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Outlines

✓Hamiltonian Graphs.

✓Weighted Graphs.
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Hamiltonian Graphs

Definition: A Hamiltonian path (Hamilton path ) is a path in an undirected (or directed

graph) that visits each vertex in graph. A graph that contains a Hamiltonian path is

called a traceable graph
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Traceable graph

Path :𝑣1𝑣2𝑣3𝑣4

A path is a trail that does not include any vertex

twice, except that its first vertex might be the

same as its last.

Path : 4-3-1-6.

Hamiltonian Path: 2- 6- 5- 1- 3- 4. 



4 Definition: A closed Hamiltonian path in an undirected (or directed graph) is called

a Hamiltonian cycle. If a Hamiltonian cycle exists in a given graph, then the graph

called an Hamiltonian graph.

Note: Any Hamiltonian cycle can be converted to a Hamiltonian path by

removing one of its edges, but a Hamiltonian path can be extended to a

Hamiltonian cycle only if its endpoints are adjacent.

𝐺1 has no Hamiltonian path, and so no Hamiltonian cycle; 𝐺2 has the Hamiltonian path 𝑣1𝑣2𝑣3𝑣4 , 

but has no Hamiltonian cycle, while 𝐺3 has the Hamiltonian cycle 𝑣1𝑣2𝑣3𝑣4𝑣1.

1. Every cycle graph is Hamiltonian.

2. Every wheel graph is Hamiltonian.

3. Every complete graph ( 𝑣 ≥ 3 ) is 

Hamiltonian.

4. Every complete bipartite graph ( except

K1,1 ) is Hamiltonian.
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Hamiltonian graphs

Not Hamiltonian graphs
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A necessary and sufficient condition for a graph to be a Hamiltonian is still to be

determined. But there are a few sufficient conditions for certain graphs to be

Hamiltonian as follows:

Dirac’s Theorem: A graph with 𝑛 vertices (𝑛 ≥ 3) , and every vertex having

degree ≥
𝑛

2
is Hamiltonian .
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CD

E
H

𝑛

2
=

7

2
= 3.5 , 𝑑 𝐴 = 𝑑 𝐷 = 2

𝑑 𝐵 = 𝑑 𝐶 = 𝑑 𝐸 = 𝑑 𝐹 = 𝑑 𝐻 = 4

𝑛

2
=

5

2
= 2.5 , 𝑑 𝐸 = 4

𝑑 𝐴 = 𝑑 𝐵 = 𝑑 𝐶 = 𝑑 𝐷 = 3



7
Ore’s Theorem: Let 𝐺 be a 𝑛 vertices graph ( 𝑛 ≥ 3 ), such that

𝑑(𝑢) + 𝑑(𝑣) ≥ 𝑛, for every pair of non adjacent vertices 𝑢, 𝑣 in 𝐺, then 𝐺 is

Hamiltonian.

𝑑 𝐴 + 𝑑(𝐶) = 6
𝑑 𝐵 + 𝑑(𝐸) = 5
𝑑 𝐵 + 𝑑(𝐷) = 5

𝑑 𝐴 + 𝑑(𝐶) = 4
𝑑 𝐴 + 𝑑(𝐷) = 4
𝑑 𝐵 + 𝑑(𝐷) = 4
𝑑 𝐵 + 𝑑(𝐹) = 4
𝑑 𝐶 + 𝑑(𝐹) = 4

A

B

CD

F
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The following theorem determines the number of edge-disjoint Hamilton

cycles in a complete graph 𝐾𝑛, where 𝑛 is odd.

Theorem: In a complete graph 𝐾𝑛, where 𝑛 ≥ 3 is odd, there are
𝑛−1

2
edge-

disjoint Hamilton cycles.

𝐾3 𝐾5
𝐾7



Weighted Graphs

Definition: (Weighted Graphs) A weighted graph is a graph 𝐺 in which each

edge 𝑒 has been assigned a real number w(e), called the weight (or length) of

the edge 𝑒.

If 𝐻 is a subgraph of a weighted graph, the weight 𝑤(𝐻) of 𝐻 is the sum of the

weights 𝑤 𝑒1 + 𝑤 𝑒2 +⋯+𝑤 𝑒𝑘 where 𝑒1, 𝑒2, … , 𝑒𝑘 is the set of edges

of 𝐻.
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Weighted Graph Unweighted Graph



10 The Traveling Salesman Problem:

Introduction The traveling salesman problem consists of a salesman and a set of

cities. The salesman has to visit each one of the cities starting from a certain one

(e.g. the hometown) and returning to the same city. The challenge of the problem

is that the traveling salesman wants to minimize the total length of the trip.

The problem lies in finding a minimal path passing from all

vertices once. For example the path 1 {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐴} and

the path 2 {𝐴, 𝐵, 𝐶, 𝐸, 𝐷, 𝐴} pass all the vertices but Path1 has

a total length of 24 and Path2 has a total length of 31.



Thank You
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