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Chapter Three 

Mass, Bernoulli, and Energy Equations 

 

1.1 INTRODUCTION 

You are already familiar with numerous conservation laws such as the laws of 

conservation of mass, conservation of energy, and conservation of momentum. 

Historically, the conservation laws are first applied to a fixed quantity of matter 

called a closed system or just a system, and then extended to regions in space 

called control volumes. The conservation relations are also called balance 

equations since any conserved quantity must balance during a process. We now 

give a brief description of the conservation of mass, momentum, and energy 

relations. 

 

1.2 Conservation of Mass Principle 

The conservation of mass principle for a control volume can be expressed as: The 

net mass transfer to or from a control volume during a time interval ∆t is equal to 

the net change (increase or decrease) in the total mass within the control volume 

during ∆t. That is, 

 

 

 

Or,                      (kg)                                                                      (3.1) 

It can also be expressed in rate form as, 

 ̇    ̇                 (kg/s)                                                                      (3.2)                            
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where  ̇   and m ̇   out are the total rates of mass flow into and out of the 

control volume, and         is the rate of change of mass within the control 

volume boundaries. Equations 3–1 and 3–2 are often referred to as the mass 

balance and are applicable to any control volume undergoing any kind of process. 

Consider a control volume of arbitrary shape, as shown in Figure 3–1. The mass of 

a differential volume dV within the control volume is dm= ρdV. The total mass 

within the control volume at any instant in time t is determined by integration to be 

Total mass within the CV: 

     ∫     
  

        (3.3) 

Then the time rate of change of the 

amount of mass within the control 

volume can be expressed as 

Rate of change of mass within the CV: 

    

  
  

 

  
∫     
  

        (3.4) 

 

Using the definition of mass flow 

rate as, 

 

  
∫     
  

 ∑  ̇   ∑  ̇         or     
    

  
 ∑  ̇   ∑  ̇               (3.5) 

 

There is considerable flexibility in the selection of a control volume when solving 

a problem. Several control volume choices may be correct, but some are more 

convenient to work with. A control volume should not introduce any unnecessary 

complications. The proper choice of a control volume can make the solution of a 

seemingly complicated problem rather easy. A simple rule in selecting a control 

volume is to make the control surface normal to flow at all locations where it 

crosses fluid flow, whenever possible. 

Figure 3.1: The differential control volume dV and 

the differential control surface dA used in the 

derivation of the conservation of mass relation. 
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1.3 Mass Balance for Steady-Flow Processes 

During a steady-flow process, the total amount of mass contained within a control 

volume does not change with time (mCV= constant). Then the conservation of mass 

principle requires that the total amount of mass entering a control volume equal the 

total amount of mass leaving it. For a garden hose nozzle in steady operation, for 

example, the amount of water entering the nozzle per unit time is equal to the 

amount of water leaving it per unit time. When dealing with steady-flow processes, 

we are not interested in the amount of mass that flows in or out of a device over 

time; instead, we are interested in the amount of mass flowing per unit time, that is, 

the mass flow rate  ̇. The conservation of mass principle for a general steady-flow 

system with multiple inlets and outlets can be expressed in rate form as (Figure 

3.2) 

Steady flow:  ∑  ̇   ∑  ̇        (kg/s)                                                             (3.6) 

It states that the total rate of mass entering a control volume is equal to the total 

rate of mass leaving it. 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.2: Conservation of mass principle for a two-inlet–one-

outlet steady-flow system. 
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Many engineering devices such as nozzles, diffusers, turbines, compressors, and 

pumps involve a single stream (only one inlet and one outlet). For these cases, we 

denote the inlet state by the subscript 1 and the outlet state by the subscript 2, and 

drop the summation signs. Then Eq. 3.6 reduces, for single-stream steady-flow 

systems, to 

Steady flow (single stream):     ̇   ̇       ⇒                                (3.7) 

Special Case: Incompressible Flow 

The conservation of mass relations can be simplified even further when the fluid is 

incompressible, which is usually the case for liquids. Canceling the density from 

both sides of the general steady-flow relation gives 

Steady, incompressible flow:   ∑  ̇   ∑  ̇        (m
3
/s)                                (3.8) 

