FLEXURAL ANALYSIS OF BEAM BY WORKING STRESS METHOD

Behaviour of Reinforced Concrete Beam under Loading:

Working Stress Analysis for Concrete Beams Consider a relatively long simply supported beam shown below. Assume the load (Wo) to be increasing progressively until the beam fails.

The beam will go into the following three stages:

- 1- Uncrack Concrete Stage.
- 2- Crack Concrete Stage (Elastic).
- 3- Ultimate Stress Stage Beam Failure.

At section 1: Uncrack stage:

- 1- Actual moment, (M) < Cracking moment (Mcr).
- 2- No cracking occur.
- 3- The gross section resists bending.
- 4- The tensile stress of concrete is below rupture.

fc < 0.5 fc' Concrete is Elastic

fs < fy Steel is Elastic

fct < fr Un-cracked

$$n = \frac{Es}{Ec} = \frac{200000}{4700 \sqrt{fc'}}$$

Where:

fc: Actual compressive Strength for Concrete.

fc': Maximum compressive Strength for Concrete.

fs: Actual tensile strength for steel.

fy: Yield strength for steel.

fr: Modulus of rupture.

n: Modulus ratio.

At Section 2: Crack concrete stage:

- 1- Actual moment, (M) > Cracking moment (Mcr).
- 2- Elastic stress stage.
- 3- Cracks developed at the tension fiber of the beam and spreads quickly to the neutral axis.
- 4- The tensile stress of concrete is higher than the rupture strength.
- 5- Ultimate stress stage can occur at failure.

fc < 0.5 fc' Concrete is Elastic

fs < fy Steel is Elastic

fct > fr Cracked

$$n = \frac{Es}{Ec} = \frac{200000}{4700 \sqrt{fc'}}$$

Ex: Find Maximum load (P) can be applied at the center of the beam shown for information:

b= $250~\mathrm{mm}$, h= $500~\mathrm{mm}$, Es= $200000~\mathrm{n/mm2}$,

Ec= 22000 N/mm2, fy= 300 MPa, fc'= 20 MPa

L=5 m

Design of R.C. Rectangular Beam by W.D. Method:

Notes:

From Strain Diagram:

- 1- **Analysis:** Given a cross section, concrete strength, reinforcement size and location, and yield strength, compute the resistance or strength. In analysis there should be one unique answer.
- 2- **Design:** Given a factored design moment, normally designated as select a suitable cross section, including dimensions, concrete strength, reinforcement, and so on. In design there are many possible solutions.
- 3- **Balance Section:** is economical section because it is used both of steel and concrete properties in high level.

	-			
••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
***************************************	•••••	•••••	•••••	•••••

From Stress Diagram:

Ex: Design the cantilever shown in fig. by using the following data:

fc' = 20 N/mm2 , fy = 275 N/mm2 , Es = 200000 N/mm2 ,

yc = 24 KN/m3.

