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THE EXTRINSIC SEMICONDUCTOR

An extrinsic semiconductor is a semiconductor in which controlled amounts of specific
dopant or impurity atoms have been added so that the thermal-equilibrium electron and

hole concentrations are different from the intrinsic carrier concentration.

Intrinsic semiconductor
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Adding the donor atoms

Adding the donor atoms
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* The electron concentration is larger * The holes concentration is larger
than holes concentration than electrons concentration
* the semiconductor is n-type * the semiconductor is p-type
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Example:

Consider silicon at T = 300 K so that N, = 2.8 X 1012 cm™3and N, = 1.04 X 1019
cm™3. If that the Fermi energy is 0.25 eV below the conduction band. If we assume
that the bandgap energy of silicon is 1.12 eV. Calculate the thermal equilibrium
concentrations of electrons and holes for a given Fermi energy.

C.B
v B —(E; — E,)
_________ 0.25 eV Po = N, exp T
112 eV I 0.87eV I f
po = (1.04 X 10")exp(00“9) =27 X 10 cm™
V.B
o _ In an n-type semiconductor, electrons
112 -0.25 = 0.87eV are referred to as the majority carrier
; —(E. — Ej) and holes as the minority carrier.
o =N LXP[ kT ] While in a p-type it is in reverse order
ny = (2.8 X ]0”)L\p(0(()){%39} = 1.8 X 105 ¢m™3

Mazin A. AlaloUSi.....ccouueeiviiinieiieeinnnn. Ch.3



ny, = N.exp [ _(Eck; F)] add and subtract an intrinsic Fermi energy in the exponent
_E_E,-*-E_E, —EL’—EY Er
I'IO:Ncexp[ & ’)kT e ’)] = "locheXP[ ( e ’)]exp[ ’)]
The intrinsic carrier concentration is given by W
n = M exp I:—'(E(I\—]_: EF!')J

so that the thermal-equilibrium electron concentration can be written as

E.—E,.
No = n; exp [fT“]

_(Ef E"l)

Similarly, Po = R; exp[

Here note, the Fermi level position depends on the n, and p,
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—( - EF)
ny, = N, exp
kT —(E. — Ej) —(Er — E,)
= n =MM%[
- il T kT
pO U p kT .
— i n;

s —E, _ 2

Mo Po = N Ny €xp | = Ny Po = N;

n° = N. N, ex [—E‘]
| e dle SXP TP
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The Fermi-Dirac Integral ; i ——
(Va2 ) expiap Y7
N7
fy = [ o E)f(E) dE | VY
2 /-
Ny = m (2m*)>*/2 " _(E-E)"dE E /
0 h} . " g g (E - Ef) ’*é 10— —
exp \—— 2
. - i G =
If we again make a change of variable and let . / [
L Fyjo(mp) = |+1:i;;r_=?a—i )
E—E, _E —E 7
n = Tﬂ and also define My = T /f
then n, can be written as R .
2m*kT\3/2| = n'? dn et
11(»:477( ,.nz ) / (=4 =
' i np>0 - Ep>E,
P s n‘/ *dn the Fermi energy is actually
l/'l(nf') - / 1 + exp (m — 1) in the conduction band.
()

the Fermi—Dirac integral
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Example:

Let = 2 so that the Fermi energy is above the conduction band by approximately
52meV atT = 300 K.

Calculate the electron concentration using the Fermi—Dirac integral.

2 .
Np = —— !V‘-F y (M)
0T g 172 \7r
For silicon at 7T = 300 K. N. = 2.8 x 10 cm™ 10 "
7 /,f,
Fin(2)=27 [4- =\ ) exp(any) = =
ere FJ
. vl
p) : ) E i
ny = —=— (2.8 X 10°)(2.7) = 8.53 X 10° cm3 < 7
NI E /|
E 10! }/’ |
) £
$ /
ID—I ; _ X ril'ﬂﬁrJ
=t F1/2mp) _.[lﬁl_u
f.f
/
7 |
10—

-6 -4 -2 0 2
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Adding a group III elements:

The group lll element has three valence electrons, which are all taken up in the covalent

bonding.
@+©+@®
—Q— O

p — type semiconductor

1 equivalence @ @ @

These atoms is called
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Degenerate and Nondegenerate Semiconductors:

» At the concentration of dopant atoms added is small when compared to the density of
host or semiconductor atoms.

the impurities introduce
Nc, N, > N4, N,

noninteracting donor energy states in noninteracting acceptor energy states
the n-type semiconductor In the p-type semiconductor

« |If the impurity concentration increases, the distance between the impurity atoms
decreases, and a point will be reached when donor electrons, will begin to interact with
each other.

