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Continuous Probability Distributions
7. The Normal Distribution

Random variables can be either discrete or continuous. Discrete

variables and their distributions were explained in lecture 6. Recall that a
discrete variable cannot assume all values between any two given values of the
variables. On the other hand, a continuous variable can assume all values
between any two given values of the variables. Examples of continuous
variables are the heights of adult men, body temperatures , and cholesterol
levels of adults. Many continuous variables, such as the examples just
mentioned, have distributions that are bell-shaped, and these are called
approximately normally distributed variables.
For example, if a researcher selects a random sample of 100 adult women,
measures their heights, and constructs a histogram, the researcher gets a graph
like the one shown in Figure 1(a). Now, if the researcher increases the sample
size and decreases the width of the classes, the histograms will look like the
ones shown in Figure 1(b) and (c). Finally, if it were possible to measure
exactly the heights of all adult females in the United States and plot them, the
histogram would approach what is called a normal distribution, shown in
Figure 1(d).

S0 1 11

(a) Random sample of 100 women (b) Sample size increased and class width decreased

(c) Sample size increased and class width (d) Normal distribution for the population
decreased further

Figure 1. Histograms for the Distribution of Heights of Adult Women
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This distribution is also known as a bell curve or a Gaussian distribution,
named for the German mathematician Carl Friedrich Gauss (1777-1855), who
derived its equation.

When the data values are evenly distributed about the mean, a distribution is
said to be a symmetric distribution. (A normal distribution is symmetric.)
Figure 2(a) shows a symmetric distribution. When the majority of the data
values fall to the left or right of the mean, the distribution is said to be skewed.
When the majority of the data values fall to the right of the mean, the
distribution is said to be a negatively or left-skewed distribution. The mean is
to the left of the median, and the mean and the median are to the left of the
mode. See Figure 2(b). When the majority of the data values fall to the left of
the mean, a distribution is said to be a positively or right-skewed distribution.
The mean falls to the right of the median, and both the mean and the median

fall to the right of the mode. See Figure 2(c).

Mean

L Median N

/ o, N

Mean Median Mode Moda Median Mean
(b) Negatively skewed (c) Positively skewed

Figure 2. Normal and Skewed Distributions
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« Continuous variable are variables that can assume to take all values
between any two given values of the variables. For examples: the heights of
adult men, body temperatures of rats, ground water level, and cholesterol
levels of adults.

7.1. Equation of normal distribution
In mathematics, curves can be represented by equations. For example, the
equation of the circle is ( x? + y? = r?) , where r is the radius. A circle can be
used to represent many physical objects, such as a wheel or a gear. Even though
it is not possible to manufacture a wheel that is perfectly round, the equation
and the properties of a circle can be used to study many aspects of the wheel,
such as area, velocity, and acceleration. In a similar manner, the theoretical
curve, called a normal distribution curve, can be used to study many variables
that are not perfectly normally distributed but are nevertheless approximately
normal.

The mathematical equation for a normal distribution is

e~ (X-1?%/(20?)

y= oV2T

Where:

e ~2.718 (means = is approximately equal to”)

M is population mean

o is population standard deviation

The shape and position of a normal distribution curve depend on two
parameters, the mean and the standard deviation. Each normally distributed
variable has its own normal distribution curve, which depends on the values of
the variable’s mean and standard deviation. Figure 3(a) shows two normal
distributions with the same mean values but different standard deviations. The
larger the standard deviation, the more dispersed, or spread out, the distribution
is. Figure 3(b) shows two normal distributions with the same standard deviation

but with different means. These curves have the same shapes but are located at
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different positions on the x axis. Figure 3(c) shows two normal distributions

with different means and different standard deviations.
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(a) Same means but different standard deviations
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(b) Different means but same standard deviations

s Iy
(¢) Different means and different standard deviations

Figure 3. Shapes of Normal Distributions
7.2. Summary of the Properties of the Theoretical Normal Distribution
1. A normal distribution curve is bell-shaped.
2. The mean, median, and mode are equal and are located at the center of the
distribution.
3. The curve is symmetric about the mean, which is equivalent to saying that
its shape is the same on both sides of a vertical line passing through the center.
4. The curve is continuous.
5. The curve never touches the x axis. The total area under a normal distribution
curve is equal to 1.00, or 100%.
6. The area under the part of a normal curve that lies within 1 standard deviation
of the mean is approximately 0.68, or 68%; within 2 standard deviations, about
0.95, or 95%; and within 3 standard deviations, about 0.997, or 99.7%.
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34.13% | 34.13%

13.59%
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Figure 4. Areas Under a Normal Distribution Curve

7.3. The Standard Normal Distribution

Since each normally distributed variable has its own mean and standard
deviation. So, the shape and location of these curves will vary. In practical
applications, statisticians used what is called the standard normal
distribution. Then, a table can be used to determine the area under the curve
for each variable. The standard normal distribution is shown in Figure 5 below.

