AN ALYSIS AND DESIGN OF T- BEAM

When floor slabs and their supporting beams are cast monolithically, they deflect along with the beams under the action of external loads. Therefore, slabs in the vicinity of the beams act as flanges for the beam. Interior beams have a flange on both sides, which are called T-beams. Edge beams have a flange on one side only, and referred to as L-beams as shown in Figure 8. Isolated T-beams, which are produced as precast concrete elements, are used in concrete construction.

T beam

L or inverted L beam

Effective width of the flange can be calculated as per ACI 318 section 8.10 .2 which is given in the following table:

T-Beam	L-Beam
1. $\quad \mathrm{b} \leq \frac{\text { Span }}{4}$	1. $\mathrm{b} \leq \mathrm{b}_{\mathrm{w}}+\frac{\text { Span }}{12}$
2. $\mathrm{b} \leq \mathrm{b}_{\mathrm{w}}+16 \mathrm{~h}_{\mathrm{f}}$	2. $\mathrm{b} \leq \mathrm{b}_{\mathrm{w}}+6 \mathrm{~h}_{\mathrm{f}}$
3. $\mathrm{b} \leq$ average clear distance to	3. $\mathrm{b} \leq \mathrm{b}_{\mathrm{w}}+\frac{\mathrm{C} / \mathrm{C} \text { beam distance }}{2}$
adjacent webs +bw	
The smallest of three values control	The smallest of three values control

Isolated non pre-stressed T-beams in which the flange is used to provide additional compression area shall have a flange thickness greater than or equal to 0.5 bw and an effective flange width less than or equal to 4bw.

$$
h_{f}>\frac{1}{2} * b w \text { and } b f<4 * b w
$$

Analysis of T or L Beams

The calculation of the design strengths of T beams depend on the neutral axis position, a- If it falls in the flange then is considered as rectangular sections, b- While it is T section if the neutral axis is at the web.

(a)

(b)

Analysis of T-beam
1- Find the depth of compressive ared

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
$$

2- If $a \leqslant h_{f} \xrightarrow{\text { then }}$ the analysis will be as rectangular beam with (width $=b$) and (depth $=d$).

$$
\text { उ-If } a>h_{f} \xrightarrow{\text { then }} A_{s f}=\frac{0.85 f_{c}^{\prime}\left(b-b_{w}\right) h_{f}}{f_{y}}
$$

Af: Area of steel required to equilified the compressive stress of flange
Find $\rho_{a}, \rho_{a}=\frac{A_{s}}{b_{a} d}$
Find $\rho_{w_{b}}, \rho_{w_{b}}=0.85 \beta, \frac{f_{c}^{\prime}}{f_{y}} \frac{600}{600+f_{y}}+\rho_{f}$

$$
\rho_{w_{b}}=\rho_{b}+\rho_{f}
$$

4. If $\rho_{a} \leqslant \rho_{\omega b} \Longrightarrow a=\frac{A_{s w} f_{y}}{0.85 f_{c}^{\prime} b_{w}}$ and find M_{n} from one of the two eqs

$$
M_{n}=M_{n_{1}}+M_{n_{2}}=A_{s f} f_{y}\left(d-\frac{h_{f}}{2}\right)+A_{s w} f_{y}\left(d-\frac{a}{2}\right)
$$

or

$$
M_{n}=M_{n_{1}}+M_{n 2}=0.85 f_{c}^{\prime}\left[(b-b w) h_{f} *\left(d-\frac{h f}{2}\right)+a \cdot b_{w} \cdot\left(d-\frac{d}{2}\right)\right]
$$

5- If $\rho_{w}>\rho_{w b}$ then we must calculate (c) by this equation

$$
\begin{aligned}
& \begin{array}{l}
A_{s} \cdot 600 \cdot\left(\frac{d-c}{c}\right)=0.85 f_{c}^{\prime}\left(b-b_{w}\right) h_{f} \\
\\
\\
\quad+0.85 \beta_{1} f_{c}^{\prime} c b_{w}
\end{array} \\
& a=\beta_{1} / c
\end{aligned}
$$

then find M_{n} i-

$$
M_{n}=0.85 f_{c}^{\prime}\left(b-b_{w}\right) h_{f} \cdot\left(d-\frac{h_{f}}{2}\right)+0.85 f_{c}^{\prime} a b_{w}\left(d-\frac{a}{2}\right)
$$