For single-stream steady-flow systems it becomes 

Steady, incompressible flow (single stream):  ̇   ̇   ⇒                  (3.9) 

It should always be kept in mind that there is no such thing as a “conservation of 

volume” principle. Therefore, the volume flow rates into and out of a steady-flow 

device may be different. The volume flow rate at the outlet of an air compressor is 

much less than that at the inlet even though the mass flow rate of air through the 

compressor is constant (Figure 3.3). This is due to the higher density of air at the 

compressor exit. For steady flow of liquids, however, the volume flow rates, as 

well as the mass flow rates, remain constant since liquids are essentially 

incompressible (constant-density) substances. Water flow through the nozzle of a 

garden hose is an example of the latter case. 

 

 

 

 

 

Figure 3.3: During a steady-flow process, volume flow rates are not 
necessarily conserved although mass flow rates are. 
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Example 3–1: A garden hose attached with a nozzle is used to fill a 10-gal bucket. 

The inner diameter of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle exit. 

If it takes 50 s to fill the bucket with water, determine (a) the volume and mass 

flow rates of water through the hose, and (b) the average velocity of water at the 

nozzle exit. 

     

 

 

 

 

 

 

 

 

 

                

       

 

 

 

 

Example 3–2: A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open 

to the atmosphere is initially filled with water. Now the discharge plug near the 

bottom of the tank is pulled out, and a water jet whose diameter is 0.5 in streams 

out (Fig. 3.4). The average velocity of the jet is given by  √    , where h is the 

height of water in the tank measured from the center of the hole (a variable) and g 
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is the gravitational acceleration. Determine how long it will take for the water level 

in the tank to drop to 2 ft from the bottom. 

Solution: 
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1.4 The Bernoulli equation 

The Bernoulli equation is an approximate relation between pressure, velocity, and 

elevation, and is valid in regions of steady, incompressible flow where net 

frictional forces are negligible (Fig. 3-4). Despite its simplicity, it has proven to be 

a very powerful tool in fluid mechanics. In this section, we derive the Bernoulli 

equation by applying the conservation of linear momentum principle, and we 

demonstrate both its usefulness and its limitations. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: The Bernoulli equation is an approximate equation that is valid 

only in inviscid regions of flow where net viscous forces are negligibly small 

compared to inertial, gravitational, or pressure forces. Such regions occur 

outside of boundary layers and wakes. 

Figure 3.5: The forces acting on a fluid particle along a streamline. 
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Consider the motion of a fluid particle in a flow field in steady flow described in 

detail. Applying Newton’s second law (which is referred to as the conservation of 

linear momentum relation in fluid mechanics) in the s-direction on a particle 

moving along a streamline gives,  

∑                                                                                                 (3.10) 

In regions of flow where net frictional forces are negligible, the significant forces 

acting in the s-direction are the pressure (acting on both sides) and the component 

of the weight of the particle in the s-direction (Figure 3-5). Therefore, Equation 3-

10 becomes 

    (    )           
  

  
                                            (3.11) 

where θ is the angle between the normal of the streamline and the vertical z-axis at 

that point, m = ρV = ρdAds is the mass, W = mg = ρgdAds is the weight of the fluid 

particle, and sinθ = dz/ds. Substituting, 

              
  

  
        

  

  
                                                  (3.12) 

Canceling dA from each term and simplifying, 

                                                                                        (3.13) 

Noting that VdV = 0.5 d(V
2
) and dividing each term by ρ gives 

  

 
 
 

 
 (  )                                                                                 (3.14) 

Integrating    

Steady flow: ∫
  

 
 
  

 
              (                  )           (3.15) 

since the last two terms are exact differentials. In the case of incompressible flow, 

the first term also becomes an exact differential, and its integration gives 

Steady, incompressible flow: 
 

 
 
  

 
                                        (3.16) 

This is the famous Bernoulli equation, which is commonly used in fluid 

mechanics for steady, incompressible flow along a streamline in inviscid regions of 
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flow. The value of the constant can be evaluated at any point on the streamline 

where the pressure, density, velocity, and elevation are known. The Bernoulli 

equation can also be written between any two points on the same streamline as 

Steady, incompressible flow:  
  

 
 
  
 

 
       

  

 
 
  
 

 
                      (3.17) 

The Bernoulli equation is obtained from the conservation of momentum for a fluid 

particle moving along a streamline. It can also be obtained from the first law of 

thermodynamics applied to a steady-flow system. 