34.13% 34.13%

13.58% 13.59%

| | | |
-3 -2 -1 0 +1 +2 +3

Figure 5. Standard Normal Distribution

97



Lecture Seven Statistics Engineering Dr. Atheer Saleem Almawla

The standard normal distribution is a normal distribution with a mean of 0 and
a standard deviation of 1. The formula for the standard normal distribution is
e—zz/Z

Y= V21T

All normally distributed variables can be transformed into the standard

normally distributed variable using the formula for the standard score:

value — mean X—p
z= or z=

standard deviation o

The values under the curve indicate the proportion of area in each section. For
example, the area between the mean and 1 standard deviation above or below

the mean is about 0.3413, or 34.13%.

7.4. Finding Areas Under the Standard Normal Distribution Curve

The area under a normal distribution curve is used to finding the probability of
the continuous variables for any range would be found. A two-step process is
recommended with the use of the Procedure Table shown.

Step 1: Draw the normal distribution curve and shade the area.

Step 2: Find the appropriate figure in the Procedure Table.

Example: find the area under Z = 1.39

Z 0.00 0.09

0.0

1.3 =(0.9177 )

Figure 6 . Table of Z for determine the area under the curve
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Cumulative Standard Normal Distribution
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Cumulative Standard Mormal Distribuotion
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7.4.1. Procedure Table

Finding the Area Under the Standard Normal Distribution Curve
1. To the left of any z value: Look up the z value in the table and use the

area given

2. Tothe right of any z value: Look up the z value and subtract the area

from 1. (1- area)

>
>

-z 0 0 +Z
3. Between any two z values: Look up both z values and subtract the

corresponding areas. (Areaz, — Area,1)

11 I 11 1
20 « 0 7z ;=%

.
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Example 1: Find the area to the left of z = 2.06.
Solution

Step 1 Draw the figure. The desired area is shown in the figure below.

Step 2 We are looking for the area under the standard normal distribution
to the left of z = 2.06. Since this is an example of the first case, look up
the area in the table. It is 0.9803. Hence, 98.03% of the area is less than
z = 2.06.

Example 2: Find the area to the right of z =-1.19.

Solution

Step 1 Draw the figure. The desired area is shown in the figure.

the area for (z < -1.19) = 0.1170

Example 3: Find the area between z =+ 1.68 and z = - 1.37.
Solution
This is case 3. Draw the figure as shown below . The desired area is shown

in the figures below
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Area 2
Area 1
---- — >
e
1.37 0.0 0.0 1.lss
for the small areaz=-1.37, for the large area z = 1.68,
from table area = 0.0853 from table area = 0.9535

The area between the two z values is:
=0.9535 - 0.0853
= 0.8682 or 86.82%.

7.5. A Normal Distribution Curve as a Probability Distribution Curve

The area under the standard normal distribution curve can be used for
calculation the probability for any continuous random variable.

Example 4: Find the probability for each. a) P(0 <z < 2.32); b) P(z < 1.65);
c) P(z>1.91)

Solution
a)P(0 <z<2.32)=P(z< 2.32) - P(z<0) OR

area to the left of( z = 2.32)
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— area to the left of (z = 0)

P (z < 2.32) = the area from the table = 0.9898

P (z< 0.0) = the area from the table = 0.5000.

~P (0 <z<2.32) =0.9898 — 0.500 = 0.4898.
y
0]

b) P(z < 1.65) is the area from the table

to the left of Z = 1.65.

P(z < 1.6) = 0.9505
y

¢)P(z>1.91)=1-P(z<1.91)

= 1 —the area to the left of 1.91

=1-0.9719 = 0.0281, or 2.81%.
y
]
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Example 5: Find the z value such that the area under the standard normal

distribution curve between 0 and the z value is 0.2123.

Y 0.2123

Solution

Draw the figure. The area is shown in the figure.

The total area = the area of (z = 0) + 0.2123
=0.5000 +0.2123 =0.7123

From the table. The value in the left column is 0.5, and the top value is 0.06.

Add these two values to get z = 0.56.

0.0
0.1
0.2
0.3
0.4

0.5)]= 0.7123)

0.6 Start here
0.7

7.6. Applications of the Normal Distribution

The standard normal distribution curve can be used to solve a wide variety of
practical problems. To solve problems by using the standard normal
distribution, transform the original variable to a standard normal distribution

variable (Z) using the formula:
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_X-n

Z
o

Example 6: A survey found that women spend on average $146.21 on beauty
products during the summer months. Assume the standard deviation is $29.44.
Find the percentage (Probability) of women who spend less than $160.00.

Assume the variable is normally distributed.
Solution

Draw the figure and represent the area as shown in the figure. Then Find the z

value corresponding to $160.00.

