for determining the stability criterion, we require that the 

coefficient for be greater than or equal to zero. Hence 

                                                                                                  (5-29) 

Or,    (    )  
 

 
  

Since the complete finite-difference solution requires the use of Equation 5.24 for 

the interior nodes, as well as Equation 5.28 for the surface node, Equation 5.29 

must be contrasted with (    
 

 
) to determine which requirement is more 

stringent. Since Bi ≥ 0, it is apparent that the limiting value of Fo for Equation 5.29 

is less than that for Equation 5.82. To ensure stability for all nodes, Equation 5.29 

should therefore be used to select the maximum allowable value of Fo, and hence 

△t, to be used in the calculations. 
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Example 6: A fuel element of a nuclear reactor is in the shape of a plane wall of 

thickness 2L= 20 mm as shown in Figure 5.12 and is convectively cooled at both 

surfaces, with h= 1100 W/m
2
K and T∞= 250 °C. At normal operating power, heat 

is generated uniformly within the element at a volumetric rate of q1= 10
7
 W/m

3
. A 

departure from the steady-state conditions associated with normal operation will 

occur if there is a change in the generation rate. Consider a sudden change to q2= 

2×10
7
 W/m

3
, and use the explicit finite-difference method to determine the fuel 

element temperature distribution after 1.5 s. The fuel element thermal properties 

are k= 30 W/mK and α= 5×10
-6

 m
2
/s.  

 

Solution: 

 

 

 

 

 

 

 

 

 

 

 

A numerical solution will be obtained using a space increment of △x= 2 mm. Since 

there is symmetry about the midplane, the nodal network yields six unknown nodal 

temperatures. Using the energy balance method, Equation 5.25, an explicit finite-

difference equation may be derived for any interior node m. 

Figure 5.12: A rectangular fuel element with surface cooling. 
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Solving for   
   

 and rearranging, 

 

 

This equation may be used for node 0, with     
 

      
 

, as well as for nodes 1, 

2, 3, and 4. Applying energy conservation to a control volume about node 5, 

 

 

 

 

Since the most restrictive stability criterion is associated with Equation 2, we select 

Fo from the requirement that 

  (    )  
 

 
  

 

 

 

 

To be well within the stability limit, we select △t= 0.3 s, which corresponds to 

 

 

Substituting numerical values, including q2= 2×10
7
 W/m

3
, the nodal equations 

become 
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Computed temperatures for the nodal points of interest are shown in the first row 

of the accompanying table. Using the finite-difference equations, the nodal 

temperatures may be sequentially calculated with a time increment of 0.3 s until 

the desired final time is reached. The results are illustrated in rows 2 through 6 of 

the table and may be contrasted with the new steady-state condition (row 7) 
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 The Implicit Method 

In the explicit finite-difference scheme, the temperature of any node at t △t may 

be calculated from knowledge of temperatures at the same and neighboring nodes 

for the preceding time t. Hence determination of a nodal temperature at some time 

is independent of temperatures at other nodes for the same time. Although the 

method offers computational convenience, it suffers from limitations on the 

selection of △t. For a given space increment, the time interval must be compatible 

with stability requirements. Frequently, this dictates the use of extremely small 

values of △t, and a very large number of time intervals may be necessary to obtain 

a solution. 

A reduction in the amount of computation time may often be realized by 

employing an implicit, rather than explicit, finite-difference scheme. The implicit 

form of a finite-difference equation may be derived by using Equation 5.20 to 

approximate the time derivative, while evaluating all other temperatures at the new 

(p+1) time, instead of the previous (p) time. Equation 5.20 is then considered to 

provide a backward-difference approximation to the time derivative. In contrast to 
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Equation 5.21, the implicit form of the finite-difference equation for the interior 

node of a two-dimensional system is then 

    
          

           
   

(  ) 
   

    
          

           
   

(  ) 
  

 

 
 
    

      
   

  
        

(5-30) 

Rearranging and assuming △x = △y, it follows that 

  
    (     )    

   
   (      

   
        

   
       

   
       

   
)          (5-31) 

From Equation 5.31 it is evident that the new temperature of the (m, n) node 

depends on the new temperatures of its adjoining nodes, which are, in general, 

unknown. Hence, to determine the unknown nodal temperatures at t+△t, the 

corresponding nodal equations must be solved simultaneously. Such a solution may 

be affected by using Gauss–Seidel iteration or matrix inversion. The marching 

solution would then involve simultaneously solving the nodal equations at each 

time t= △t, t= 2△t, ….., until the desired final time was reached. 

