Ex: In the figure below, there are two coherent sources emit light of a wavelength $\lambda=0.1 \mathrm{~m}$, and the emitted waves interfered at point p in the same time. What is the type of the obtained interference at this point when one of the two waves travel an optical path (3.2m), and the other an optical path (3m).

Sol.
$\mathrm{l}_{1}=3 \mathrm{~m}, \mathrm{l}_{2}=3.2 \mathrm{~m}$
prob.1: $\Delta \mathrm{I}=(\mathrm{m}+1 / 2) \boldsymbol{\lambda}$ (dest.int.)

$$
\Delta I=I_{2}-l_{1}
$$

$$
\Delta \mathrm{l}=3.2-3=0.2 \mathrm{~m}
$$

$\Delta I=(m+1 / 2) \lambda$
$0.2=(m+1 / 2) * 0.1=m+1 / 2$
$m=11 / 2$
This value do not satisfy int. conditions
Because m=1, 2, 3,........
prob.2: $\boldsymbol{\Delta l}=\mathrm{m} \mathrm{\lambda}$ (cons. Int.)

$$
\begin{aligned}
& 0.2=m^{*} 0.1 \\
& m=2
\end{aligned}
$$

This value satisfy int. conditions
The interference is constructive.

Ex: if the distance between two slits in young s experiment (0.1 mm), a monochromatic light of $\lambda=(500 \mathrm{~nm})$ is used. The distance between the two slits and the screen is $(1.2 m)$, find the distance between the first bright fringe and the central fringe

Sol
$D=1.2 \mathrm{~m}, \mathrm{~m}=1, \lambda=500 \mathrm{~nm}, \mathrm{~d}=0.1 \mathrm{~mm}$

$$
\Delta x=?
$$

$X d / D=m \lambda$
$X * 0.1 * 10^{-3} / 1.2=1 * 500 * 10^{-9}$
$\Delta X=1 * 500 * 10^{-9 *} 1.2 / 0.1 * 10^{-3}=6 \mathrm{~mm}$.

EX: In young s experiment if the distance between the two slits is 0.2 mm , and the distance between these two slits and the screen is 1 m . If the monochromatic light ($\lambda=600 \mathrm{~nm}$) is incident the slits, find the distance between two successive dark fringes $\mathrm{d}=0.2 \mathrm{~mm}, \mathrm{D}=1 \mathrm{~m}, \lambda=600 \mathrm{~nm}, \Delta \mathrm{X}=$?

Sol.: the condition for obtaining dark fringes
$d \sin \theta=(m+1 / 2) \lambda$
$d(\lambda / D)=(m+1 / 2) \lambda$
$\Delta X=(m+1 / 2+1) \lambda / D-(m+1 / 2) \lambda / D$

$$
\Delta \mathrm{X}=\lambda \mathrm{D} / \mathrm{d}=5.6 * 10^{-7 * 1.2 / 3 * 10^{-5}=2.2 * 10^{-2} \mathrm{~m}, ~}
$$

Ex: If the distance between the first and the tenth dark fringes in young's experiment is 2.4 mm , and the distance between the slits is 0.15 mm , and the screen is at 50 cm from the two slits, find the value of light wavelength.

Sol: for the dark fringes:
$d \sin \theta=(m+1 / 2) \lambda=(2 m+1 / 2) \boldsymbol{\lambda}$
For the tenth dark fringe: $d \sin \theta_{10}=(21 / 2) \boldsymbol{\lambda} \quad m=10$
For the first dark fringe: $d \sin \theta_{1}=(3 / 2) \boldsymbol{\lambda} \quad m=1$
$\Delta \mathrm{X}=\mathrm{d} \sin \theta_{10}-\mathrm{d} \sin \theta_{1}=(21 / 2-3 / 2) \boldsymbol{\lambda}=(10.5-1.5) \boldsymbol{\lambda}$
$d\left(x_{10} / D\right)-\left(x_{1} / D\right)=9 \boldsymbol{\lambda}$
$\mathrm{d}\left[\left(\mathrm{x}_{10}-\mathrm{x}_{1}\right) / \mathrm{D}\right]=9 \lambda$
$0.15^{*} 2.4 / 500=9 \boldsymbol{\lambda}$
$\lambda=8^{*} 10^{-5} \mathrm{~mm}$

Ex: In young's experiment, the light wavelength is 546 mm , and the distance between the slits is 0.1 mm , the distance between the two slits and the screen is 20 cm , find the distance between the fifth bright fringe and the seventh dark fringe.

Sol: for the bright fringe: $d \sin \theta=m \lambda$
For the dark fringe: $d \sin \theta=(m+1 / 2) \lambda$

For small angles: $\sin \theta=\tan \theta=x / D$
For the bright fringe: $\mathrm{dx} / \mathrm{D}=\mathrm{m} \lambda$
For the dark fringe: $d x / D=(m+1 / 2) \lambda$
$X_{\max }=5 \lambda D / d, X i n=(7+1 / 2) \lambda D / d$
$\left.\Delta x=x_{\text {min }}-x_{\max }=7.5 \lambda D / d-5 \lambda D / d=\lambda D / d(7.5-5)\right)=2.5 \lambda D / d$
$\Delta X=2.5^{*} 20 * 10 * 546 * 10^{-6} / 0.1=2.73 \mathrm{~mm}$