The Bernoulli Equation According to Static, Dynamic, and Stagnation 

Pressures 

The Bernoulli equation states that the sum of the flow, kinetic, and potential 

energies of a fluid particle along a streamline is constant. Therefore, the kinetic and 

potential energies of the fluid can be converted to flow energy (and vice versa) 

during flow, causing the pressure to change. This phenomenon can be made more 

visible by multiplying the Bernoulli equation by the density ρ, 

   
  

 
                   (along a streamline)                                      (3.18) 

Each term in this equation has pressure units, and thus each term represents some 

kind of pressure: 

 P is the static pressure (it does not incorporate any dynamic effects); it 

represents the actual thermodynamic pressure of the fluid. This is the same 

as the pressure used in thermodynamics and property tables. 

 ρV
2
/2 is the dynamic pressure; it represents the pressure rise when the fluid 

in motion is brought to a stop isentropically. 

 ρgz is the hydrostatic pressure, which is not pressure in a real sense since its 

value depends on the reference level selected; it accounts for the elevation 

effects, i.e., of fluid weight on pressure. 
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The sum of the static, dynamic, and hydrostatic pressures is called the total 

pressure. Therefore, the Bernoulli equation states that the total pressure along a 

streamline is constant. 

The sum of the static and dynamic pressures is called the stagnation pressure, and 

it is expressed as 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               
  

 
                 (kPa)                                                      (3.19) 

The stagnation pressure represents the pressure at a point where the fluid is brought 

to a complete stop isentropically. The static, dynamic, and stagnation pressures are 

Figure 3.6: The static, dynamic, and stagnation pressures. 
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shown in Figure 3.6. When static and stagnation pressures are measured at a 

specified location, the fluid velocity at that location can be calculated from 

  √
 (              )

 
                 (m/s)                                                      (3.20) 

 

Example 1: 

Water is flowing from a hose attached to a water main at 400 kPa gage (Figure 

3.7). A child places his thumb to cover most of the hose outlet, causing a thin jet of 

high-speed water to emerge. If the hose is held upward, what is the maximum 

height that the jet could achieve? 

Solution: 

The water height will be maximum under the stated 

assumptions. The velocity inside the hose is relatively low 

(V1= 0) and we take the hose outlet as the reference level (z1= 

0). At the top of the water trajectory V2= 0, and atmospheric 

pressure pertains. Then the Bernoulli equation simplifies to       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 
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Example 2: 

A large tank open to the atmosphere is filled with water to a height of 5 m from the 

outlet tap (Figure 3.8 ). A tap near the bottom of the tank is now opened, and water 

flows out from the smooth and rounded outlet. Determine the water velocity at the 

outlet. 

Solution: 

We take point 1 to be at the free surface of water so 

that P1 = Patm (open to the atmosphere), V1 = 0 (the 

tank is large relative to the outlet), and z1 = 5 m and z2 

= 0 (we take the reference level at the center of the 

outlet). Also, P2 = Patm (water discharges into the 

atmosphere). Then the Bernoulli equation simplifies to 

 

    

 

 

 

       

Example 3: 

During a trip to the beach (Patm = 1 atm = 101.3 kPa), a car runs out of gasoline, 

and it becomes necessary to siphon gas out of the car of a Good Samaritan (Figure 

3.9). The siphon is a small-diameter hose, and to start the siphon it is necessary to 

insert one siphon end in the full gas tank, fill the hose with gasoline via suction, 

and then place the other end in a gas can below the level of the gas tank. The 

difference in pressure between point 1 (at the free surface of the gasoline in the 

Figure 3.8 
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tank) and point 2 (at the outlet of the tube) causes the liquid to flow from the 

higher to the lower elevation. Point 2 is located 0.75 m below point 1 in this case, 

and point 3 is located 2 m above point 1. The siphon diameter is 4 mm, and 

frictional losses in the siphon are to be disregarded. Determine (a) the minimum 

time to withdraw 4 L of gasoline from the tank to the can and (b) the pressure at 

point 3. The density of gasoline is 750 kg/m
3
. 

