Water Resources Management and Economy

University of Anbar–College of Engineering
Dams & Water Resources Engineering
Department – 4th stage
Asst. Prof. Dr. Sadeq Oleiwi Sulaiman
Example 2:

Use the revised simplex method to solve the following problem.

\[
\begin{align*}
\text{minimize: } & \quad z = 3x_1 + 2x_2 + 4x_3 + 6x_4 \\
\text{subject to: } & \quad x_1 + 2x_2 + x_3 + x_4 \geq 1000 \\
& \quad 2x_1 + x_2 + 3x_3 + 7x_4 \geq 1500 \\
& \quad \text{all variables nonnegative}
\end{align*}
\]

Sol:

This program is put in standard form by introducing the surplus variables \(s_5 \) and \(s_7 \), and the artificial variables \(x_6 \) and \(x_8 \).

\[
\begin{align*}
\text{minimize: } & \quad z = 3x_1 + 2x_2 + 4x_3 + 6x_4 + 0x_5 + Mx_6 + 0x_7 + Mx_8 \\
\text{subject to: } & \quad x_1 + 2x_2 + x_3 + x_4 - x_5 + x_6 = 1000 \\
& \quad 2x_1 + x_2 + 3x_3 + 7x_4 - x_7 + x_8 = 1500 \\
& \quad \text{all variables nonnegative}
\end{align*}
\]

\[
\begin{align*}
P_1 &= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, & P_2 &= \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, & P_3 &= \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, & P_4 &= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, & P_5 &= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, & P_6 &= \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\
P_7 &= \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}, & P_8 &= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, & B &= \begin{pmatrix} 1000 \\ 1500 \end{pmatrix}
\end{align*}
\]
Initialization:

\[X_S = (x_6, x_8)^T; \quad C_S^T = (M, M) \]

\[S = (P_6, P_8) = I = S^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

Iteration No. 1:
The nonbasic vectors are \(P_1, P_2, P_3, P_4, P_5, \) and \(P_7. \)

(a) Entering Vector:

\[W = C_S^T S^{-1} = (M, M) I = (M, M) \]

\[
(c_1 - z_1, \ldots, c_7 - z_7) = (c_1, c_2, c_3, c_4, c_5, c_7) - W(P_1, P_2, P_3, P_4, P_5, P_7) \\
= (3, 2, 4, 6, 0, 0) - (M, M) \begin{pmatrix} 1 & 2 & 1 & 1 & -1 & 0 \\ 2 & 1 & 3 & 7 & 0 & -1 \end{pmatrix} \\
= (-3M + 3, -3M + 2, -4M + 4, -8M + 6, M, M) \\
\]

Since the most negative coefficient corresponds to \(P_4, \) it becomes the entering vector (E.V.).

(b) Departing Vector:

\[X_S = S^{-1} B = IB = B = \begin{pmatrix} 1000 \\ 1500 \end{pmatrix}; \quad t_4 = S^{-1} P_4 = IP_4 = P_4 = \begin{pmatrix} 1 \\ 7 \end{pmatrix} \]

\[\theta = \min\{1000, 1500/7\} = 1500/7 \]

Since the minimum ratio corresponds to \(P_9, \) it becomes the departing vector (D.V.).

(c) New Basis:

\[\eta = \begin{pmatrix} -t_{64} \\ t_{84} \\ 1 \\ t_{84} \end{pmatrix} = \begin{pmatrix} -1/7 \\ 1/7 \end{pmatrix}; \quad E = (u_1, \eta) \]

\[S_{new}^{-1} = ES^{-1} = EI = E = \begin{pmatrix} 1 & -1/7 \\ 0 & 1/7 \end{pmatrix} \]

Summary of Iteration No. 1:

\[X_S = (x_6, x_4)^T; \quad C_S^T = (M, 6) \]

Water Resources Management & Economy

4th stage – Dams & Water Resources Engineering Department – College of Engineering – University of Anbar - Iraq

Asst. Prof. Dr. Sadeq Olewi Sulaiman

Iteration No. 2:

Now the nonbasic vectors are $P_1, P_2, P_3, P_8, P_5,$ and P_7.

(a) **Entering Vector:**

\[W = C_S S^{-1} = (M, 6) \begin{pmatrix} 1 & -1/7 \\ 0 & 1/7 \end{pmatrix} = (M, 6/7 - M/7) \]

\[(c_1 - z_1, c_2 - z_2, c_3 - z_3, c_8 - z_8, c_5 - z_5, c_7 - z_7) = (c_1, c_2, c_3, c_8, c_5, c_7) - W(P_1, P_2, P_3, P_8, P_5, P_7) \]

\[= (3, 2, 4, M, 0, 0) - (M, 6/7 - M/7) \]

\[\times \begin{pmatrix} 1 & 2 & 1 & 0 & -1 & 0 \\ 2 & 1 & 3 & 1 & 0 & -1 \end{pmatrix} \]

\[= (-5M/7 + 9/7, -13M/7 + 8/7, -4M/7 + 10/7, 8M/7 - 6/7, M, -M/7 + 6/7) \]

Since the most negative coefficient corresponds to P_2, it becomes the entering vector (E.V.).