This occurs when the concentration of T =
electrons in the conduction band exceeds ”
the density of states N.

Electron energy

a degenerate n-type semiconductor



STATISTICS OF DONORS AND ACCEPTORS

Probability Function:

Suppose we have N; electrons and g; quantum states, where the subscript i indicates
the it" energy level.

Each donor level has two possible spin orientations for the donor electron; thus, each
donor level has two quantum states

The distribution function of donor electrons in the donor energy states is then slightly
different than the Fermi—Dirac function.
The probability function of electrons occupying the donor state is

It is a direct result of the spin factor ~ N,

ng = ) +xp (Edk_TEF) ......

where n is the density of electrons occupying the donor level and E; is the energy of

the donor level.
where N is the concentration of ionized donors.

where N is the

Ng
Ng = T EFm (4.50) —>—>=Ng+ Nj....(451) . ncentration of
gexp(~ ) ioni
g ionized donors.
l —— 1 where g is called a degeneracy factor.

2 g



In the same way for acceptor atoms
Ng

1 EF—Ea)
1+gexp (—kT

pa — —— = Na + Na_ ...... (4.52)

where N, is the concentration of acceptor atoms,

E, is the acceptor energy level,

p.I1S the concentration of holes in the acceptor states,
and N, is the concentration of ionized acceptors.

In this case, a hole in an acceptor state corresponds to an acceptor atom that is
neutrally charged and still has an “empty” bonding position



Complete lonization and Freeze-Out

rom cqg.\4. ng =
1 1 (Ed EF)
g k1
Nd

Ed_EF)
kT

the Boltzmann approximation is also valid for the electrons in the conduction band so

kT

, If we assume that (E; — Er) >» kT , then

—(Eq—E
ng ~ = ZNdexp[ ( I‘iT F)] ......... (4.53)

1 +%exp(

= N_.exp [

determine the relative number of electrons in the donor state compared with the total

number of electrons; e E
2N exp [_( ‘;{; F)]

Ng
= — R (5.54)
Mg + Mo 2N exp [ (E‘;(T EF)] + N_.exp [ (ECI'CT EF)]
Ta  _ - (5.55)
nd+n0_1+NC _Ec_Ed) ......... -
P KT

The factor (E. — E;) is just the ionization energy of the donor electrons.



EXAMPLE

Determine the fraction of total electrons in the donor states at T = 300 K of the

phosphorus-doped silicon if the concentration (N;) of phosphorus is 1016 cm3 at
300K.

Solution

From Table 4.1
N.=28x10Ycm™3

Ta . 5.55
nd+no_1_|_NC —EC—Ed)] """"" (5:55)
2N, KT
i . | . A1 — (O 410
Ny + Ny { @ 2.8 X 10" & ( —0.045 ==HOELALE
210%) P 10.0259 .



At room temperature, there is also essentially complete ionization of the acceptor atoms.
This means that each acceptor atom has accepted an electron from the valence band so

that P, is zero. At typical acceptor doping concentrations, a hole is created in the
valence band for each acceptor atom.

Conduction band Conduction band
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At absolute zero degrees,
all electrons are in their lowest possible energy state; that is, for an n-type

semiconductor, each donor state must contain an electron,

therefore, ng=Ng or Nj=0
Ny \
at T = 0K, Ng = 1 B, —En| (4.50) »—»=N;+ N,
1+ gexp (P4~ =

e—OO == 0 e A EF>Ed

In the case of a p-type semiconductor at absolute zero temperature, the impurity atoms
will not contain any electrons, so that the Fermi energy level must be below the acceptor

energy state. N-type semiconductor P-type semiconductor

|
ctron energy ———9=
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(a) (b)

No electrons from the donor state are thermally elevated into the conduction band or the
valence band respectively; this effect is called freeze-out.



EXAMPLE

Determine the temperature at which 90 percent of acceptor atoms are ionized. Consider
p-type silicon doped with boron at a concentration of N, = 10*® ¢cm™=3 and g = 4.