6 -
If $\varepsilon_{t}=0.005 \xrightarrow{\text { then }} \varnothing=0.9$

$$
\rho_{\omega t}=0.85 \beta_{1} \frac{f_{c}^{\prime}}{f_{y}} \frac{\zeta_{u}}{\varepsilon_{u}+0.005}+\rho_{f}=\rho_{t}+f_{f}
$$

Sot: Reinforcement ratio Caused s train $=(0.005)$
for T-beam
$\rho_{t}:$ Reinforcement ratio Cause S train $=(0.005)$ for rectangular portion

DAMS \& WATER RESOURCES ENGINEERING
Ex.:- An 80 mm thick continons slab is supported by rectan--guar beams as shown in the Fig. The span of the beam i. $5 \mathrm{~m}, f_{c}^{\prime}=20.7 \mathrm{MPa}, f_{y}=345 \mathrm{MPa}$. Find the design Strength of the T-beam

Solution:-

$$
\begin{aligned}
& \cdot b=\frac{L}{4}=\frac{5000}{4}=1250 \\
& \cdot b=16 \mathrm{hf}+b_{\mathrm{w}} \\
& b=80_{\mathrm{n}} 16+360=1640 \mathrm{~mm} \\
& \cdot b=360+1800 \\
&=2160 \mathrm{~mm}
\end{aligned}
$$

$$
\text { Use } b=1250 \mathrm{~mm}
$$

$-a=\frac{A_{s} f_{y}}{0.85 f^{\prime} b}$ (The smallest value)

$$
-a=\frac{A_{s} f_{y}}{0.85 * 20.7 * 1250}=\frac{6432 * 345}{0.85 \times 20.7 \times 1250} \Longrightarrow a=100.9 \mathrm{~mm}>80
$$

\therefore The beam is behave as T-beam.

$$
A_{s f}=\frac{0.85 f_{c}^{\prime}\left(b-b_{w}\right) h f}{f_{y}}=\frac{0.85 * 20.7(1250-360) \times 80}{345}=3631 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
& \rho_{f}=\frac{A_{s f}}{b_{w} d}=\frac{3631}{360 \times 600}=0.0168 \\
& \rho_{b}=(0.85)^{2} \frac{f_{c}^{\prime}}{f_{y}} \frac{600}{600+f_{y}}=(0.85)^{2} * \frac{20.7}{345} * \frac{600}{600+345}=0.0280 \\
& \rho_{w}=\rho_{b}+\rho_{f}=0.0289+0.0168=0.0457 \\
& \rho_{w}=\frac{A_{s}}{b_{w} d}=\frac{6432}{360 * 600}=0.0298<\rho_{a b}=0.0457 \\
& \therefore \text { The beam is under reinforced } \\
& A_{s w}=A_{s}-A_{s f}=6432-3631=2801 \mathrm{~mm}^{2} \\
& a=\frac{\left(A_{s}-A_{s f}\right) f_{y}}{0.85 \times f_{c}^{\prime} \times b w}=\frac{2801 \times 345}{0.85 \times 20.7 \times 360}=152.56 \mathrm{~mm} \\
& M_{u}=\phi M_{n} \\
& \mu_{t}=\rho_{t}+\rho_{f}=0.85 \beta_{1} \frac{f_{c}^{\prime}}{f_{y}} \frac{f_{u}}{\epsilon_{u}+0.005}+\rho_{f}=(0.85)^{2} * \frac{20.7}{345} * \frac{0.003}{0.003+0.005} \\
& +0.0168 \\
& \begin{array}{l}
\because \rho_{t}>\rho \quad \phi=0 \cdot \eta \\
M_{u}=\phi\left[A_{s f} f_{y}\left(d-\frac{h_{f}}{2}\right)+A_{s w} f_{y}\left(d-\frac{a}{2}\right)\right]
\end{array} \\
& M_{u}=0.9\left[3631 \times 345\left(600-\frac{80}{2}\right)+2801 \times 345\left(600-\frac{152.56}{2}\right)\right] \\
& M_{u}=1086.8 * 10^{6} \mathrm{~N} \cdot \mathrm{~mm}=1086.8 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

H.W: Determine the design strength of the (T beam) shown in Figure below, with $\mathrm{f}^{\prime} \mathrm{c}^{\prime}=25$ MPa and $\mathrm{fy}=420 \mathrm{MPa}$. The beam has a $(10 \mathrm{~m})$ span and is cast integrally with a floor slab that is $(100 \mathrm{~mm})$ thick. The clear distance between webs is $(1250 \mathrm{~mm})$.