P( X<160) =
P(z<0.47) =
0.6808

\

l.\-\ = g
éﬂiﬁh (515[13

=0.47

X-p _ 160.00-146.21
c 29.44

7 =
From the table: P(X<160) = P(z<0.47) = area to the left of z = 0.6808, or
68.08% (percent of the women spend less than $160.00 on beauty products).

Example 7: Each month, an American household generates an average of 28
pounds of newspaper for garbage or recycling. Assume the standard deviation
Is 2 pounds. If a household is selected at random, find the probability of its

generating.
a) Between 27 and 31 pounds per month.
b) More than 30.2 pounds per month.

Solution
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a) Draw the figure and represent the area. Then find the two z values.

P (27<X<31) = P(Z,1<2<Z)

4] = Xiow _27-28 _ 05

o 2

X2—p _ 31-28 _

o 2

z2 = 1.5

Area; = 0.3085 and Area, = 0.9332

P(27<X<31) = P(-0.5<2<1.5) = 0.9332 — 0.3085 = 0.6247

)

1 I
27 28 31

b) Draw the figure and represent the area. Then find the two z values.

P(X>30.2)= P(Z>21)= 1-P(X<30.2) = 1 — P(Z<z1)

'\

0.1357

28 30.2

X-p _ 30.2-28

o

7zl =

= 1.1 and Area; = 0.8643

P(X>30.2)=1-P(X<30.2)=1-P(Z<z) = 1 -0.8643 = 0.1357 or
13.57%

Example 8: A steel factory produces deformed bars with average yield

force 45 kN and standard deviation 2 kN, if a bare has been tested, determine
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the probability of? (a) strength force > 43 kN; (b) strength force < 47 kN;
and (c) strength force between 44 to 46 kN.

Solution
(a)P(X=>43)=P ((z>— )=1—-P((z <— ) = area to the right

43-45

Z2=——=- 1.00, then Area to the left = 0.1587

P(X>43)=P ((z>2=£ )_1—P(((z< )_1—01587—08413

Area = Area = 0.8413
0.1587
% 4.-"

e >

-1.00(=43) 0.0(=45)

(b) PX <47) =P (z<

_ 47-45

= 1.00, then Area to the left=0.8413
P(X<47)=P (z<2=£ ) =0.8413 or 84.13 %

Area = 0.8413

< ]

0.0(=45) 1.00(=47)

(€) PA4<X<47)=P ((z1<Z<12:)

44—-45
z1 =

= -0.500, Area to the left = 0.3085

47-45

72 =

= 1.00, Area to the left = 0.8413

108



Lecture Seven Statistics Engineering Dr. Atheer Saleem Almawla
P44 <X <47)=P ((z1=<Z <2zy)
=0.8413 - 0.3085

=0.5328 OR 53.28 %

0.5328

-0.5 0.0 1.00

Example 9: An engineering in PVC pipe factory wishes to select a pipe bearing
pressure in the middle 60%. If the mean hydraulic pressure is 120 and the
standard deviation is 8, find the upper and lower pressure that meet the

requirement.
Solution:

The two values (X1 and X2) must be determined based on the area to the left

side of each values
* From Table; Area; = 0.2, z, =-0.84
* From Table; Area; =0.8,z; =0.84
X1=zl.o+p= X;=0.84*8 + 120=126.72
X2=7z2.0+p= X,;=-0.84 x8 +120=113.28
Therefore, the middle 60% will have pressure readings of: 113.28 <X <126.72.

Show the following figure.
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o.so=60%:5l
/’ X2 120 j
1-0.6

Area , = > =0.2=20%
Area ;=0.6+0.2 =0.8

7.7. Determining Normality
The distribution is being normally or approximately normally shaped:

» The easiest way is to draw a histogram for the data and check its shape.
If the histogram is not approximately bell shaped, then the data are not
normally distributed.

« Skewness coefficient (Pearson’s index (PC))

_3X—-M,)

PC
S

The Normality distribution: -1 <PC <+1
Example 11: A survey of 18 high-technology firms showed the number of
days’ inventory they had on hand. Determine if the data are approximately

normally distributed.

5 29 34 44 45 63 68 74 74
81 38 o1 97 98§ 113 118 151 158

Solution
« Construct a frequency distribution table and draw a histogram for the
data.
» The histogram is approximately bell-shaped, we can say that the

distribution is approximately normal.
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Class

Frequency

5-29
30-54
55-79
80-104

105-129
130-154
155-179

=t = [ L s T 2

45 205 bH45 795

Days

1045 1295 154.5 1795

Using PC to check the normality
(average = 79.5, median = 77.5, and S = 40.5)

3(X—M,) _ 3(79.5-77.5)
S 40.5

-1 <PC < +1, it is normal distribution

PC =

111
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Homework

To qualify of a steel factory quality, a tensile strength must score in the top
10% on a general test. The tensile mean is 200 and a standard deviation of
20. Find the lowest possible tensile strength to qualify. Assume the test

scores are normally distributed.
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