(b) **Departing Vector:**

\[X_S = S^{-1}B = \begin{pmatrix} 1 & -1/7 \\ 0 & 1/7 \end{pmatrix} \begin{pmatrix} 1000 \\ 1500 \end{pmatrix} = (1000 - 1500/7, 1500/7) = (5500/7, 1500/7) \]

\[t_2 = S^{-1}P_2 = \begin{pmatrix} 1 & -1/7 \\ 0 & 1/7 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 13/7 \\ 1/7 \end{pmatrix} \]

\[\theta = \min \left\{ \frac{5500}{13/7}, \frac{1500}{1/7} \right\} = \min \left\{ \frac{5500}{3}, 1500 \right\} = \frac{5500}{3} \]

Since the minimum ratio corresponds to P_6, it becomes the departing vector (D.V.).

(c) **New Basis:**

\[\eta = \begin{pmatrix} 1 \\ t_{62} \\ -t_{42} \\ t_{62} \end{pmatrix} = \begin{pmatrix} 1 \\ 13/7 \\ -1/7 \\ 13/7 \end{pmatrix} = \begin{pmatrix} 7/13 \\ -1/13 \end{pmatrix}; \quad \text{E} = (\eta, u_2) \]

\[S_{new}^{-1} = ES^{-1} = \begin{pmatrix} 7/13 & 0 \\ -1/13 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1/7 \\ 0 & 1/7 \end{pmatrix} = \begin{pmatrix} 7/13 & -1/13 \\ -1/13 & 2/13 \end{pmatrix} \]

Summary of Iteration No. 2:

\[X_S = (x_2, x_4)^T; \quad C_S^T = (2, 6) \]
Iteration No. 3:
Now the nonbasic vectors are P_1, P_6, P_3, P_8, P_5, and P_7.

(a) Entering Vector:
\[
W = C^T S^{-1} = (2, 6) \begin{pmatrix} 7/13 & -1/13 \\ -1/13 & 2/13 \end{pmatrix} = (8/13, 10/13)
\]
\[
(c_1 - z_1, c_6 - z_6, c_3 - z_3, c_8 - z_8, c_5 - z_5, c_7 - z_7) = (c_1, c_6, c_3, c_8, c_5, c_7) - W(P_1, P_6, P_3, P_8, P_5, P_7)
\]
\[
= (3, M, 4, M, 0, 0) - (8/13, 10/13)
\]
\[
\times \begin{pmatrix} 1 & 1 & 1 & 0 & -1 & 0 \\ 2 & 0 & 3 & 1 & 0 & -1 \end{pmatrix}
\]
\[
= 11/13, -8/13 + M, 14/13, -10/13 + M, 8/13, 10/13)
\]

Since all the coefficients are nonnegative, the above step gives the optimal basis. The optimal values of the variables and the objective function are as follows:

\[
\begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = S^{-1} B = \begin{pmatrix} 7/13 & -1/13 \\ -1/13 & 2/13 \end{pmatrix} \begin{pmatrix} 1000 \\ 1500 \end{pmatrix} = \begin{pmatrix} 5500/13 \\ 2000/13 \end{pmatrix}
\]
\[
z = C^T x_S = (2, 6) \begin{pmatrix} 5500/13 \\ 2000/13 \end{pmatrix} = 23000/13
\]
Example:
An industry must have a water supply of at least 4×10^6 liters/day of a quality such that total dissolved solids (TDS) is kept below 100 mg/l. The water can be obtained from two sources: (1) purchase from the city system at $100 per million liters, and (2) pump from a nearby stream at $50 per million liters. The concentration of TDS in the city source is 50 mg/l. TDS in the stream is 200 mg/l. Water from the two sources is completely mixed before it is used. The city can supply up to 3.5×10^6 l/day, and water rights permit pumping up to 2×10^6 l/day from the stream.

a. Formulate a linear program to optimize the amount of water used from each source. Define your decision variables and the meaning of the objective function and constraints.

b. Use the revised simplex method to determine the optimal solution.

Quiz 24-11-2015: Revised simplex
An aqueduct constructed to supply water to industrial users has an excess capacity in the months of June, July, and August of 14,000 acft, 18,000 acft, and 6,000 acft, respectively. It is proposed to develop not more than 10,000 acres of new land by utilizing the excess aqueduct capacity for irrigation water deliveries. Two crops, hay and grain, are to be grown. Their monthly water requirements and expected net returns are given in the following table:

<table>
<thead>
<tr>
<th>Monthly Water Requirement (acft/acre)</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>Return, $/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hay</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Grain</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>120</td>
</tr>
</tbody>
</table>

Formulate and solve a linear program to optimize the irrigation development. (use revised simplex method)