
University of Anbar
College of Science – Dept. of Physics

Lectures of Semiconductors #1

for 3th level of physics students
Lecture 7 : Introduction to the Quantum Theory of Solids/3

by 
Assist Prof. Dr. Mazin A. Al-Alousi

2021-2022



Mazin A. Alalousi...............................Ch.3 2

3.3.1  The k-Space Diagrams of Si and GaAs

The E versus k diagram for GaAs. 

The valence band maximum and the conduction 
band minimum both occur at k = 0. 

The electrons in the conduction band tend to 
settle at the minimum conduction band energy 
which is at k = 0. 

Similarly, holes in the valence band tend to
congregate at the uppermost valence band energy.

In GaAs, the minimum conduction band energy 
and maximum valence band energy occur at the 
same k value.

A semiconductor with this property is said to be a 
direct  bandgap semiconductor; transitions between 
the two allowed bands can take place with no 
change in crystal momentum ℏ𝒌. 

This direct nature has significant effect on the optical properties of the material. GaAs and 
other direct bandgap materials are ideally suited for use in semiconductor lasers and other 
optical devices. 
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When electrons make a transition between the
conduction and valence bands, we must invoke
the law of conservation of momentum. A
transition in an indirect bandgap material must
necessarily include an interaction with the
crystal so that crystal momentum is conserved.

The maximum in the valence band energy 
occurs at k = 0 

The minimum in the conduction hand energy 
occurs not at k = 0, but along the [100] direction. 

The difference between the minimum 
conduction band energy and the maximum 
valence band energy is still defined as the 
bandgap energy Eg. A semiconductor whose 
maximum valence band energy and minimum 
conduction band energy do not occur at the 
same k value is called an indirect bandgap 
semiconductor.

Some compound semiconductor, such as Gap and AIAs, have indirect bandgaps
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3.3.2  Additional Effective Mass Concepts

 For the one-dimensional E versus k diagram, the
effective mass was defined by

Equation ,
1

ℏ2
𝑑2𝐸

𝑑𝑘2
=

1

𝑚∗. A complication occurs in the

effective mass concept in a real crystal. A three-
dimensional crystal can be described by three k vectors.
The curvature of the 𝐸 versus k diagram at the
conduction band minimum may not be the same in the
three k directions.

 The curvature of the E versus k diagrams
near the minimum of the conduction band
energy is related to the effective mass of
the electron. We may note from the beside
figure , that the curvature of the conduction
band at its minimum value for GaAs is larger
than that of silicon, so the effective mass of
an electron in the conduction hand of GaAs
will be smaller than that in silicon.



3.4 : DENSITY OF STATES FUNCTION 

We can determine the density of quantum states in k space. A 
differential volume in k space is given by( 4𝜋 k

2
dk) , so the 

differential density of quantum states in k space can be 
written as

𝑔𝑇 𝑘 𝑑𝑘 = 2
1

8

4𝜋𝑘2𝑑𝑘

𝜋
𝑎

3 =
𝑘2𝑑𝑘

𝜋2
𝑎3 ……… . (28)

The density of quantum states is a function of energy 𝑬. As the energy of this free electron
becomes small, the number of available quantum states decreases. This density function is
really a double density, in that the units are given in terms of states per unit energy per
unit volume.

, ,

…………………………..(29)

…………………………..(30)
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The volume density of quantum states is

𝑁 = න

𝐸1

𝐸2

𝑔 𝐸 𝑑𝐸

=
4𝜋 2𝑚 ൗ3 2

ℎ3
න

𝐸1

𝐸2

𝐸 𝑑𝐸

=
2

3

4𝜋 2𝑚 ൗ3 2

ℎ3
𝐸2

Τ3 2 − 𝐸1
Τ3 2

…………………………..(31)

…………………………..(32)

…………………………..(33)
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3.4.2  Extension to Semiconductors

The relationship between energy and momentum of a free electron was given by :

𝐸 =
𝑝2

2𝑚
=

𝑘2ℏ2

2𝑚
………………………… . (34)

The E versus k curve near 𝑘 = 𝑂 at the
bottom of the conduction band can be
approximated as a parabola, so we may write

𝐸 = 𝐸𝑐 +
ℏ2𝑘2

2𝑚𝑛
∗ ……………………(35)

where Ec is the bottom edge of the conduction band and 𝒎∗ is the electron effective 
mass. 

