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7. Thermal properties

Thermal property “. a1l 4alall refers Al .5 to the response 4wl of a material
to the application (k5 of heat 30 ~ . As a solid absorbs u<i«i energy in the form
J< of heat, its temperature rises &~ 2123 and its dimensions als) increase
22y, The energy may be transported J< to cooler regions 32 L ¢l 32Y) of the
specimen 4.1l if 13 temperature gradients exist 2 s> s s ) !l z 23 and ultimately
4l , the specimen may melt s e . Heat capacity 4, a1l 4=l | thermal
expansion !l 2l and thermal conductivity ) =) 4lua s <) are properties
U= sbaall of materials.

7.1Specific Heat:

The specific heat per mole is defined as

_AQ
AT 7.1

where AQ is the heat required 4 sl=4ll to raise 3L 3! the temperature of one
mole by an amount equal 4 st 4252 to AT. If the process 4.2l 13l is carried
out < at constant volume <l aaal) then AQ= AE, where AE is the
increase 2L 3 in the internal energy 4.l 48Ual1 of the system. The specific
heat at constant volume C, is therefore given by

- (2
* o \aT Jy 7.2

The specific heat depends == on the temperature in the manner 4 k.
shown in Fig. 7.1 . At high temperatures the value of C, is close to (» 4x
3R, where R is the universal gas constant lell <l jLal) culd,
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Figure 7.1 Dependence 2lic| of specific heat of solids on temperature.
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The classical theory 45381 43 131 The model used #23%w to describe —u= 5! the
solid is one in which o) <u~s each atom 3.2 JS is bound L5 53 to its site lexd se )
by a harmonic force 4.3 535 52, When the solid is heated (-3, the atoms

vibrate <3 s around their sites Li se Js= like Jis @ set 4= seas 0f harmonic
oscillators -8l &8 <Luyis, The energy associated 4&l ) 43kl with this motion a2
s all 23 is the energy E, from physics that the average energy 4:Uall Ja=s € for
a one-dimensional oscillator 2/ 5 2= & i js equal to KT, where K is the
Boltzmann constant ¢33 s <, That is,

€ =kT 7.3

The average energy per atom, regarded =) as a three-dimensional
oscillator 2=V 53 iieS | js 3KT and consequently the energy per mole is

E = 3NT = 3RT -

where Na is Avogadro's number. We have used the relation R = Nak

From equations 7.2 and 7.4 we find that

L =3R
: 7.5

This result 4= o34 js certainly =S54l (< in agreement g 4 55 with

experiment >3 at high temperatures, but it fails J&5 completely LS at

low temperature.

This discrepancy =i between theory s 43 and experiment = =3l was
one of the outstanding 3_L paradoxes <& ,lis in physics until 211905, when
it was resolved s =5 by Einstein ¢xbidadl allal when he used 2235l Lexie the
new quantum mechanics <uaall oSl clilSuall,

7.1.1 The Einstein model:

In this model Ji2sall 132 & the atoms <) Al olé are treated J<l=5 as independent
oscillators saiza e LY. but oS the energy 48kllof the oscillator il
is given == by quantum mechanics <8l clilS.ll rather than by the

classical S2<1) the result according L5 4s:%l) to quantum mechanics, the
energy of an isolated oscillator Js =« 3% js restricted 23s= to the values ~2!

EJ’! - Hh[i) 7.6

where n is a positive integer or zero. That is, n=0, 1,2,.... The constant

2
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w is the frequency 224 of the oscillator —x.33ll, Thus, the energy of the
oscillator is quantized 4esss,

The energy 42Ul of the oscillator is therefore ¢ <3 <Al continually
changing _:x3l 3 <ius, but its average value 4«xll Jx=s at thermal
equilibrium ¢ =) ) sl is given by,

| o
—(€n/kT) ,'I 7 Fmﬁ.'r
€ | ) e

a5

e = Y

€ = L. €
n=0 | a=0 7.7

The exponential e_en/ KT s the well-known — = Boltzmann factor cales
ola il g, which gives == 3 s the probability “ilisl that the energy
state 43all s €, is occupied J s ) Jisa,

hw
b /kT [

-

=

« 7.8

We can now oY) mkivs find 22 the energy of the solid by noting “k~>k: that
each atom 3, JS ¢ is equivalent + 2S5 to three oscillators <buyia &36) s
that <Al there is 2> a total of 3Na such oscillators. The total energy is,
therefore,

fl'fU[..
E=3N, MOERT _ |

7.9

where we used wg , the Einstein frequency c:5is) 22 53 to denote ) =4 the
common frequency < ikl 2 5l of the oscillators <Ll The specific heat,
found by differentiating &l this expression as in equation 7.2

and R = Nak,

hw )-" gromit

C[J = 3N (\ kT _. {{?hmg.ﬁ;:ﬂ . !)l

7.10

This equation al=sll o322 may be simplified - ) (S« by introducing ~:-i, the
Einstein temperature 0 (sl s ) )~

where k8 = hwg. therefore, 6, = hwg/k

Expression above then reduces to
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HE.rT

0l
C, = AR F) a7

= 1 7.11
In low temperature range, in which T < 0

Cy= 3R( —£)2 eYE/T

7.12
At high Temperature Limit T > 6,

In the high-temperature limit, where T > 6, one may expand the
exponential e®2/T in a power series of 6 /T . Carrying this out and
retaining only the largest terms in the series, one finds that C= 3R, which is
the classical result

6
e%E/r =1 4+ £ s cy= 3R
T 7.13
This result is in agreement <% with the result 4s:3) ~« obtained le Jassll
by classical theory 40318 4, 43 at high temperature 4:ladl 6 ) sl <l oy 4,

7.1.2 The Debye model:

The atoms in the Einstein model were assumed to oscillate independently of
each other. Actually, the idea of independence here is not a viable one
because, since the atoms do interact with each other, the motion of one atom
affects its neighbors. The motion of these in turn affects their neighbors, and
so forth, so that the motion of one atom anywhere in the solid, in fact, affects
all other atoms present. Thus, we need to consider the motion of the lattice as
a whole, and not a single independent atom. That is, we must consider the
collective lattice modes.

