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Mohr diagram for stress  

The equations we derived for σn and σs do not offer an obvious sense of their values as a function 

of orientation of a plane in our block of clay. Of course, a programmable calculator or simple 

computer program will do the job, but a convenient graphical method, known as the Mohr 

diagram (Figure 1), was introduced over a century ago to solve Equations. A Mohr diagram is an 

“XY”-type (Cartesian) plot of σs versus σn that graphically solves the equations for normal stress 

and shear stress acting on a plane within a stressed body. In our experiences, many people find 

the Mohr construction difficult to comprehend. So, we’ll first examine the proof and underlying 

principles of this approach to try to take the magic out of the method.  

[σn – 1 ⁄2(σ1 + σ3)]2 = [ 1 ⁄2(σ1 – σ3)]2 cos2 2θ  

 Σs2 = [ 1 ⁄2(σ1 – σ3)]2 sin2 θ  

 

Figure 1 The Mohr diagram for stress. Point P represents the plane in our clay experiment. 

Adding the last equations 

[σn – 1 ⁄2(σ1 + σ3)]2 + σs2 = [ 1 ⁄2(σ1 – σ3)]
2 ⋅ (cos2 2θ + sin2 2θ)   

Using the trigonometric relationship (cos2 2θ + sin2 2θ) = 1 gives  

[σn – 1 ⁄2(σ1 + σ3)]
2 + σs2 = [ 1 ⁄2(σ1 – σ3)]2   

Note the equation has the form (x – a)2 + y2 = r2, which is the general equation for a circle with 

radius r and centered on the x-axis at distance a from the origin. Thus, the Mohr circle has a 

radius 1 ⁄2(σ1 – σ3) that is centered on the σn axis at a distance 1 ⁄2(σ1 + σ3) from the origin. The 
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construction is shown in Figure 1. You also see from this figure that the Mohr circle’s radius, 1 

⁄2(σ1 – σ3), is the maximum shear stress, σs, max. The stress difference (σ1 – σ3), called the 

differential stress, is indicated by the symbol σd. 

Constructing the Mohr Diagram  

To construct a Mohr diagram, we draw two mutually perpendicular axes; σn is the abscissa (x-

axis) and σs is the ordinate (y-axis). In our clay deformation experiment, the maximum principal 

stress (σ1) and the minimum principal stress (σ3) act on plane P that makes an angle θ with the σ3 

direction (Figure 4); in the Mohr construction we then plot σ1 and σ3 on the σn-axis (Figure 1). 

These principal stress values are plotted on the σn axes because they are normal stresses, but 

with the special condition that the planes on which they act, the principal planes, have zero shear 

stress (σs = 0). We then construct a circle through points σ1 and σ3, with O, the midpoint, at 1 

⁄2(σ1 + σ3) as center, and a radius of 1 ⁄2(σ1 – σ3). Next, we draw a line OP such that angle POσ1 

is equal to 2θ. This step often gives rise to confusion and errors. First, remember that we plot 

twice the angle θ, which is the angle between the plane and σ3, because of the equations we are 

solving. Second, remember that we measure 2θ from the σ1-side on the σn-axis. When this is 

done, the Mohr diagram is complete and we can read off the value of σn.p along the σn-axis, and 

the value of σs.p along the σs-axis for our plane P, as shown in Figure 5. We see that  

σn.p = 1 ⁄2(σ1 + σ3) + 1 ⁄2(σ1 – σ3) cos 2θ and  

σs.p = 1 ⁄2(σ1 – σ3) sin 2θ  

A couple of additional observations can be made from the Mohr diagram (Figure 2). There are 

two planes, oriented at angle θ and its complement (90 – θ), with equal shear stresses but 

different normal stresses. Also, there are two planes with equal normal stress, but with shear 

stresses of opposite sign (that is, they act in different directions on these planes). In general, for 

each orientation of a plane, defined by its angle θ, there is a corresponding point on the circle. 

The coordinates of that point represent the normal and shear stresses that act on that plane. For 

example, when θ = 0° (that is, for a plane parallel to σ3), P coincides with σ1, which gives σn = 

σ1 and σs = 0. In other words, for any value of σ1 and σ3 (σ3 = σ2 in our compression 

experiment), we can determine σn and σs graphically for planes that lie at an angle θ with σ3. If 

we decide to change our earlier experiment by gluing the planks to the clay block and then 

moving the planks apart (a tension experiment), we must use a negative sign for the least 

principal stress (in this case, σ1 = σ2 and σ3 is negative). So, the center O of the Mohr circle can 

lie on either side of the origin, but is always on the σ-axis. 
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Figure 2 For each value of the shear stress and the normal stress there are two corresponding planes, as shown in the 

Mohr diagram (a). The corresponding planes in σ1 – σ3 space are shown in (b). 