Solution: 

(a) We take point 1 to be at the free surface of 

gasoline in the tank so that P1 = Patm (open 

to the atmosphere), V1 = 0 (the tank is large 

relative to the tube diameter), and z2 = 0 

(point 2 is taken as the reference level). 

Also, P2 = Patm (gasoline           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 
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Example 4: 

A piezometer and a Pitot tube are tapped into a horizontal water pipe, as shown in 

Figure 3-10, to measure static and stagnation (static + dynamic) pressures. For the 

indicated water column heights, determine the velocity at the c enter of the pipe. 

Solution: 

We take points 1 and 2 along the centerline of 

the pipe, with point 1 directly under the 

piezometer and point 2 at the tip of the Pitot 

tube. This is a steady flow with straight and 

parallel streamlines, and the gage pressures at 

points 1 and 2 can be expressed as    

       

 

 

Noting that point 2 is a stagnation point and thus V2 = 0 and z1 = z2, the application 

of the Bernoulli equation between points 1 and 2 gives     

     

 

 

Substituting the P1 and P2 expressions gives 

     

 

 

Solving for V1 and substituting, 

       

 

 

Figure 3.10, Schematic for Example 
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1.5 Mechanical energy and efficiency 

The mechanical energy can be defined as the form of energy that can be converted 

to mechanical work completely and directly by an ideal mechanical device such as 

an ideal turbine. Kinetic and potential energies are the familiar forms of 

mechanical energy. Thermal energy is not mechanical energy, however, since it 

cannot be converted to work directly and completely (the second law of 

thermodynamics). 

A pump transfers mechanical energy to a fluid by raising its pressure, and a 

turbine extracts mechanical energy from a fluid by dropping its pressure. 

Therefore, the pressure of a flowing fluid is also associated with its mechanical 

energy. 

The steady-flow energy equation on a unit-mass basis can be written conveniently 

as a mechanical energy balance as, 

 

 

Noting that Wshaft, net in= Wshaft, in - Wshaft, out = Wpump - Wturbine, the mechanical energy 

balance can be written more explicitly as, 

 

 

where Wpump is the mechanical work input (due to the presence of a pump, fan, 

compressor, etc.) and Wturbine is the mechanical work output. When the flow is 

incompressible, either absolute or gage pressure can be used for P since Patm/ρ 

would appear on both sides and would cancel out. emech, loss is the total mechanical 

power loss, which consists of pump and turbine losses as well as the frictional 

losses in the piping network. Multiplying above Equation by the mass flow rate ṁ 

gives: 
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By convention, irreversible pump and turbine losses are treated separately from 

irreversible losses due to other components of the piping system. Thus the energy 

equation can be expressed in its most common form in terms of heads as, 

 

 

 

 

 

 

 

 

 

 

 

 

1 and 2 due to all components of the piping system other than the pump or turbine. 

Example 5: 

The pump of a water distribution system is powered by a 15-kW electric motor 

whose efficiency is 90 percent (Figure 3.11). The water flow rate through the 

pump is 50 L/s. The diameters of the inlet and outlet pipes are the same, and the 

elevation difference across the pump is negligible. If the pressures at the inlet and 

outlet of the pump are measured to be 100 kPa and 300 kPa (absolute), 

respectively, determine (a) the mechanical efficiency of the pump and (b) the 

temperature rise of water as it flows through the pump due to the mechanical 

inefficiency. 

Solution: 
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1 The flow is steady and incompressible.  

2 The pump is driven by an external motor so that the 

heat generated by the motor is dissipated to the 

atmosphere.  

3 The elevation difference between the inlet and 

outlet of the pump is negligible, z1 ≈ z2.  

4 The inlet and outlet diameters are the same and thus 

the inlet and outlet velocities and kinetic energy 

correction factors are equal, V1 = V2.  

