Break-even analysis with multiple products

A multi-product company means a company that sells two or more products. For computing break-even point of a company with two or more products, we must know the sales percentage of individual products in the total sales mix. This information is used in computing weighted average selling price and weighted average variable expenses (weighted average CM per unit).
, following assumptions are made in addition to those already made for CVP analysis:

1. The proportion of sales mix must be predetermined. In other words, the proportion of each product in a sales mix is fixed
2. The sales mix must not change within the relevant time period.

Example: Formulas and Calculation Procedure

Following information is related to sales mix of product A, B and C .

Product	A	B	C
Sales Price per Unit	$\$ 15$	$\$ 21$	$\$ 36$
Variable Cost per Unit	$\$ 9$	$\$ 14$	$\$ 19$
Sales Mix Percentage	20%	20%	60%
Total Fixed Cost		$\$ 40,000$	

Calculate the break-even point in units and in dollars.

Calculation

Step 1: Calculate the contribution margin per unit for each product:

Product

Sales Price per Unit

- Variable Cost per Unit

Contribution Margin per Unit

A	B	C
$\$ 15$	$\$ 21$	$\$ 36$
$\$ 9$	$\$ 14$	$\$ 19$
$\$ 6$	$\$ 7$	$\$ 17$

Step 2: Calculate the weighted-average contribution margin per unit for the sales mix using the following formula:

Product A	CM	per	Unit	\times	Product	A	Sales	Mix	Percentage	
+	Product	B	CM	per	Unit	\times	Product	B	Sales	Mix

Sales mix, Target income
Ahmed F. Saleh

Product
Sales Price per Unit

- Variable Cost per Unit

Contribution Margin per Unit
\times Sales Mix Percentage

Sum: Weighted Average CM per Unit

A	B	C
$\$ 15$	$\$ 21$	$\$ 36$
$\$ 9$	$\$ 14$	$\$ 19$
$\$ 6$	$\$ 7$	$\$ 17$
20%	20%	60%
$\$ 1.2$	$\$ 1.4$	$\$ 10.2$
	$\mathbf{\$ 1 2 . 8 0}$	

Step 3: Calculate total units of sales mix required to break-even using the formula:
Break-even Point in Units of Sales Mix $=$ Total Fixed Cost \div Weighted Average CM per Unit

Total Fixed Cost
\div Weighted Average CM per Unit
Break-even Point in Units of Sales Mix

$\$ 40,000$
$\$ 12.80$
3,125 units

Step 4: Calculate number units of product A, B and C at break-even point:
Product
Sales Mix Ratio

A	B	C
20%	20%	60%
3,125	3,125	3,125
625	625	1,875

\times Total Break-even Units
Product Units at Break-even Point
Step 5: Calculate Break-even Point in dollars as follows:
Product
Product Units at Break-even Point
\times Price per Unit
Product Sales in Dollars
Sum: Break-even Point in Dollars

A	B	C
625	625	1,875
$\$ 15$	$\$ 21$	$\$ 36$
$\$ 9,375$	$\$ 13,125$	$\$ 67,500$
$\$ 90,000$		

Total fixed expenses
 Break-even point $=\frac{\text { Weighted average contribution margin per unit }}{\text { Wind }}$

Example:

Ali's company manufactures three products - product X , product Y and product Z . The variable expenses and sales prices of all the products are given below:

	Product X	Product Y	Product Z
Sale per unit	$\$ 200$	$\$ 100$	$\$ 50$
Variable expenses per unit	$\$ 100$	$\$ 75$	$\$ 25$

The total fixed expenses of the company are $\mathbf{\$ 5 0 , 0 0 0}$ per month. For the coming moth. Monster expects the sale of three products in the following ratio:

Product X: 20\%;
Product Y: 30\%;

Product Z: 50\%

Required: Compute the break-even point of Ali Company in units and dollars for the coming month!

Solution:

His company sells three products and is, therefore, a multi-product company. Its breakeven point can be computed by applying the above formula:

Break-even point $=\frac{\text { Total fixed expenses }}{$| Weighted average selling price - weighted |
| :---: |
| average variable expenses |}

$=\$ 50,000 / \$ 95^{*}-\$ 55^{*} *$
$=\$ 50,000 / \$ 40$
$=1,250$ units
*Weighted average selling price:
$=(\$ 200 \times 20 \%)+(\$ 100 \times 30 \%)+(\$ 50 \times 50 \%)$
$=\$ 40+\$ 30+\$ 25$
$=\$ 95$ TWAOF THE SEIIIGN PRICE
**Weighted average variable expenses:
$=(\$ 100 \times 20 \%)+(\$ 75 \times 30 \%)+(\$ 25 \times 50 \%)$
$=\$ 20+22.50+12.50$
$=\$ 55$ TWAof VC

