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Definition: (Degree Sequence) The degree sequence of a graph of order 𝑛 is the

𝑛 −term sequence (usually written in descending order) of the vertex degrees.

Definition: (Graphical Sequence) An integer sequence is said to be graphical if

it is the degree sequence of some graphs.
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Example 1: Is the sequence 𝑆 = (9,9,8,7,7,6,6,5,5) graphical? Justify your

answer.

Solution: The sequence 𝑆 = (𝑎𝑖) is graphical if every element of 𝑆 is the degree

of some vertex in a graph. For any graph, we know that σ𝑣𝜖𝑉(𝐺)𝑑 𝑣 = 2𝐸, an

even integer. Here, σ𝑎𝑖 = 62, an even number. But note that the maximum

degree that a vertex can attain in a graph of order 𝑛 is 𝑛 − 1. If 𝑆 were graphical,

the corresponding graph would have been a graph on 9 vertices and have ∆(𝐺)
= 9. Therefore, the given sequence is not graphical.

Example 2: Is the sequence 𝑆 =(9,8,7,6,6,5,5,4,3,3,2,2) graphical? Justify your

answer.

Solution: The sequence 𝑆 = (𝑎𝑖) is graphical if every element of 𝑆 is the degree

of some vertex in a graph. For any graph, we know that σ𝑣𝜖𝑉(𝐺)𝑑 𝑣 = 2𝐸, an

even integer. Here, we have σ𝑎𝑖 = 60, an even number. Also, note that the all

elements in the sequence are less than the number of elements in that sequence.

Therefore, the given sequence is graphical.
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Example 3: Is the sequence 𝑆 = (5,4,3,3,2,2,2,1,1,1,1) graphical? Justify your

answer.

Solution: The sequence 𝑆 = (𝑎𝑖) is graphical if every element of 𝑆 is the

degree of some vertex in a graph. For any graph, we know that

σ𝑣𝜖𝑉(𝐺)𝑑 𝑣 = 2𝐸, an even integer. Here, σ𝑎𝑖 = 25, not an even number.

Therefore, the given sequence is not graphical.

Havel Hakimi Theorem: The non-negative integer sequence 𝐷 = 𝑑𝑖 1
𝑛 is

graphic if and only if ሖ𝐷 is graphic, where ሖ𝐷 is the sequence (having 𝑛 − 1

elements) obtained from 𝐷 by deleting its largest element ∆ and subtracting 1

from its ∆ next largest elements.



Havel Hakimi Algorithm (HHA)
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Neighbourhoods

Definition: (Neighbourhood of a Vertex) The neighbourhood (or open neighbourhood)

of a vertex 𝑣 , denoted by 𝑁(𝑣), is the set of vertices adjacent to 𝑣 . That is,

𝑁 𝑣 = {𝑥 ∈ 𝑉 ∶ 𝑣𝑥 ∈ 𝐸}. The closed neighbourhood of a vertex 𝑣, denoted by

𝑁[𝑣], is simply the set 𝑁(𝑣) ∪ 𝑣 .

Then, for any vertex 𝑣 in a graph 𝐺, we have 𝑑(𝑣) = 𝑁(𝑣) . A special case is a loop

that connects a vertex to itself; if such an edge exists, the vertex is said to belong to its

own neighbourhood.

Given a set 𝑆 of vertices, we define the neighbourhood of 𝑆, denoted by 𝑁(𝑆), to be

the union of the neighbourhoods of the vertices in 𝑆 . Similarly, the closed

neighbourhood of 𝑆, denoted by 𝑁[𝑆], is defined to be 𝑆 ∪ 𝑁(𝑆).
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Let     𝑆 = 𝑎,𝑏,𝑐 ,𝑡ℎ𝑒𝑛 𝑁 𝑆 = 𝑒,𝑑 ∪ 𝑐,𝑒,𝑔 ∪ 𝑏,𝑓 = 𝑒,𝑑,𝑐,𝑔,𝑏,𝑓

𝑁 𝑆 = 𝑒,𝑑 ∪ 𝑐,𝑒,𝑔 ∪ 𝑏,𝑓 ∪ 𝑎 ∪ 𝑏 ∪ 𝑐 = 𝑒,𝑑,𝑐,𝑔,𝑏,𝑓,𝑎 .
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1) Verify whether the integer sequences (7,6,5,4,3,3,2) and (6,6,5,4,3,3,1) 

are graphical. ( Hint: Use Havel Hakimi Algorithm) 

2) For the following graph 𝐺 , find:

δ 𝐺 , ∆ 𝐺 , N[𝑣5] and  degree sequence .



Thank You
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