 

(a) The mass flow rate of water through the pump is 

 

 

The motor draws 15 kW of power and is 90 percent efficient. Thus the mechanical 

(shaft) power it delivers to the pump is 

 

 

To determine the mechanical efficiency of the pump, we need to know the increase 

in the mechanical energy of the fluid as it flows through the pump, which is 

 

 

Where α is the kinetic energy correction factor. 

Simplifying it for this case and substituting the given values, 

 

 

Then the mechanical efficiency of the pump becomes 

 

 

 

Figure 3.11  
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(b) Of the 13.5-kW mechanical power supplied by the pump, only 10 kW is 

imparted to the fluid as mechanical energy. The remaining 3.5 kW is converted to 

thermal energy due to frictional effects, and this “lost” mechanical energy 

manifests itself as a heating effect in the fluid, 

 
 
 
 

The temperature rise of water due to this mechanical inefficiency is determined 

from the thermal energy balance,  

 

Example 6: 

In a hydroelectric power plant, 100 m
3
/s of water flows from an elevation of 120 m 

to a turbine, where electric power is generated (Figure 3-12). The total irreversible 

head loss in the piping system from point 1 to point 2 (excluding the turbine unit) 

is determined to be 35 m. If the overall efficiency of the turbine–generator is 80 

percent, estimate the electric power output. 

Solution: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution 
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Therefore, a perfect turbine–generator would generate 83,400 kW of electricity 

from this resource. The electric power generated by the actual unit is 

 

 

 

 

 

 

 

 

 

 

 

 

Example 7: 

Water is pumped from a lower reservoir to a higher reservoir by a pump that 

provides 20 kW of useful mechanical power to the water (Figure 3.13). The free 

surface of the upper reservoir is 45 m higher than the surface of the lower 

reservoir. If the flow rate of water is measured to be 0.03 m
3
/s, determine the 

irreversible head loss of the system and the lost mechanical power during this 

process. 

Solution: 

The mass flow rate of water through the 

system is 

 

 

 

Figure 3.12  

Figure 3.13  
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We choose points 1 and 2 at the free surfaces of the lower and upper reservoirs, 

respectively, and take the surface of the lower reservoir as the reference level (z1 = 

0). Both points are open to the atmosphere (P1 = P2 = Patm) and the velocities at 

both locations are negligible (V1 = V2 = 0). Then the energy equation for steady 

incompressible flow for a control volume between 1 and 2 reduces to 
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Consider a container of height h filled with water, as shown in Figure 3-14, with 

the reference level selected at the bottom surface. The gage pressure and the 

potential energy per unit mass are, respectively, PA= 0 and peA= gh at point A at 

the free surface, and PB= ρgh and peB= 0 at point B at the bottom of the container. 

An ideal hydraulic turbine would produce the same work per unit mass wturbine = gh 

whether it receives water (or any other fluid with constant density) from the top or 

from the bottom of the container. Note that we are also assuming ideal flow (no 

irreversible losses) through the pipe leading from the tank to the turbine. 

Therefore, the total mechanical energy of water at the bottom is equivalent to that 

at the top.      

 

 

 

 

 

 

 

 

 

 

 

The transfer of mechanical energy is usually accomplished by a rotating shaft, and 

thus mechanical work is often referred to as shaft work. A pump or a fan receives 

shaft work (usually from an electric motor) and transfers it to the fluid as 

mechanical energy (less frictional losses). A turbine, on the other hand, converts 

the mechanical energy of a fluid to shaft work. In the absence of any 

irreversibilities such as friction, mechanical energy can be converted entirely from 

Figure 3.14: The mechanical energy of water at the bottom of a container is equal to the 

mechanical energy at any depth including the free surface of the container. 
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one mechanical form to another, and the mechanical efficiency of a device or 

process can be defined as, 

      

 

A conversion efficiency of less than 100 percent indicates that conversion is less 

than perfect and some losses have occurred during conversion. A mechanical 

efficiency of 97 percent indicates that 3 percent of the mechanical energy input is 

converted to thermal energy as a result of frictional heating, and this will manifest 

itself as a slight rise in the temperature of the fluid. 

