

جامعة الانبار كلية العلوم

قسم الرياضيات
نظرية البيانات

Isomorphic Graphs

م. د. امين شامان امين

Lecture (13)

Isomorphic Graphs

Dr. Ameen Sh. Ameen

Dept. of Mathematics.
College of Science \University of Anbar.

Graph isomorphism is a phenomenon of existing the same graph in more than one form. Such graphs are called an isomorphic graphs. In graph theory, an isomorphism of graphs G and H is a bijection between the vertex sets of G and H such that any two vertices u and v of G are adjacent in G if and only if $f(u)$ and $f(v)$ are adjacent in H.

Two graphs G_{1} and G_{2} are said to be isomorphic $\left(G_{1} \cong G_{2}\right)$ if :

1. Their number of components (vertices $\&$ edges) is same.
2. Their edge connectivity is retained.

Necessary Conditions for Two Graphs to be Isomorphic:

For any two graphs $G_{1} \& G_{2}$ to be isomorphic, the following 4 conditions must be satisfied:

- $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|$.
- $\left|E\left(G_{1}\right)\right|=\left|E\left(G_{2}\right)\right|$.
- Degree sequence of $G_{1} \& G_{2}$ are same.
- If the vertices $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ form a cycle of length k in G_{1}, then the vertices $\left\{f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{k}\right)\right\}$ should also form a cycle of length k in the G_{2}.

Important Points: The previous 4 conditions are just the necessary conditions for any two graphs to be isomorphic.

- They are not at all sufficient to prove that the two graphs are isomorphic.
- If all the 4 conditions satisfy, even then it can't be said that the graphs are surely isomorphic.
- However, if any condition violates, then it can be said that the graphs are surely not isomorphic.

Sufficient Conditions:

The following conditions are the sufficient conditions to prove that $G_{1} \cong G_{2}$. If any one of these conditions satisfy, then it can be said that the graphs are surely isomorphic.

- $G_{1} \cong G_{2}$ iff $\overline{G_{1}} \cong \overline{G_{2}}$, where G_{1} and G_{2} are simple graphs.
- $G_{1} \cong G_{2}$ if their adjacency matrices are permuted equivalent. In other words, assume that $\mathrm{X}\left(G_{1}\right) \& \mathrm{X}\left(G_{2}\right)$ are the adjacency matrices of two isomorphic graphs $G_{1} \& G_{2}$, respectively, then there exist $v \times v$ permutation matrix P such that:
$\mathrm{X}\left(G_{1}\right)=P^{-1} \mathrm{X}\left(G_{2}\right) P$.
- $G_{1} \cong G_{2}$ iff their corresponding subgraphs (obtained by deleting some vertices in G_{1} and their corresponding images in G_{2}) are isomorphic.

Example 1: Are the following two graphs isomorphic?
Solution: No, $G_{1} \& G_{2}$ are not isomorphic because G_{1} has 5 edges and G_{2} has 6 edges.

Example 2: Which of the following graphs are isomorphic?

G_{1}

G_{2}

G_{3}

Colution:

1) $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|=\left|V\left(G_{3}\right)\right|$.
2) $\left|E\left(G_{1}\right)\right|=\left|E\left(G_{2}\right)\right| \neq\left|E\left(G_{3}\right)\right|$.

Then, G_{3} neither isomorphic to G_{1} nor isomorphic to G_{2}.
Now, let us check $G_{1} \& G_{2}$.
3)

Degree sequence of G_{1} is $\{2,2,3,3\}$. Degree sequence of G_{2} is $\{2,2,3,3\}$.

G_{1}
G_{2}
4) Cycles formed in G_{1} are also formed in G_{2}.

Let us take the complement of G_{1} and G_{2}.

Since, $\overline{G_{1}} \cong \overline{G_{2}}$
Thus, $G_{1} \cong G_{2}$.

Example 3: Are the following two graphs isomorphic?

Solution:

1) $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right| \&\left|E\left(G_{1}\right)\right|=\left|E\left(G_{2}\right)\right|$.
2) Degree sequence of G_{1} is $\{2,2,2,2,3,3,3,3\}$

Degree sequence of G_{2} is $\{2,2,2,2,3,3,3,3\}$
3) In G_{2}, the vertices of degree 3 form 4 - cycle but in G_{1} the vertices of degree 3 does not form 4- cycle.
Thus, $G_{1} \& G_{2}$ are not isomorphic to each other.

G_{1}

G_{2}

Example 4: Find whether the following graphs are isomorphic.

Solution:

1) $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right| \&\left|E\left(G_{1}\right)\right|=\left|E\left(G_{2}\right)\right|$.
2) Degree sequence of G_{1} is $\{1,2,3,3,5\}$

Degree sequence of G_{2} is $\{1,2,3,3,5\}$
3) Cycle formed in G_{1} are also formed in G_{2}.

Thus, all necessary conditions are satisfied for isomorphism.

Deleting vertices $u \& v$ from corresponding graphs, we get:
Clearly, $H_{1} \cong H_{2}$
Then, $G_{1} \cong G_{2}$.
Thus, $G_{1} \& G_{2}$ are isomorphic to each other.

H.W: Find whether the following graphs are isomorphic
1)

G_{1}

2)

Thank You

References:

1. S. Arumugam and S. Ramachandran, (2015), Invitation to graph theory, Scitech Publ., Kolkata, India.
2. G. S. Singh, (2013). Graph theory, Prentice Hall of India, New Delhi.
3. R. Balakrishnan and K. Ranganathan, (2012). A textbook of graph theory, Springer, New York.
4. J.A. Bondy and U.S.R Murty, (2008). Graph theory, Springer.
5. G. Agnarsson and R. Greenlaw, (2007). Graph theory: Modeling, applications \& algorithms, Pearson Education, New Delhi.
6. G. Chartrand and P. Zhang, (2005). Introduction to graph theory, McGraw-Hill Inc.
7. G. Sethuraman, R. Balakrishnan, and R.J. Wilson, (2004). Graph theory and its applications, Narosa Pub. House, New Delhi.
8. D.B. West, (2001). Introduction to graph theory, Pearson Education Inc., Delhi.
9. V.K. Balakrishnan, (1997). Graph theory, McGrawhill, New York.
10. G. Chartrand and L. Lesniak, (1996). Graphs and digraphs, CRC Press.
11. J.A. Bondy and U.S.R Murty, (1976). Graph theory with applications, NorthHolland, New York.
