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Rheology 

Introduction  

We defined strain as the shape change that a body undergoes in the presence of a stress field. But 

what do we really know about the corresponding stress? And is stress independent of strain? We 

turn to the final and perhaps most challenging aspect of fundamental concepts: the relationship 

between stress and strain. Whereas it is evident that there is no strain without stress, the 

relationship between stress and strain is not easy to define on a physical basis. In other words, 

realizing that stress and strain in rocks are related is quite a different matter from physically 

determining their actual relationship(s). In materials science and geology, we use the term 

rheology to describe the ability of stressed materials to deform or to flow, using fundamental 

parameters such as strain rate (strain per unit of time), elasticity, and viscosity. Recalling that 

stress and strain are second-order tensors, their proportionality is therefore a fourth-order tensor. 

Up front we give a few briefs, incomplete descriptions of the most important concepts that will 

appear throughout these terms to help you to navigate through some of the initial material, until 

more complete definitions can be given.  

1. Elasticity: Recoverable (non-permanent), instantaneous strain.  

2. Fracturing: Deformation mechanism by which a rock body or mineral loses coherency 

by simultaneously breaking many atomic bonds.  

3. Nonlinear viscosity: Permanent strain accumulation where the stress is exponentially 

related to the strain rate  

4. Plasticity: Deformation mechanism that involves progressive breaking of atomic bonds 

without the material losing coherency  

5. Strain rate: Rate of strain accumulation (typically, elongation, e, over time, t); shear 

strain rate, γ˙ (gamma dot), is twice the longitudinal strain rate  

6. Viscosity: Non-recoverable (permanent) strain that accumulates with time; the strain 

rate–stress relationship is linear 

Rheology is the study of flow of matter. Rocks don’t seem to change much by comparison, but 

remember that geologic processes take place over hundreds of thousands to millions of years. 

For example, yearly horizontal displacement along the San Andreas Fault (a strike-slip fault zone 

in California) is on the order of a few centimeters, so considerable deformation has accumulated 

over the last 700,000 years. Likewise, horizontal displacements on the order of tens to hundreds 

of kilometers have occurred in the Paleozoic Appalachian fold-and-thrust belt of eastern North 

America over time period of a few million years (m.y.). Geologically speaking, time is available 

in large supply, and given sufficient amounts of it, rocks are able to flow, not unlike syrup. The 

flow of window glass is an urban legend that you can refute with the information presented, 

when you look through the windows of an old house you may find that the glass distorts your 
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view. The reason is, as the story goes, that the glass has sagged under its own weight with time 

(driven by gravity), giving rise to a wavy image. One also finds that the top part of the glass is 

often thinner than the bottom part. 

Strain Rate  

The time interval it takes to accumulate a certain amount of strain is described by the strain rate, 

symbol e˙, which is defined as elongation (e) per time (t): 

e˙ = e/t = δl/(lot)  

You recall that elongation, length change divided by original length, δl/lo, is a dimensionless 

quantity; thus, the dimension of strain rate is [t]–1; the unit is second–1. This may appear to be a 

strange unit at first glance, so let’s use an example. If 30% finite longitudinal strain (|e| = 0.3) is 

achieved in an experiment that lasts one hour (3600 s), the corresponding strain rate is 0.3/3600 

= 8.3 × 10–5/s. Now let’s see what happens to the strain rate when we change the time duration of 

our experiment, while maintaining the same amount of finite strain.  

Time interval for 30% strain                                                      e˙  

1. 1 day (86.4 × 103 s)                                                3.5 × 10–6/s  

2. 1 year (3.15 × 107 s)                                               9.5 × 10–9/s  

3. 1 m.y. (3.15 × 1013 s)                                             9.5 × 10–15/s   

Thus, the value of the strain rate changes as a function of the time period over which finite strain 

accumulates. Note that the percentage of strain did not differ for any of the time intervals. So, 

what is the strain rate for a fault that moves 50 km in 1 m.y.? It is not possible to answer this 

question unless the displacement is expressed relative to another dimension of the body, that is, 

as a strain. We try again: What is the strain rate of an 800-km long fault moving 50 km in 1 

m.y.? We get a strain rate of (50/800)/(3.15 × 1013) = 2 × 10–15/s. In many cases, commonly 

involving faults, geologists prefer to use the shear strain rates (γ˙). The relationship between 

shear strain rate and (longitudinal) strain rate is  

γ˙ = 2e˙  

variety of approaches are used to determine characteristic strain rates for geologic processes. A 

widely used estimate is based on the Quaternary displacement along the San Andreas Fault of 