𝐸 − 𝐸𝑐 =
ℏ2𝑘2

2𝑚𝑛
∗ ……………………(36)

The general form of the 𝐸 versus 𝑘 relation for an electron in the bottom of a conduction
band is the same as the free electron, except the mass is replaced by the effective mass. We
can then think of the electron in the bottom of the conduction band as being a "free “
electron with its own particular mass.
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To describe the density of allowed electronic energy states in the conduction band us we 
can rewrite eq. (46)  as : 

𝑔𝑐 𝐸 =
4𝜋(2𝑚𝑛

∗
) ൗ3 2

ℎ3
𝐸 − 𝐸𝐶 ……………………… . . (36)

Eq. (33) is valid for 𝐸 ≥ 𝐸𝑐. As the energy of the electron in the conduction band
decreases, the number of available quantum states also decreases.
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The density of quantum states in the valence hand can
be obtained by using the same infinite potential well
model, since the hole is also confined in the
semiconductor crystal and can be treated as a "free"
particle. The effective mass of the hole is 𝑚

𝑝

∗
. Figure

showed the valence energy band in the reduced 𝑘
space. We may also approximate the E versus k curve
near 𝑘 = 0 by a parabola for a "free" hole, so that

𝐸 = 𝐸𝑣 −
ℏ2𝑘2

2𝑚𝑝
∗ ……………………… . (37)

𝐸𝑣 − 𝐸 =
ℏ2𝑘2

2𝑚𝑝
∗ ……………………… . (38)

𝑔 𝐸 =
4𝜋(2𝑚𝑝

∗) ൗ3 2

ℎ3
𝐸𝑣 − 𝐸 ……… . . (39)

Equation (56) is valid for 𝐸 ≤ 𝐸𝐶 .

∗ 𝑔 𝐸 = 0 𝑓𝑜𝑟 𝐸𝑣 < 𝐸 < 𝐸𝐶

If the electron and hole effective masses were  equal, then the functions 𝑔 𝐸 𝐶 and 𝑔 𝐸 v

would be symmetrical about the energy midway between 𝐸𝐶 and 𝐸𝑣 or the midgap energy. 
𝐸𝑚𝑖𝑑𝑔𝑎
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Determine the total number of energy states in silicon between 𝐸𝐶 and 𝐸𝑣 + 𝑘𝑇 at 

T = 300 K. Where 
𝑚

𝑒
∗

𝑚
𝑒𝑜

= 1.08 .

Example: 

Solution : 

𝑁 = න

𝐸𝑐

𝐸𝑐+𝑘𝑇

𝑔𝑐 𝐸 𝑑𝐸 = 𝑔𝑐 𝐸 = න

𝐸𝑐

𝐸𝑐+𝑘𝑇
4𝜋(2𝑚𝑛

∗
) ൗ3 2

ℎ3
𝐸 − 𝐸𝐶 𝑑𝐸

𝐸𝑐 + 𝑘𝑇

𝐸𝑐

= න

𝐸𝑐

𝐸𝑐+𝑘𝑇
4𝜋(2𝑚𝑛

∗
) ൗ3 2

ℎ3
𝐸

Τ
1
2

𝑑𝐸

= න

0

𝑘𝑇
4𝜋 2𝑚𝑛

3/2( Τ𝑚𝑛

∗

𝑚𝑛)
ൗ3 2

ℎ3
𝐸

Τ
1
2

𝑑𝐸

=
4𝜋 2𝑚𝑛

∗ 3/2( Τ𝑚𝑛

∗

𝑚𝑛)
ൗ3 2

ℎ3
2

3
ቃ𝐸

3/2 𝑘𝑇

0

(𝑯.𝑾𝟏𝟐 ): E3.2 p.88 in Semiconductor Physics and Devices(Donald A. Neamen) 



3.5 :   STATISTICAL MECHANICS 

3.5.1  Statistical Laws

In determining the statistical behavior of particles, we must consider the laws that the
particles obey. There are three distribution laws determining the distribution of particles
among available energy states.

1. the Maxwell-Boltzmann probability function. In this case, the particles are considered to 
be distinguishable by being numbered, for example, from 1  to N. with no limit to the 
number of particles allowed in each energy state. The behavior of gas molecules in a 
container at Fairly low pressure is an example of this distribution. 

2. the Bose-Einstein function. The particles in this case are indistinguishable and, again, 
there is no limit to the number of particles permitted in each quantum state. The 
behavior of photons, or black body radiation, is an example of this law. And the particles 
have integer n of spin (n = 0,1,2 …..) 

3. the Fermi-Dirac probability function. In this case, the particles are again 
indistinguishable, but now only one particle is permitted in each quantum state. 
Electrons in a crystal obey this law. And the particles have spin (S= 0,1,2 …..) .

In each case, the particles are assumed to be noninteracting

The particles with half-integer spins, such as 1/2, 3/2, 5/2, are known as fermions, while the 
particles with integer spins, such as 0, 1, 2, are known as bosons 11

http://en.wikipedia.org/wiki/Fermion
http://en.wikipedia.org/wiki/Bosons


3.5.2  The Fermi-Dirac Probability Function

The most probable distribution function as 

𝑁(𝐸)

𝑔(𝐸)
= 𝑓 𝐸 =

1

1 + exp(
𝐸 − 𝐸𝐹
𝑘𝑇

)

EF = Fermi energy or Fermi level

k = Boltzmann constant 

= 1.38 1023 J/K = 8.6  105 eV/K

T = absolute temperature in K 

Density of states tells us how many states exist at a given energy E  . The Fermi 

function f(E) specifies how many of the existing states at the energy E will be 

filled with electrons. The function f(E) specifies, under equilibrium conditions, 

the probability that an available state at an energy E will be occupied by an 

electron. It is a probability distribution function.