The degree of perfection of the conversion process between the mechanical work 

supplied or extracted and the mechanical energy of the fluid is expressed by the 

pump efficiency and turbine efficiency, defined as    

     

 

where ∆Emech,fluid= Emech,out - Emech, in is the rate of increase in the mechanical energy 

of the fluid, which is equivalent to the useful pumping power Wpump, u supplied to 

the fluid, and 

      

 

where ∆Emech, fluid = Emech, in - Emech, out is the rate of decrease in the mechanical 

energy of the fluid, which is equivalent to the mechanical power extracted from the 

fluid by the turbine W turbine, e, and we use the absolute value sign to avoid 

negative values for efficiencies. A pump or turbine efficiency of 100 percent 

indicates perfect conversion between the shaft work and the mechanical energy of 

the fluid, and this value can be approached (but never attained) as the frictional 

effects are minimized. 
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Example 8:  The water in a large lake is to be used to generate electricity by the 

installation of a hydraulic turbine–generator at a location where the depth of the 

water is 50 m (Figure 3.15). Water is to be supplied at a rate of 5000 kg/s. If the 

electric power generated is measured to be 1862 kW and the generator efficiency is 

95 percent, determine (a) the overall efficiency of the turbine– generator, (b) the 

mechanical efficiency of the turbine, and (c) the shaft power supplied by the 

turbine to the generator. 

Solution: 

 (a) We take the bottom of the lake as the 

reference level for convenience. Then 

kinetic and potential energies of water are 

zero, and the change in its mechanical 

energy per unit mass becomes     

 

 

 

 

 

 

 

(b) Knowing the overall and generator efficiencies, the mechanical efficiency of 

the turbine is determined from  

     

 

(c) The shaft power output is determined from the definition of mechanical 

efficiency, 

       

Figure 3.15: Schematic for Example 8. 
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1.6 The linear momentum equation 

Newton’s second law for a system of mass m subjected to a net force  ⃗ is 

expressed as 

      

 

Where   ⃗⃗⃗ is the linear momentum of the system. Noting that both the density and 

velocity may change from point to point within the system, Newton’s second law 

can be expressed more generally as 

     

 

where         is the mass of a differential volume element   , and is its 

momentum. Therefore, Newton’s second law can be stated as the sum of all 

external forces acting on a system is equal to the time rate of change of linear 

momentum of the system. This statement is valid for a coordinate system that is at 

rest or moves with a constant velocity, called an inertial coordinate system or 

inertial reference frame. Accelerating systems such as aircraft during takeoff are 

best analyzed using non-inertial (or accelerating) coordinate systems fixed to the 

aircraft. Note that the above equation is a vector relation, and thus the quantities  ⃗ 

and  ⃗⃗ have direction as well as magnitude. 

The general form of the linear momentum equation that applies to fixed, moving, 

or deforming control volumes is obtained to be 
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In General: 

     

 

 

Note that the momentum equation is a vector equation, and thus each term should 

be treated as a vector. Also, the components of this equation can be resolved along 

orthogonal coordinates (such as x, y, and z in the Cartesian coordinate system) for 

convenience. 

The above equation is exact for fixed control volumes, it is not always convenient 

when solving practical engineering problems because of the integrals. Instead, as 

we did for conservation of mass, we would like to rewrite the above equation in 

terms of average velocities and mass flow rates through inlets and outlets. In other 

words, our desire is to rewrite the equation in algebraic rather than integral form. 

In many practical applications, fluid crosses the boundaries of the control volume 

at one or more inlets and one or more outlets, and carries with it some momentum 

into or out of the control volume. For simplicity, we always draw our control 

surface such that it slices normal to the inflow or outflow velocity at each such 

inlet or outlet (Figure 3.16). The mass flow rate ṁ into or out of the control volume 

across an inlet or outlet at which ρ is nearly constant is 

 

 

 

 

 

 

 

 

Figure 3.16: In a typical engineering problem, 

the control volume may contain many inlets 

and outlets; at each inlet or outlet we define the 

mass flow rate ṁ and the average velocity Vavg. 
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Mass flow rate across an inlet or outlet: 

 

 

 

Then we could write the rate of inflow or outflow of momentum through the inlet 

or outlet in simple algebraic form, Momentum flow rate across a uniform inlet or 

outlet: 

 

The uniform flow approximation is reasonable at some inlets and outlets, e.g., the 

well-rounded entrance to a pipe, the flow at the entrance to a wind tunnel test 

section, and a slice through a water jet moving at nearly uniform speed through air 

(Figure 3-17). 