California, which gives a strain rate on the order of 10–14/s. Other observations (such as isostatic 

uplift, earthquakes, and orogenic activity) support similar estimates and typical geologic strain 

rates therefore lie in the range of 10–12/s to 10–15/s. Now consider a small tectonic plate with a 
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long dimension of 500 km at a divergent plate boundary. Using a geologic strain rate of 10–14/s, 

we obtain the yearly spreading rate by multiplying this dimension of the plate by 3.15 × 10–

7/year, giving 16 cm/year, which is the order of magnitude of present-day plate velocities. On a 

more personal note, your 1.5-cm long fingernail grows 1 cm per year, meaning a growth rate of 

0.67/year (or 2 × 10–8/s). Your nail growth is therefore much, much faster than geologic rates, 

even though plates “grow” on the order of centimeters as well. We can offer many more geologic 

examples, but at this point we hope to leave you acquainted with the general concept of strain 

rate and typical values of 10–12/s to 10–15/s for geologic processes. Note that exceptions to this 

geologic range are rapid events like meteorite impacts and explosive volcanism, which are on the 

order of 10–2/s to 10–4/s. 

General behavior: The creep curve  

Compression tests on rock samples illustrate that the behavior of rocks to which a load is applied 

is not simple. Figure 1a shows what is called a creep curve, which plots strain as a function of 

time. In this experiment the differential stress is held constant. Three creep regimes are observed: 

(1) primary or transient creep, during which strain rate decreases with time following very 

rapid initial accumulation; (2) secondary or steady-state creep, during which strain 

accumulation is approximately linear with time; and (3) tertiary or accelerated creep, during 

which strain rate increases with time; eventually, continued loading will lead to failure. Restating 

these three regimes in terms of strain rate, we have regimes of (1) decreasing strain rate, (2) 

constant strain rate, and (3) increasing strain rate. The strain rate in each regime is the slope 

along the creep curve. Rather than continuing our creep experiment until the material fractures, 

we decide to remove the stress sometime during the interval of steady-state creep. The 

corresponding creep curve for this second experiment is shown in Figure 1b. We see a rapid drop 

in strain when the stress is removed, after which the material relaxes a little more with time. 

Eventually there is no more change with time but, importantly, permanent strain remains. In 

order to examine this behavior of natural rocks we turn to simple analogies and rheologic 

models. 
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Figure 1 Generalized strain–time or creep curve, which shows primary (I), secondary (II), and tertiary (III) creep. 

Under continued stress the material will fail (a); if we remove the stress, the material relaxes, but permanent strain 

remains (b). 

Rheologic relationships  

In describing the various rheologic relationships, we first divide the behavior of materials into 

two types, elastic behavior and viscous behavior (Figure 2). In some cases, the flow of natural 

rocks may be approximated by combinations of these linear rheologies, in which the ratio of 

stress over strain or stress over strain rate is a constant. The latter holds true for part of the 

mantle, but correspondence between stress and strain rate for many rocks is better represented by 

considering nonlinear rheologies. For each rheologic model that is illustrated in Figure 2 we 

show a physical analog, a creep (strain–time) curve and a stress–strain or stress–strain rate 

relationship, which will assist you with the descriptions below. Such equations that describe the 

linear and nonlinear relationships between stress, strain, and strain rate. 

Elastic Behavior 

 What is elastic behavior and is it relevant for deformed rocks? Let’s first look at the relevance. 

In the field of seismology, the study of earthquakes, elastic properties are very important. As you 

know, seismic waves from an earthquake pass through the Earth to seismic monitoring stations 

around the world. As they travel, these seismic waves briefly deform the rocks, but after they 

have passed, the rocks return to their undeformed state. To imagine how rocks are able to do so 

we turn to a common analog: a rubber band. When you pull a rubber band, it extends; when you 

remove this stress, the band returns to its original shape. The greater the stress, the farther you 

extend the band. Beyond a certain point, called the failure stress, the rubber band breaks and 

brings a painful end to the experiment. This ability of rubber to extend lies in its atomic 

structure. The bond lengths between atoms and the angles between bonds in a crystal structure 
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represent a state of lowest potential energy for a crystal. These bonds are able to elongate and 