Relative to the explicit method, the implicit formulation has the important 

advantage of being unconditionally stable. That is, the solution remains stable for 

all space and time intervals, in which case there are no restrictions on △x and △t. 

Since larger values of △t may therefore be used with an implicit method, 

computation times may often be reduced, with little loss of accuracy. Nevertheless, 

to maximize accuracy, △t should be sufficiently small to ensure that the results are 

independent of further reductions in its value. 

The implicit form of a finite-difference equation may also be derived from the 

energy balance method. For the surface node of Figure 5.11, it is readily shown 

that 

  
 
         (           )  

   
      

   
                                   (5-32) 

For any interior node of Figure 5.11, it may also be shown that 

(     )  
   

   (    
   

      
   

)    
 

                                                         (5-33) 
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Forms of the implicit finite-difference equation for other common geometries are 

presented in Table below. Each equation may be derived by applying the energy 

balance method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Transient Conduction Heat Transfer                                                Chapter: Five 

32 

 

Example 7: A thick slab of copper initially at a uniform temperature of 20°C is 

suddenly exposed to radiation at one surface such that the net heat flux is 

maintained at a constant value of 3×10
5
 W/m

2
 (see Figure 5.13). Using the explicit 

and implicit finite-difference techniques with a space increment of △x = 75 mm, 

determine the temperature at the irradiated surface and at an interior point that is 

150 mm from the surface after 2 min have elapsed. Compare the results with those 

obtained from an appropriate analytical solution. 

 

 

 

 

 

 

Solution: 

Properties: Copper (300 K): k= 401 W/mK, α= 117×10
-6

 m
2
/s. 

An explicit form of the finite-difference equation for the surface node may be 

obtained by applying an energy balance to a control volume about the node. 

 

 

 

 

The finite-difference equation for any interior node is given by Equation 5.29. Both 

the surface and interior nodes are governed by the stability criterion 

Figure 5.13: A Thick slab of copper, initially at a uniform temperature. 
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Noting that the finite-difference equations are simplified by choosing the maximum 

allowable value of Fo, we select Fo= 0.5. Hence 

 

 

 

 

the finite-difference equations become 

 

 

for the surface and interior nodes, respectively. Performing the calculations, the 

results are tabulated as follows: 

 

 

 

 

 

 

After 2 min, the surface temperature and the desired interior temperature are To 

125.2°C and T2= 48.1°C. 

To determine the extent to which the accuracy may be improved by reducing Fo, 

let us redo the calculations for Fo = 1/4 (△t = 12 s). The finite-difference equations 

are then of the form 
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and the results of the calculations are tabulated as follows: 

 

 

 

 

 

 

 

 

 

 

After 2 min, the desired temperatures are To= 118.8°C and T2= 44.4°C. Comparing 

the above results with those obtained for , it is clear that by reducing Fo we have 

diminished the problem of recurring temperatures. We have also predicted greater 

thermal penetration (to node 6 instead of node 3). An assessment of the 

improvement in accuracy will be given later, by comparison with an exact solution. 

In the absence of an exact solution, the value of Fo could be successively reduced 

until the results became essentially independent of Fo.  

 

Performing an energy balance on a control volume about the surface node, the 

implicit form of the finite-difference equation is 
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In contrast to the explicit method, the implicit method requires the simultaneous 

solution of the nodal equations for all nodes at time p+1. Hence, the number of 

nodes under consideration must be limited to some finite number, and a boundary 

condition must be applied at the last node. The number of nodes may be limited to 

those that are affected significantly by the change in boundary condition for the 

time of interest. From the results of the explicit method, it is evident that we are 

safe in choosing nine nodes corresponding to To, T1, . . . , T8. We are thereby 

assuming that, at t= 120 s, there has been no change in T9, and the boundary 

condition is implemented numerically as T9= 20°C. 

We now have a set of nine equations that must be solved simultaneously for each 

time increment. We can express the equations in the form [A][T]= [C], 
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Note that numerical values for the components of [C] are determined from 

previous values of the nodal temperatures. Note also how the finite-difference 

equation for node 8 appears in matrices [A] and [C], with T
p+1

9 = 20°C, as indicated 

previously. A table of nodal temperatures may be compiled, beginning with the 

first row (p= 0) corresponding to the prescribed initial condition. To obtain nodal 

temperatures for subsequent times, the matrix equation must be solved. At each 

time step p+1, [C] is updated using the previous time step ( p) values. The process 
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is carried out five times to determine the nodal temperatures at 120 s. The desired 

temperatures are To= 114.7°C and T2= 44.2°C. 
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