    

 

 

 

 

 

 

 

 

1.7 Momentum-Flux Correction Factor, β 

Unfortunately, the velocity across most inlets and outlets of practical engineering 

interest is not uniform. Nevertheless, it turns out that we can still convert the 

control surface integral of Equation, 

Figure 3.17: Examples of inlets or outlets in which the uniform flow approximation 

is reasonable: (a) the well-rounded entrance to a pipe, (b) the entrance to a wind 

tunnel test section, and (c) a slice through a free water jet in air. 
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 into algebraic form, but a dimensionless correction factor b, called the 

momentum-flux correction factor, is required, as first shown by the French 

scientist Joseph Boussinesq (1842–1929). The algebraic form of the above 

equation for a fixed control volume is then written as,    

       

 

 

where a unique value of momentum-flux correction factor is applied to each inlet 

and outlet in the control surface. Note that β= 1 for the case of uniform flow over 

an inlet or outlet, as in Figure 3-17.  

Momentum-flux correction factor:     

 

It turns out that for any velocity profile you can imagine, β is always greater than 

or equal to unity.  

Example 9: 

Consider laminar flow through a very long straight section of round pipe. The 

velocity profile through a cross-sectional area of the pipe is parabolic (Figure 3-

18), with the axial velocity component given by   

 

 

where R is the radius of the inner wall of the pipe and Vavg is the average velocity. 

Calculate the momentum-flux correction factor through a cross section of the pipe 

for the case in which the pipe flow represents an outlet of the control volume, as 

sketched in Figure 3-18. 
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Solution: 

We substitute the given velocity profile for V 

in the above equation and integrate, noting 

that dAc= 2πrdr, 

 

 

 

 

 

 

Defining a new integration variable y = 1 - r 
2
/R

2 
and thus dy = -2r dr/R

2
 (also, y = 

1 at r = 0, and y= 0 at r= R) and performing the integration, the momentum-flux 

correction factor for fully developed laminar flow becomes 

 

Laminar flow:  

 

 

Notice: For turbulent flow β may have an insignificant effect at inlets and outlets, 

but for laminar flow β may be important and should not be neglected. It is wise to 

include β in all momentum control volume problems. 

 

 

 

 

 

Figure 3.18: Velocity profile over a cross section of a pipe 

in which the flow is fully-developed and laminar. 
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1.8 Steady Flow 

If the flow is also steady, the time derivative term in Equation: 

 

 

vanishes and we are left with, 

Steady linear momentum equation:  

 

where we dropped the subscript “avg” from average velocity. Above Equation 

states that the net force acting on the control volume during steady flow is equal to 

the difference between the rates of outgoing and incoming momentum flows. This 

statement is illustrated in Figure 3.19. It can also be expressed for any direction, 

since above equation is a vector equation. 

 

 

 

 

 

 

 

 

      

 

 

 

Steady Flow with One Inlet and One Outlet: Many practical problems involve just 

one inlet and one outlet (Figure 3.20). The mass flow rate for such single-stream 

systems remains constant, and above equation reduces to, 

One inlet and one outlet: 

Figure 3.19: Velocity profile over a cross section of a pipe 

in which the flow is fully-developed and laminar. 
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Example 10:  

A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a horizontal 

pipe upward 30° while accelerating it as shown in figure 3.20. The elbow 

discharges water into the atmosphere. The cross-sectional area of the elbow is 113 

cm2 at the inlet and 7 cm2 at the outlet. The elevation difference between the 

centers of the outlet and the inlet is 30 cm. The weight of the elbow and the water 

in it is considered to be negligible. Determine (a) the gage pressure at the center of 

the inlet of the elbow and (b) the anchoring force needed to hold the elbow in 

place. Take the momentum-flux correction factor to be β= 1.03. 