change their relative angles to some extent, without introducing permanent changes in the crystal 

structure. Rubber bands extend particularly well because rubber can accommodate large changes 

in the angular relationships between bonds; however, this causes a considerable increase in the 

potential energy, which is recovered when we let go of the band, or when it snaps. So, once the 

stress is released, the atomic structure returns to its energetically most stable configuration, that 

is, the lowest potential energy. Like the elasticity of a rubber band, the ability of rocks to deform 

elastically also resides in nonpermanent distortions of the crystal lattice, but unlike rubber, the 

magnitude of this behavior is relatively small in rocks.                          σ = E ⋅ e   

where E is a constant of proportionality called Young’s modulus that describes the slope of the 

line in the σ–e diagram (tangent of angle θ; Figure 2a). The unit of this elastic constant is Pascal, 

which is the same as that of stress (recall that strain is a dimensionless quantity). Typical values 

of E for crustal rocks are on the order of –1011 Pa. Linear Equation is also known as Hooke’s 

Law, which describes elastic behavior. We use a spring as the physical model for this behavior 

(Figure 2a).  
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Figure 2 Models of linear rheologies. Physical models consisting of strings and dash pots, and associated strain–

time, stress–strain, or stress–strain rate curves are given for (a) elastic, (b) viscous, (c) viscoelastic, (d) 

elasticoviscous, and (e) general linear behavior. A useful way to examine these models is to draw your own strain–

time curves by considering the behavior of the spring and the dash pot individually, and their interaction. Symbols 

used: e = elongation, e˙ = strain rate, σ = stress, E = elasticity, η = viscosity, t = time, el denotes elastic component, 

vi denotes viscous component. 
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Viscous Behavior  

The flow of water in a river is an example of viscous behavior in which, with time, the water 

travels farther downstream. With this viscous behavior, strain accumulates as a function of time, 

that is, strain rate. We describe this relationship between stress and strain rate as  

σ=η⋅ e˙  

where η is a constant of proportionality called the viscosity (tan θ, Figure 2b) and e˙ is the strain 

rate. This ideal type of viscous behavior is commonly referred to as Newtonian or linear viscous 

behavior, but do not confuse the use of “linear” in linear viscous behavior with that in linear 

stress–strain relationships in the elasticity. The term linear is used here to emphasize a distinction 

from nonlinear viscous (or non-Newtonian) behavior. To obtain the dimensional expression for 

viscosity, remember that strain rate has the dimension of [t –1] and stress has the dimension [ml–1t 
–2]. Therefore, η has the dimension [ml–1t –1]. In other words, the SI unit of viscosity is the unit of 

stress multiplied by time, which is Pa ⋅ s (kg/m ⋅ s). In the literature we often find that the unit 

Poise is used, where 1 Poise = 0.1 Pa ⋅ s. The example of flowing water brings out a central 

characteristic of viscous behavior. Viscous flow is irreversible and produces permanent or non-

recoverable strain. The physical model for this type of behavior is the dash pot (Figure 2b), 

which is a leaky piston that moves inside a fluid-filled cylinder. The resistance encountered by 

the moving piston reflects the viscosity of the fluid. In the classroom you can model viscous 

behavior by using a syringe with one end open to the air.  

How does the viscosity of water, which is on the order of 10–3 Pa ⋅ s, compare with that of rocks? 

Calculations that treat the mantle as a viscous medium produce viscosities on the order of 1020–

1022 Pa ⋅ s. Obviously the mantle is much more viscous than water (>20 orders of magnitude!). 

You can demonstrate this graphically when calculating the slope of the lines for water and 

mantle material in the stress–strain rate diagram; they are 0.06° and nearly 90°, respectively. The 

much higher viscosity of rocks implies that motion is transferred over much larger distances. Stir 

water, syrup, and jelly in a jar to get a sense of this implication of viscosity. Obviously, there is 

an enormous difference between materials that flow in our daily experience, such as water and 

syrup, and the “solids” that make up the Earth. Nevertheless, we can approximate the behavior of 

the Earth as a viscous medium over the large amount of time available to geologic processes. 

