

جامعة الانبار كلية العلوم قسم الرياضيات نظرية البيانات Isomorphic Graphs م. د. امين شامان امين

Lecture (13)

Isomorphic Graphs

Dr. Ameen Sh. Ameen Dept. of Mathematics. College of Science \ University of Anbar. **Graph isomorphism** is a phenomenon of existing the same graph in more than one form. Such graphs are called an isomorphic graphs. In graph theory, an isomorphism of graphs G and H is a bijection between the vertex sets of G and H such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

Two graphs G_1 and G_2 are said to be isomorphic ($G_1 \cong G_2$) if : 1. Their number of components (vertices & edges) is same. 2. Their edge connectivity is retained.

Necessary Conditions for Two Graphs to be Isomorphic:

For any two graphs $G_1 \& G_2$ to be isomorphic, the following 4 conditions must be satisfied:

• $|V(G_1)| = |V(G_2)|.$

3

- $|E(G_1)| = |E(G_2)|.$
- Degree sequence of $G_1 \& G_2$ are same.
- If the vertices { v₁, v₂, ..., v_k} form a cycle of length k in G₁, then the vertices { f(v₁), f(v₂), ..., f(v_k)} should also form a cycle of length k in the G₂.

Important Points: The previous 4 conditions are just the necessary conditions for any two graphs to be isomorphic.

- They are not at all sufficient to prove that the two graphs are isomorphic.
- If all the 4 conditions satisfy, even then it can't be said that the graphs are surely isomorphic.
- However, if any condition violates, then it can be said that the graphs are surely not isomorphic.

Sufficient Conditions:

- The following conditions are the sufficient conditions to prove that $G_1 \cong G_2$. If any one of these conditions satisfy, then it can be said that the graphs are surely isomorphic.
- $G_1 \cong G_2$ iff $\overline{G_1} \cong \overline{G_2}$, where G_1 and G_2 are simple graphs.
- $G_1 \cong G_2$ if their adjacency matrices are permuted equivalent. In other words, assume that $X(G_1) \& X(G_2)$ are the adjacency matrices of two isomorphic graphs $G_1 \& G_2$, respectively, then there exist $v \times v$ permutation matrix P such that:

 $\mathcal{X}(G_1) = P^{-1} \mathcal{X}(G_2) P.$

• $G_1 \cong G_2$ iff their corresponding subgraphs (obtained by deleting some vertices in G_1 and their corresponding images in G_2) are isomorphic.

Example 1: Are the following two graphs isomorphic?

Solution: No, $G_1 \& G_2$ are not isomorphic because G_1 has 5 edges and G_2 has 6 edges.

Degree sequence of G_1 is {2,2,3,3}. Degree sequence of G_2 is {2,2,3,3}.

4) Cycles formed in G_1 are also formed in G_2 .

Let us take the complement of G_1 and G_2 .

Since ,
$$\overline{G_1} \cong \overline{G_2}$$

Thus, $G_1 \cong G_2$.

3)

Example 3: Are the following two graphs isomorphic?

Solution:

9

 |V(G₁)| = |V(G₂)| & |E(G₁)| = |E(G₂)|.
Degree sequence of G₁ is {2,2,2,2,3,3,3,3} Degree sequence of G₂ is {2,2,2,2,3,3,3,3}

3) In G_2 , the vertices of degree 3 form 4- cycle but in G_1 the vertices of degree 3 does not form 4- cycle.

Thus, $G_1 \& G_2$ are not isomorphic to each other.

10

Example 4: Find whether the following graphs are isomorphic.

Solution:

- 1) $|V(G_1)| = |V(G_2)| \& |E(G_1)| = |E(G_2)|.$
- 2) Degree sequence of G_1 is {1,2,3,3,5}

Degree sequence of G_2 is{1,2,3,3,5}

3) Cycle formed in G_1 are also formed in G_2 .

Thus, all necessary conditions are satisfied for isomorphism.

Deleting vertices u & v from corresponding graphs, we get:

Clearly, $H_1 \cong H_2$ Then, $G_1 \cong G_2$. Thus, $G_1 \& G_2$ are isomorphic to each other.

11

References:

- 1. S. Arumugam and S. Ramachandran, (2015), Invitation to graph theory, Scitech Publ., Kolkata, India.
- 2. G. S. Singh, (2013). Graph theory, Prentice Hall of India, New Delhi.
- 3. R. Balakrishnan and K. Ranganathan, (2012). A textbook of graph theory, Springer, New York.
- 4. J.A. Bondy and U.S.R Murty, (2008). Graph theory, Springer.
- 5. G. Agnarsson and R. Greenlaw, (2007). Graph theory: Modeling, applications & algorithms, Pearson Education, New Delhi.
- 6. G. Chartrand and P. Zhang, (2005). Introduction to graph theory, McGraw-Hill Inc.
- 7. G. Sethuraman, R. Balakrishnan, and R.J. Wilson, (2004). Graph theory and its applications, Narosa Pub. House, New Delhi.
- 8. D.B. West, (2001). Introduction to graph theory, Pearson Education Inc., Delhi.
- 9. V.K. Balakrishnan, (1997). Graph theory, McGrawhill, New York.
- 10. G. Chartrand and L. Lesniak, (1996). Graphs and digraphs, CRC Press.
- 11. J.A. Bondy and U.S.R Murty, (1976). Graph theory with applications, North-Holland, New York.