The company will have to sell 1,250 units to break-even. Now we would compute the number of units of each product to be sold:

Product X (1,250×20\%): 250 units
Product Y $(1,250 \times 30 \%)$: 375 units
Product Z ($1,250 \times 50 \%$): 625 units
Total: 250 units +375 units +625 units $=1,250$ units

As the number of units of each individual product to be sold have been computed, I can compute the break even point in dollars as follows:

Product X $(250$ units $\times \$ 200)$	$\$ \quad 50,000$
Product Y $(375$ units $\times \$ 100)$	37,500
Product $Z(625$ units $\times \$ 50)$	31,250
Break-even point in dollars	$\$ 118,750$

The break-even point of Ali company is $\$ 118,750$. It can be verified by preparing a contribution margin income statement as follows:

Sales (BEP in dollars)	$\$ 118,750$
Less variable expenses	$68,750^{*}$
Contribution margin	50,000
Less fixed expenses	50,000
Net operating income	$\$ 0$
$(250$ units $\times \$ 100)+(375$ units $\times \$ 75)+(625$ units	

Example:

The NORAN company sells two products; product X and product Y . The information about sales price, variable expenses per unit and total fixed expenses is given below:

	Product X	Product Y
Sale per unit	$\$ 50$	$\$ 100$
Variable expenses per unit	$\$ 30$	$\$ 40$

The total monthly fixed expenses of the company are $\mathbf{\$ 2 7 0 , 0 0 0}$. The company wants to generate a sales revenue of $\mathbf{\$ 1 , 0 0 0 , 0 0 0}$ in the next month. To obtain this goal the company has the following options:
(A). Sell 6,000 units of product X and 7,000 units of product Y .
(B). Sell 14,000 units of product X and 3,000 units of product Y .

Required:

1. Prepare contribution margin income statement and calculate break-even point if NORAN decides to select option (a).
2. Prepare contribution margin income statement and calculate break-even point if NORAN decides to select option (b).
3. Whichever is the better option, (a) or (b)?
4. Explain the reason of change in break-even point in dollars (if any).

Solution:

(1). If option (a) is selected:

Sales	Product X	Product Y		Total
	\$ 300,000	\$ 700,000	\$	1,000,000
Variable expenses	180,000	280,000		460,000
Contribution margin	\$ 120,000	\$ 420,000		540,000
Less fixed expenses				270,000
Net operating income			\$	270,000

Break-even point $=$ Total fixed expenses / Overall contribution margin ratio

$$
\begin{aligned}
& =\$ 270,000 / 54 \%^{*} \\
& =\$ 500,000
\end{aligned}
$$

(2). If option (ii) is selected:

Break-even point $=$ Total fixed expenses $/$ Overall contribution margin ratio
= \$270,000/.46*
$=\$ 586,957$
*460,000/1,000,000
(3) The better option:

Option (a) is better than option (b) because it generates more net operating income.
(4). The reason of change in break-even point:

A change in sales mix usually have a strong effect on the break-even point. The breakeven point has increased from $\$ 500,000$ to $\$ 586,957$ because the shift in sales mix from high margin product (product Y) to low margin product (product X) has dropped the overall contribution margin ratio from 0.54 to 0.46 .

A shift in sales mix from high contribution margin product to low contribution margin product increases the dollar sales required to break-even while a shift from low contribution margin product to high contribution margin product reduces the dollar sales required to break-even.

Homework \#1 about Target income:

Sales mix, Target income
Ahmed F. Saleh

Assume that LWD Fashion LLC is selling three products as shown in the table below.

	Jeans	T-Shirts	Sweaters	Total
Sales Price per Unit	$\$ 95$	$\$ 45$	$\$ 90$	
Variable Cost per Unit	$\$ 55$	$\$ 35$	$\$ 60$	
Percentage of Sales Mix	40%	20%	40%	$\mathbf{1 0 0 \%}$
Fixed Costs				$\mathbf{\$ 6 0 0 , 0 0 0}$
Target Profit				$\mathbf{\$ 4 5 0 , 0 0 0}$

The company's management expects to earn a profit of $\$ 450,000$. Let's perform target profit analysis if the proportion of jeans in the sales mix is 40%, T-shirts 20%, and sweaters 40\%.

Homework \#2

ABC Company sells products A, B and C . data about three products are as follows:

	A	B	C	
Selling price per unit	$\$ 100$	$\$ 120$	$\$ 50$	
Variable cost per unit	60	90	40	
Contribution margin per unit	40	30	10	
Sales in units	1,000	2,000	5,000	
Total fixed costs				$\$ 8,000$

Required? Calculate the BEP in units and \$?