Considering an average mantle viscosity of 1021 Pa ⋅ s and a geologic strain rate of 10–14/s, the 

differential (or flow) stresses at mantle conditions are on the order of tens of megapascals. Using 

a viscosity of 1014 Pa ⋅ s for glass, flow at atmospheric conditions produces a strain rate that is 

much too slow to produce the sagging effect that is ascribed to old windows. 
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Viscoelastic Behavior  

Consider the situation in which the deformation process is reversible, but in which strain 

accumulation as well as strain recovery are delayed; this behavior is called viscoelastic behavior. 

A simple analog is a water-soaked sponge that is loaded on the top. The load on the soaked 

sponge is distributed between the water (viscous behavior) and the sponge material (elastic 

behavior). The water will flow out of the sponge in response to the load and eventually the 

sponge will support the load elastically. For a physical model we place a spring (elastic behavior) 

and a dash pot (viscous behavior) in parallel (Figure 2c). When stress is applied, both the spring 

and the dash pot move simultaneously. However, the dash pot retards the extension of the spring. 

When the stress is released, the spring will try to return to its original configuration, but again 

this movement is delayed by the dash pot.  

Elastic-Viscous Behavior  

Particularly instructive for understanding earth materials is elastico-viscous behavior, where a 

material behaves elastically at the first application of stress, but then behaves in a viscous 

manner. When the stress is removed the elastic portion of the strain is recovered, but the viscous 

component remains. We can model this behavior by placing a spring and a dash pot in series 

(Figure 2d). The spring deforms instantaneously when a stress is applied, after which the stress is 

transmitted to the dash pot. The dash pot will move at a constant rate for as long as the stress 

remains. When the stress is removed, the spring returns to its original state, but the dash pot 

remains where it stopped earlier. When the spring is extended, it stores energy that slowly 

relaxes as the dash pot moves, until the spring has returned to its original state. The time taken 

for the stress to reach 1/e times its original value is known as the Maxwell relaxation time, 

where e is the base of natural logarithm (e = 2.718). Stress relaxation in this situation decays 

exponentially. The Maxwell relaxation time, tM, is obtained by dividing the viscosity by the 

shear modulus (or rigidity): tM = η/G 

In essence the Maxwell relaxation time reflects the dominance of viscosity over elasticity. If tM 

is high then elasticity is relatively unimportant, and vice versa. Because viscosity is temperature 

dependent, tM can be expressed as a function of temperature. Figure 5.4 graphs this relationship 

between temperature and time for appropriate rock properties and shows that mantle rocks 

typically behave in a viscous manner (as a fluid). The diagram also suggests that crustal rocks 

normally fail by fracture (elastic field), but lower crustal rocks deform by creep as well. This 

discrepancy reflects the detailed properties of crustal materials and their nonlinear viscosities, as 

discussed later. Maxwell proposed this model to describe materials that initially show elastic 

behavior, but given sufficient time display viscous behavior, which matches the behavior of 

Earth rather well. Recall that seismic waves are elastic phenomena (acting over short time 

intervals) and that the mantle is capable of flowing in a viscous manner over geologic time 
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(acting over long time intervals). Taking a mantle viscosity of 1021 Pa ⋅ s and a rigidity of 1011 

Pa, and assuming an olivine-dominated mantle, we get a Maxwell relaxation time for the mantle 

of 1010 s, or on the order of 1000 years. This time agrees well with the uplift that we see 

following the retreat of continental glaciers after the last Ice Age, which resulted in continued 

uplift of regions like Scandinavia over thousands of years after the ice was removed.  

General Linear Behavior  

So far, we have examined two fundamental and two combined models and, with some further 

fine-tuning, we can arrive at a physical model that fairly closely approaches reality while still 

using linear rheologies. Such general linear behavior is modeled by placing the elastico-viscous 

and viscoelastic models in series (Figure 2e). Elastic strain accumulates at the first application of 

stress (the elastic segment of the elastic-viscous model). Subsequent behavior displays the 

interaction between the elastico-viscous and viscoelastic models. When the stress is removed, the 

elastic strain is first recovered, followed by the viscoelastic component. However, some amount 

of strain (permanent strain) will remain, even after long time intervals (the viscous component of 

the elastico-viscous model). The creep (e–t) curve for this general linear behavior is shown in 

Figure 2e and closely mimics the creep curve that is observed in experiments on natural rocks 

(compare with Figure 1b). We will not present the lengthy equation describing general linear 

behavior here, but you realize that it represents some combination of viscoelastic and elastico-

viscous behavior. 
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