The most familiar example of such collective modes is the sound waves in
solids. When a sound wave propagates in a solid, the atoms do not oscillate
independently; their motions are orchestrated in such a manner that they all
move with the same amplitude and with a fixed phase relationship.

Debye assumed slu> o= %8 that all these modes have a character
similar 4.5 4.slA to sound waves & sall Cils g,
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Now let us calculate specific heat on the basis of the Debye model. In
finding the energy of vibration, we note that each mode is equivalent to a
single harmonic oscillator. The total energy of vibration for the entire lattice
IS now given by the expression

o= [ elw) g(tu'} dw,
. 7.14

Here g(w) is the density-of-states function, follows from noting that g(w)
dw is the number of modes in the range (w, w + dw), and the energy

of each of these modes is equal to € (w), The ensuing expression for
the total energy is

3V ha
E .[{.'Jl e den
e ]

—— ~ ——
zﬁ-vs e (kT

7.15

Before we can evaluate the integral, we need to know its limits, namely, the
lower and upper ends of the frequency spectrum. The lower limit is evidently
w = 0. The upper cut off frequency was determined by Debye, by requiring
that the total number of modes included must be equal to the number of
degrees of freedom for the entire solid. Since this number is equal to 3Na,
because each atom has three degrees of freedom, the above condition may be
expressed in terms of the density of states as

J‘ g(w)dw = 3N,
. 7.16

where the cutoff frequency k!l 22 5 denoted J . by wp , is called the
Debye frequency kua 24 5,

The Debye frequency can be determined by substituting for g(w)
wp = v,(6m*n)'?
7.17
where n = N,/V ,is the concentration of atoms in the solid,

the total energy is now given by
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= 3V J‘ oo hw? 4
= ——— (0
- 195 ho/kT

the specific heat Cv , which is found by differentiating this equation with

respectto T, is

C, =

3V W? f‘”D w*e" T
dw

2372 hoo/kT 2
2n“v kT (e - 1) 219

We can simplify the appearance of this equation by changing to a
dimensionless variable x = hw/kT, and by defining the Debye
temperature 6, as k8, = hwp.

T 3 rOp/T '.4
C, = 9R (—) f ot
o (8 =1) 7.20

6y,
2
When 6, K T,so x issmall & e* = 1-|—x-|—x?+...

so the upper limit of the integral is very small, In the first approximation,

the integral reduces to

o° x> dx = 4 (0p/T)’
which leads to
C, = 3R

When T « 6, and hence the upper limit of the integral approaches c. The
ensuing integral

fo[x*/(e* — 1)*]dx

The specific heat is now given by

_12
i ulX /0p)°

t
> 7.21

7.2Thermal conductivity
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When the two ends of a sample of a given material are at two different

temperatures, T1, and T2 where (T2 > T1), heat flows down the thermal
gradient, from the hotter to the cooler end, as shown in figure below.

I T,
=== s e
-
= —_—
—- —
— — e
. To> T))

Figure 7.2 Thermal conduction by lattice waves

The heat current density Q (the current per unit area) is proportional to the

temperature gradient (0T /0x).

0=—K 0T
N ox
71.22

The proportionality constant —ll <.l K| known as the thermal
conductivity.

Heat may be transmitted in the material by several independent agents. In
metals, for example, the heat is carried both by electrons and by lattice
waves, or phonons, although the contribution of the electrons is much the
larger.

In insulators, on the other hand, heat is transmitted entirely by phonons,
since there are no mobile electrons in these substances.

In particular, thermal conductivity is given by

K=131Cpul 7.23

where C,, is the specific heat per unit volume, v the speed of the particle, and
| its mean free path.
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7.3 Thermal Expansion s )~ 2l
Most ~k2« solid materials expand 22«3 upon heating 3_) )~ and contract =l 5
when cooled 525 2. . The change =3l in length Jsklb with temperature for a
solid material may be expressed as follows:

{r — Iy ‘
- ally—To) % = AT
or ]

where loand lrrepresent, respectively, initial .- and final '« lengths with the

temperature change 3\ ~!l 4s )2 35 from Toto Tr. The parameter Jebll @; is
called the linear coefficient of thermal expansion g adl aaaill Jadl) Jalaall ; jt
is a material property “==\x that is indicative = Jx of the extent s to which a
material expands - s& upon heating ¢x>~3lL and has units <l 5 Ll s of reciprocal
— slis temperature °C,

heating or cooling affects 55 all the dimensions 2= s of a body, with &~ a
resultant change =t 3 in volume ~>=1l 3. Volume changes ~>=1) &l 25 with
temperature may be computed —-=3 from

AV
‘I';’Ij ]

= a,AT

where AV and Voare the volume change ~>=~l: 23 and the original volume =)

=Y, respectively &l Je . And av symbolizes ' =
the volume coefficient of thermal expansion .gJladl 2aaill aaal) Jaleal)
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