𝑓 𝐸 =
1

1 + 𝑒(𝐸− 𝐸𝑓)/𝑘𝑇
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Fermi-Dirac distribution: Consider T  0 K

For E < EF :




  )(exp:0
)(exp1

1
)( FEEf

1
)(exp1

1
)( F 


 EEf

1

EF
0

f (E)

E

For  E > EF :

Ef
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• If E = EF then               𝑓(𝐸𝐹) = ½

• If                                            then    

Thus the following approximation is valid:

i.e., most states at energies 3kT above EF are empty.

• If                                           then

Thus the following approximation is valid:

So, 1f(E) = Probability that a state is empty, decays to zero.

So, most states will be filled.

kT (at 300 K) = 0.025eV, Eg(Si) = 1.1eV, so 3kT is very small in 
comparison.

kTEE 3F  1exp F 






 

kT

EE








 


kT

EE
Ef

)(
exp)( F

kTEE 3F  1exp F 






 

kT

EE








 


kT

EE
Ef Fexp1)(

Fermi-Dirac distribution: Consider T > 0 K
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• consider a case in which the density of quantum states g(E) is a continuous 
function of energy

If No electrons in this system, then the distribution of these electrons among the
quantum states at T = 0 K is shown by the dashed line. The electrons are in the
lowest possible energy state so that all states below EF are filled and all states above
EF are empty. If g(E) and No are known for this particular system, then the Fermi
energy EF can be determined.
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Consider the situation when the temperature increases above T = O K. Electrons gain a 
certain amount of thermal energy so that some electrons can jump to higher energy 
levels, which means that the distribution of electrons among the available energy states 
will change.

Ef

16

T = O K T > K
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The change in the electron distribution among energy levels for T > O K can be seen by 
plotting the Fermi-Dirac  distribution function. If we let E = EF and T > OK

E = EF then  f (EF) = ½ 

The probability of a state being occupied at E = EF is (1/2)
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Determine the probability that an energy level 3kT above the Fermi energy is occupied 
by an electron.

EXAMPLE:

Solution :

𝑓 𝐸 =
1

1 + 𝑒(𝐸− 𝐸𝑓)/𝑘𝑇
=

1

1 + 𝑒3𝑘𝑇/𝑘𝑇
= 0.0474

H.W : E3.4 , E3.5 , E3.6 and E3.7 P. s 93 and 94  

the probability of a state a distance 𝑑𝐸 above
𝐸𝐹 occupied is the same as the probability of a
state a distance 𝑑𝐸 below 𝐸𝐹 empty. The
function fF (E) is symmetrical with the function
(1 − 𝑓𝐹(𝐸)) about t Fermi energy, 𝐸𝐹
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Consider the case when E - EF >> kT . where the exponential term in the denominator of 

Equation 𝑓 𝐸 =
1

1+ 𝑒
(𝐸− 𝐸𝑓)/𝑘𝑇

is much greater than unity. We may neglect the 1 in the 

denominator, so the Femi-Dirac distribution function becomes

𝑓 𝐸 ≈ 𝑒−(𝐸− 𝐸𝑓)/𝑘𝑇

This equation  is known as the Maxwell - Boltzmann approximation, or simply the Boltzmann 
approximation to the Fermi-Dirac distribution function.

This figure gives an indication of the range 
of energies over which the approximation 
is valid. 
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To determine the energy at which the Boltzmann approximation may be considered valid.
Calculate the energy, in terms of 𝑘𝑇 and 𝐸𝐹 . at which the difference between the
Boltzmann approximation and the Fermi-Dirac function is 5 percent of the Fermi function.

EXAMPLE:

Solution :

exp −(𝐸− 𝐸𝑓)/𝑘𝑇 −
1

1+exp (𝐸− 𝐸𝑓)/𝑘𝑇

1

1+exp (𝐸− 𝐸𝑓)/𝑘𝑇

= 0.05

exp−(𝐸 − 𝐸𝑓)/𝑘𝑇 . 1 + exp
𝐸− 𝐸𝑓

𝑘𝑇
− 1 = 0.05

exp−(𝐸 − 𝐸𝑓)/𝑘𝑇 = 0.05

𝐸 − 𝐸𝑓 = 𝑘𝑇𝑙𝑛
1

0.05
≈ 3𝑘𝑇

H.W : Solve the odd problems of ch.3 

20

If we multiply both numerator and denominator by the 1 + exp (𝐸 − 𝐸𝑓)/𝑘𝑇 function, 

we have
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