Solution:  

(a) We take the elbow as the control 

volume and designate the inlet by ① and 

the outlet by ②. We also take the x- and 

z-coordinates as shown.  

 

The continuity equation for this one-inlet, one-outlet, steady-flow system is ṁ1 = 

ṁ2 = ṁ = 14 kg/s. Noting that ṁ= ρAV, the inlet and outlet velocities of water are 

       

 

 

 

 

 

 

 

 

       

 

Figure 3.20: Schematic for Example 10. 
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(b) The momentum equation for steady one-dimensional flow is 

     

 

 

We let the x- and z-components of the anchoring force of the elbow be FRx and FRz, 

and assume them to be in the positive direction. We also use gage pressure since 

the atmospheric pressure acts on the entire control surface. Then the momentum 

equations along the x- and z-axes become     

     

 

 

 

Solving for FRx and FRz, and substituting the given values, 

 

 

 

 

 

 

 

 

Example 11:  

A reversing elbow such that the fluid makes a 180° U-turn before it is discharged, 

as shown in Figure 3.21. The elevation difference between the centers of the inlet 

and the exit sections is still 0.3 m. Determine the anchoring force needed to hold 

the elbow in place. Take the momentum-flux correction factor to be β= 1.03. 

 

 

 

 

 

 

Figure 3.21: Schematic for Example 11. 

V2= 20 m/s 

V1= 1.204 m/s 

P1, gage= 2022oo Pa 

A1= 0.0113 m2 
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Solution: 

The vertical component of the anchoring force at the connection of the elbow to 

the pipe is zero in this case (FRz= 0) since there is no other force or momentum flux 

in the vertical direction. 

      

 

 

 

 

 

Noting that the outlet velocity is negative since it is in the negative x-direction. 

Therefore, the horizontal force on the flange is 2591 N acting in the negative x-

direction (the elbow is trying to separate from the pipe). 

Example 12:  

Water is accelerated by a nozzle to an average speed of 20 m/s, and strikes a 

stationary vertical plate at a rate of 10 kg/s with a normal velocity of 20 m/s 

(Figure 3.22). After the strike, the water stream splatters off in all directions in the 

plane of the plate. Determine the force needed to prevent the plate from moving 

horizontally due to the water stream. Take the momentum-flux correction factor to 

be β= 1. 

Solution: 

The momentum equation for steady one-

dimensional flow is given as,      

 

 

 

 

 

Figure 3.22: Schematic for Example 12. 
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Writing it for this problem along the x-direction (without forgetting the negative 

sign for forces and velocities in the negative x-direction) and noting that V1, x = V1 

and V2, x = 0 gives, 

                                       Substituting the given values, 

 

 

    

Example 13:  

A wind generator with a 30-ft-diameter blade span has a cut-in wind speed 

(minimum speed for power generation) of 7 mph, at which velocity the turbine 

generates 0.4 kW of electric power (Figure 3–23). Determine (a) the efficiency of 

the wind turbine–generator unit and (b) the horizontal force exerted by the wind on 

the supporting mast of the wind turbine. What is the effect of doubling the wind 

velocity to 14 mph on power generation and the force exerted? Assume the 

efficiency remains the same, and take the density of air to be 0.076 lbm/ft
3
. Take 

the momentum-flux correction factor to be β= 1. 

Solution: 

The power potential of the wind is 

proportional to its kinetic energy, which 

is V
2
/2 per unit mass, and thus the 

maximum power is ṁV
2
/2 for a given 

mass flow rate: 

         

 

 

 

 

Figure 3.23: Schematic for Example 13. 
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Therefore, the available power to the wind turbine is 1.225 kW at the wind velocity 

of 7 mph. Then the turbine–generator efficiency becomes 

      

 

 

Noting that the mass flow rate remains constant, the exit velocity is determined to 

be 

         

        

 

The momentum equation for steady one-dimensional flow is given as          

        

 

Substituting the known values gives 

 

 

 

Then the force exerted by the wind on the mast becomes Fmast = - FR = 31.5 lbf. 