 

 

The Mohr diagram also nicely illustrates the attitude of planes along which the shear stress is 

greatest for a given state of stress. The point on the circle for which σs is maximum corresponds 

to a value of 2θ = 90°. For the same point, the magnitude of σs is equal to the radius of the circle, 

that is, 1 ⁄2(σ1 – σ3). Thus the (σ1 – σ3), the differential stress, is twice the magnitude of the 

maximum shear stress:  

σd = 2σs, max  

When there are changes in the principal stress magnitudes without a change in the differential 

stress, the Mohr circle moves along the σn-axis without changing the magnitude of σs. In our 

experiment, this would be achieved by increasing the air pressure in the classroom or carrying 

out the experiment under water; this “surrounding” pressure is called the confining pressure (Pc) 

of the experiment. Figure 3a shows six planes in a stressed body at different angles with σ3. 

Using the graph in Figure 3b, draw the Mohr circle and estimate the normal and shear stresses 

for these six planes. You can check your estimates by using Equations. 
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Figure 3 Adventures with the Mohr circle. To estimate the normal and shear stresses on the six planes in (a) apply 

the Mohr construction in (b). The principal stresses and angles θ are given in (a). 

Some Common Stress States  

Now that you are familiar with the Mohr construction, let’s look at its representation of the 

various stress states that were mentioned earlier. The three-dimensional Mohr diagrams in Figure 

4 may at first appear a lot more complex than those in our earlier examples, because they 

represent three-dimensional stress states rather than two-dimensional conditions. Three-

dimensional Mohr constructions simply combine three two-dimensional Mohr circles for (σ1 – 

σ2), (σ1 – σ3), and (σ2 – σ3), and each of these three Mohr circles adheres to the procedures 

outlined earlier.Figure 4a shows the case for general triaxial stress, in which all three principal 

stresses have nonzero values (σ1 > σ2 > σ3 ≠ 0). Biaxial (plane) stress, in which one of the 

principal stresses is zero (e.g., σ3 = 0) is shown in Figure 4b. Uniaxial compression (σ2 = σ3 = 0; 

σ1 > 0) is shown in Figure 4c, whereas uniaxial tension (σ1 = σ2 = 0; σ3 < 0) would place the 

Mohr circle on the other side of the σn-axis. Finally, isotropic stress, often called hydrostatic 

pressure, is represented by a single point on the σn-axis of the Mohr diagram (positive for 

compression, negative for tension), because all three principal stresses are equal in magnitude (σ1 

= σ2 = σ3; Figure 4d). 
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Figure 4 Mohr diagrams of some representative stress states: (a) triaxial stress, (b) biaxial (plane) stress, (c) uniaxial 

compression, and (d) isotropic stress or hydrostatic pressure, P (compression is shown). 

Mean stress and deviatoric stress  

Because of a body’s response to stress, we subdivide the stress into two components, the mean 

stress and the deviatoric stress (Figure 5). The mean stress is defined as (σ1 + σ2 + σ3)/3, using 

the symbol σm. The difference between mean stress and total stress is the deviatoric stress (σdev), 

so  

σ=σmean + σdev  

The mean stress is often called the hydrostatic component of stress or the hydrostatic pressure, 

because a fluid is stressed equally in all directions. Because the magnitude of the hydrostatic 

stress is equal in all directions it is an isotropic stress component. When we consider rocks at 

depth in the Earth, we generally refer to lithostatic pressure, Pl, rather than the hydrostatic 

pressure. The lithostatic stress component is best explained by a simple but powerful calculation. 

Consider a rock at a depth of 3 km in the middle of a continent. The lithostatic pressure at this 
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point is a function of the weight of the overlying rock column because other (tectonic) stresses 

are unimportant. The local pressure is a function of rock density, depth, and gravity:  

Pl =ρ⋅ g ⋅ h 

If ρ (density) equals a representative crustal value of 2700 kg/m3, g (gravity) is 9.8 m/s2, and h 

(depth) is 3000 m, we get  

Pl = 2700 ⋅ 9.8 ⋅ 3000 = 79.4 ⋅ 106 Pa ≈ 80 MPa (or 800 bars)  

 

Figure 5 The mean (hydrostatic) and deviatoric components of the stress. (a) Mean stress causes volume 

change and (b) deviatoric stress causes shape change. 

In other words, for every kilometer in the Earth’s crust the lithostatic pressure increases by 

approximately 27 MPa. With depth the density of rocks increases, so you cannot continue to use 

the value of 2700 kg/m3. For crustal depths greater than approximately 15 km the average 

density of the crust is 2900 kg/m3. Deeper into Earth the density increases further, reaching as 

much as 13,000 kg/m3 in the solid inner core. 

Because the lithostatic pressure is of equal magnitude in all directions, it follows that σ1 = σ2 = 

σ3. The actual state of stress on a body at depth in the Earth is often more complex than only that 

from the overlying rock column. Anisotropic stresses that arise from tectonic processes, such as 

the collision of continental plates or the drag of the plate on the underlying material, contribute 

to the stress state at depth. The differential stresses of these anisotropic stress components, 

however, are many orders of magnitude less than the lithostatic stress. In the crust, differential 

stresses may reach a few hundred megapascals, but in the mantle, where lithostatic pressure is 
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high, they are only on the order of tens of megapascals or less. Yet, such low differential stresses 

are responsible for the slow motion of “solid” mantle that is a critical element of our planet’s 

plate dynamics. Let’s return to Figure 9 and the preceding comments. Why divide a body’s stress 

state into an isotropic (lithostatic/hydrostatic) and an anisotropic (deviatoric) component? For 

our explanation we return to look at the deformation of a stressed body. Because isotropic stress 

acts equally in all directions, it results in a volume change of the body (Figure 5a). Isotropic 

stress is responsible for the consequences of increasing water pressure at depth on a human body. 

