PHYSICAL OPTICS

Polarization angle and Brewster's angle

Consider unpolarized light to be incident at an angle(Θ) on a dielectric like glass(PO),as shown in fig. below .there will always be a reflected ray (OQ) and a refracted ray OR .the reflected ray OQ is partially plane-polarized and that only at a certain definite angle. about 57° for ordinary glass .it was Brewster who first discovered that at this polarizing angle Θ the reflected and refracted rays are just 90°,apart.

PHYSICAL OPTICS

This remarkable discovery enables one to correlate polarization with the refractive index
where θ_{1} is the angle of reflection (or incidence) and θ_{2} is the angle of refraction.

Using Snell's law,

$$
n_{1} \sin \left(\theta_{1}\right)=n_{2} \sin \left(\theta_{2}\right),
$$

one can calculate the incident angle $\theta_{1}=\theta_{\mathrm{B}}$ at which no light is reflected:

$$
n_{1} \sin \left(\theta_{\mathrm{B}}\right)=n_{2} \sin \left(90^{\circ}-\theta_{\mathrm{B}}\right)=n_{2} \cos \left(\theta_{\mathrm{B}}\right) .
$$

Solving for θ_{B} gives

$$
\frac{\sin \theta}{\cos \theta}=n
$$

this is Brewster's law:The refractive index of the medium is equal to the tangent of the polarizing angle ,which shows that the angle of incidence for maximum polarization depends only on the refractive index.