Solution
e L ;
1)' + p a1 J\_r i [—([5‘.' — El)]
L+ NP3 kT
Pa_ _ 1
Pa + Do T 3/2
Ny (300) [=(E, -
300 (Eq — Ey)
1+ 4N, exp [ T

From Table 4.1 N, = 1.04 x 101° cm™3 and from Table 4.3, the lonization energy
for Si with acceptor Boron atoms is 0.045 eV

(kT)p = (KT (%) ~0.0259 (3%0) eV

1

0.1 = 372 = T =193K

T
(1.04 x 10%) (355) exp[ —(0.045)

T 4% 101 0.0259 (%)




H.Ws
Ex. 4.7, Ex4.8 TYU 4.9, TYU 4.10

4.31: The electron and hole concentrations as a function of energy in the conduction
band and valence band peak at a particular energy as shown in Figure 4.8. Consider
silicon and assume E. — Er = 0.20 eV. Determine the energy, relative to the band

edges, at which the concentrations peak.
4.32: For the Boltzmann approximation to be valid for a semiconductor, the Fermi level

must be at least 3kT below the donor level in an n-type material and at least 3kT above
the acceptor level in a p-type material. If T = 300 K, determine the maximum electron
concentration in an n-type semiconductor and the maximum hole concentration in a p-
type semiconductor for the Boltzmann approximation to be valid in (a) silicon and (b)
gallium arsenide.



CHARGE NEUTRALITY

In thermal equilibrium, the semiconductor crystal is electrically neutral. The electrons

are distributed among the various energy states, creating negative and positive charges,
but the net charge density is zero.

Compensated Semiconductors

A compensated semiconductor is one that contains both donor and acceptor impurity
atoms in the same region.

A compensated semiconductor can be formed, for example, by diffusing acceptor
Impurities into an n-type material or by diffusing donor impurities into a p-type material.

Conditions:

An n-type compensated semiconductor occurs when N; > N,
A p-type compensated semiconductor occurs when N; < N,,.
If N; = N,, we have a completely compensated semiconductor



Total electron
concentration

Thermal ( Donor
electrons ng electrons
] r A 1
7 w ’ 3 ’;-v
T g v g
L . J / / v J
Un-ionized N; = (N;— ny)
donors Ionized donors
_____________ —— e —————————————
Un-ionized N, =(N,— p,)
acceptors lonized acceptors
A A
— — —— —_—— I ,
5 \I I *l [~"_
+ + + + + 4+ o+
\ ) L v J
17' )
Thermal ( Acceptor
holes holes

Total hole
concentration



The charge neutrality condition is expressed by equating the density of negative charges
to the density of positive charges.

N + N7 =pg + NJ oo (4.56)
we have ng=Ng;+NI =N =N, —ny
Pa =Ng+Ng >Ny =Ny —pg
then,, Ny + (Ng —Pa) =00 + (Ng —ng) oo (4.57)

where n, and p, are the thermal-equilibrium concentrations of electrons and holes in
the conduction band and valence band, respectively.

The parameter n, is the concentration of electrons in the donor energy states, so N
is the concentration of positively charged donor states.

D, 1S the concentration of holes in the acceptor states, so N, is the concentration of
negatively charged acceptor states



At Thermal-Equilibrium Electron Concentration

The charge neutrality condition is expressed by equating the density of negative charges
to the density of positive charges.

n, + (Na — pa) = Do T+ (Nd — Tld) ................ (457)

If we assume complete ionization, n; and p, are both zero

Ny + Ny =Py + Ny covrrrereree (4.58)
we have, n? = nypP,
ni
no + Na = n_o + Nd (459)

The electron concentration n, can be determined using the quadratic formula, or

n, = 2alNa | [Na=Na | .2 (4.60)
o =L \/ - 2 e .

The positive sign in the quadratic formula must be used, since, in the limit of an
intrinsic semiconductor when N, = N, = 0, the electron concentration must be a
positive quantity, or ng = n,.

Equation (4.60) is used to calculate the electron concentration in an n-type semi-
conductor, or when N, > N,. Although Equation (4.60) was derived for a compen-
sated semiconductor, the equation is also valid for N, = 0.




EXAMPLE

Determine the thermal-equilibrium electron and hole concentrations in silicon at T 300 K
for given doping concentrations. (a) Let Ny= 101 cm™3 and N,= 0. (b) Let N,
=5x10%cm™3and N,= 1.5 x 105, Recall that n; = 1.5 x 10%cm~3.in silicon at T

=300 K.
np = Nihe . [Nate 2 (460

H Solution
(a) From Equation (4.60), the majority carrier electron concentration is

\ -— /

The minority carrier hole concentration is found to be

n’ (1.5 X 10'9)2

— {

o — 4 -3
Po= 3= e =225 X 10*cm

(b) Again, from Equation (4.60), the majority carrier electron concentration is

15 - 15 f & 5\2 G
o = X 10° =2 X 10 +\/(5><10* — 2 X005V (1.5 x 1097 = 3 X 10¥ em

- e

The minority carrier hole concentration is
i (15 5% 109

i

=TT 3 105 7.5 X 10*cm™