Place an air-filled balloon under water and you will see that isotropic stress maintains the 

spherical shape of the balloon, but reduces the volume. Deviatoric stress, on the other hand, 

changes the shape of a body (Figure 5b). Distortion of a body can often be measured in structural 

geology, but volume change is considerably more difficult to determine. As in determining 

distortions, knowledge about the original volume of a body is the obvious way to determine any 

volume change. Reliable volume markers, however, are rare in rocks and we resort to indirect 

approaches such as chemical contrasts between deformed and undeformed samples. The division 

between the isotropic and anisotropic components of stress provides the connection between the 

volumetric and distortional components of deformation, respectively. 

 

A brief summary of stress  

Let’s summarize where we are in our understanding of stress. You have seen that there are two 

ways to talk about stress. First, you can refer to stress on a plane (or traction), which can be 

represented by a vector (a quantity with magnitude and direction) that can be subdivided into a 

component normal to the plane (σn, the normal stress) and a component parallel to the plane (σs, 

the shear stress). If the shear stress is zero, then the stress vector is perpendicular to the plane, 

but this is a special case; in general, the stress vector is not perpendicular to the plane on which it 

acts. It is therefore meaningless to talk about stress without specifying the plane on which it is 

acting. For example, it is wrong to say “the stress at 1 km depth in the Earth is 00°/070°,” but it 

is reasonable to say “the stress vector acting on a vertical, north-south striking joint surface is 

oriented 00°/070°.” In this example there must be a shear stress acting on the fracture; check this 

for yourself. If the magnitude of this shear stress exceeds the frictional resistance to sliding along 

the fracture, then there might be movement. The stress state at a point cannot be described by a 

single vector. Why? Because a point represents the intersection of an infinite number of planes, 

and without knowing which plane you are talking about, you cannot define the stress vector. If 

you want to describe the stress state at a point you must have a tool that will allow you to 

calculate the stress vector associated with any of the infinite number of planes. We introduced 

three tools: (1) the stress ellipsoid, (2) the three principal stress axes, and (3) the stress tensor. 

The stress ellipsoid is the envelope containing the tails or tips (for compression and tension, 

respectively) of the stress vectors associated with the infinite number of planes passing through 
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the point, with each of the specified vectors and its opposite associated with one plane. On all but 

three of these planes the vectors have shear stress components. As a rule, there will be three 

mutually perpendicular planes on which the shear component is zero; the stress vector acting on 

each of these planes is perpendicular to the plane. These three planes are called the principal 

planes of stress, and the associated stress vectors are the principal axes of stress, or principal 

stresses (σ1 ≥ σ2 ≥ σ3). Like any ellipsoid, the stress ellipsoid has three axes, and the principal 

stresses lie parallel to these axes. Given the three principal stresses, you have uniquely defined 

the stress ellipsoid; given the stress ellipsoid, you can calculate the stress acting on any random 

plane that passes through the center of the ellipsoid (which is the point for which we defined the 

stress state). So, the stress ellipsoid and the principal stresses give a complete description of the 

stress at a point. Structural geologists find these tools convenient to work with because they are 

easy to visualize. Thus, we often represent the stress state at a point by picturing the stress 

ellipsoid, or we talk about the values of the principal stresses at a location. For example, we 

would say that “the orientation of the maximum principal stress at the New York–Pennsylvania 

border trends about 070°.” For calculations, these tools are a bit awkward and a more general 

description of stress at a point is needed; this tool is the stress tensor. The stress tensor consists 

of the components of three stress vectors, each associated with a face of an imaginary cube 

centered in a specified Cartesian frame of reference. Each face of the cube contains two of the 

Cartesian axes. If it so happens that the stress vectors acting on the faces of the cube have no 

shear components, then by definition they are the principal stresses, and the axes in your 

Cartesian reference frame are parallel to the principal stresses. But if you keep the stress state 

constant and rotate the reference frame, then the three stress vectors will have shear components. 

The components of the three stress vectors projected onto the axes of your reference frame 

(giving one normal stress and two shear stresses) are written as components in a 3 × 3 matrix (a 

second-rank tensor). If the axes of the reference frame happen to be parallel to the principal 

stresses, then the diagonal terms of the matrix are the principal stresses and the off-diagonal 

terms are zero (that is, the shear stresses are zero). If the axes have any other orientation, then the 

diagonal terms are not the principal stresses and some, or all, of the off-diagonal terms are not 

equal to zero. When using the three principal stresses or the stress ellipsoid, you are merely 

specifying a special case of the stress tensor at a point. 
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