Theory of Elastic Stability Elastic Buckling of Columns

STRENGTH OF COMPRESSION MEMBERS IN PRACTICE

The highly idealized straight form assumed for the struts considered so
far cannot be achieved in practice. Members are never perfectly straight
and they can never be loaded exactly at the centroid of the cross section.
Deviations from the ideal elastic plastic behavior defined by Fig. 5 are
encountered due to strain hardening at high strains and the absence of
clearly defined yield point in some steel. Moreover, residual stresses
locked-in during the process of rolling also provide an added complexity.
Thus the three components, which contribute to a reduction in the actual
strength of columns (compared with the predictions from the “ideal”

column curve) are

(i) Initial imperfection or initial bow.
(i) Eccentricity of application of loads.

(iif) Residual stresses locked into the cross section.

ECCENTRICALLY LOADED COLUMNS-SECANT FORMULA

In the derivation of the Euler model, a Px

both-end pinned column, it is assumed : '_'T x

that the member is perfectly straight and K r
homogeneous, and that the loading is  * :1 {,l\
assumed to be concentric at every cross , ,’; M= Ple+)
section so that the structure and loading ) T — Ti ’

P P
Figure 5: Eccentrically loaded column

are symmetric. These idealizations are

made to simplify the problem. In real
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life, however, a perfect column that satisfies all three conditions does not
exist. It is, therefore, interesting to study the behavior of an imperfect
column and compare it with the behavior predicted by the Euler theory.
The imperfection of a monolithic slender column is predominantly
affected by the geometry and eccentricity of loading. As an imperfect
column begins to bend as soon as the initial amount of the incremental
load is applied, the behavior of an imperfect column can be investigated
successfully by considering either an initial imperfection or an
eccentricity of loading. Consider the eccentrically loaded slender column
shown in Fig. 5.From equilibrium of the isolated free body of the

deformed configuration,

EL' +Ple+y) =0

V' 4+ = —kPe with k¥ = P/EI

It should be noted in Eqg. above that the system (both-end pinned
prismatic column of length (with constant EI) . Eigenvalue remains
unchanged from the Euler critical load as it is evaluated from the

homogeneous differential equation. The general solution of this Eq. is:

y = }’.fr"'}’p = Asinkx + Becoskx —e

The integral constants are evaluated from the boundary conditions. (The
notion of solving an nth order ordinary differential equation implies that a
direct or an indirect integral process is applied n times and hence there

should be n integral constants in the solution of an nth order equation.)

y=0 ax=0 y=0 ax=¢

Thus the condition
1 —cos kf

A -
B==¢ ¢ sin kf
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1 — cos kf
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5 4 | iy .f'f P | h P > EIl
— o .-\ ~ 1 — o -\ - | . ha t - — 3
0 = ¢ sea—g — = e¢|sec —2\'{ _P:? — with Pp = V2

The same deflection curve can be obtained using a fourth-order
differential equation,

y = Acoskx+ Bsinkx+ Cx+ D
y=0, EIY' = —Pe atx =0 and

y =0, EIy” = —Pe atx = £.

Fig. 6 shows the variation of the
mid-height deflection for two values
of eccentricity, e. The behavior of an
eccentrically loaded column is
essentially the same as that of an
initially bent column except there 7/%
will be the nonzero initial deflection '
at the no-load condition in the case

of a column initially bent. A
slightly imperfect column begins to

L —"e=03

/

0. 2.0 40 6.0
bend as soon as the load is applied. Midheight deflection, &
The bending remains small until the Figure 6: Load vs. deflection,

load approaches the critical load, after  eccentrically loaded column
which the bending increases very rapidly.

Hence, the Euler theory provides a reasonable design criterion for real
imperfect columns if the imperfections are small. The maximum stress in
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the extreme fiber is due to the combination of the axial stress and the
bending stress. Hence,

{£ P
P M.,..c P P(6+ec P cePsec (5 E)
Tmax — — =+ ———=—+

A i A I A I

This equation is known as the secant formula.

STRESS AMPLIFICATION IN COLUMNS

The behavior of a compression member under increasing load can be seen
most clearly by calculating the bending stresses and lateral deflections
that occur as the axial load is gradually applied. Consider a perfectly
straight, slender member supporting a nominal axial load P. The ends of
the member are assumed free to rotate in this case. If the member were
perfectly straight and homogeneous and the load were perfectly centered,
the stress in the column at any section would be simply o, = P/A, where
A is the cross-sectional area of the column. No actual member ever would
be perfectly straight and homogeneous, nor would the load be perfectly
centered. Even when great efforts are made to achieve such perfection in
laboratory tests, it is not completely attained. Therefore, the actual case is
best represented by assuming a slight initial imperfection of loading or an
initial crookedness represented by a deflection Y, at mid-height of the
member as shown in Fig. 7.
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Moment diagrams
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Figure 7: Load and moment diagrams of imperfect column.

When a load P is acting on the column, the stresses in the extreme fibers

. i i P M.
at the mid-height section are: ¢ = y + IC

where c is the distance measured from the centroidal axis. At any section
of the column, the bending moment is the load times the eccentricity, and
the bending moment diagram has the same shape as the curve of the
deflected member (see Fig. 2). This bending moment produces a further
deflection at the mid-height y,.

_ 1'% . nmx _ dz(y—_’yo) dzy _ dZyo
Yo —Zn=1anSlnT M = _EIT EIE-I-P}/—EI—de

nmx

d?y . nmy, .
El =+ Py =—EI Y3, an(T)Zsm l

nmx

y=Asinkx+Bcoskx+y, ........... Yp = Ype1 Fysin—
a, a, m2El
E, = = P, =
_Pp 27, P 1 12
~ ET n?I2 Py 'n?

y[»4

y=Asinkx + Beoskx+ X, - ™ sin©

_— l

Pcr-nz

B.C..y=0@x=0....... B=0 & y=0@ x=L....... A=0

P

n=11-— E-nz
@x=L2 & n=1....... Vmax = &
Pcr

In this case we have a buckling state as P approach P as for initially

streak column. However the initially deformed column does not represent

Ast. Rrof S Oheelan M FCiamar



Theory of Elastic Stability Elastic Buckling of Columns

(P < P) eign value problem. Since the deflected shape can defound for

each values of P.

P Py 1
A1 P

a

P Pr 2EAP2 2E
LetJﬂ:E and Jf,:—E:?T _ _ 7

Further, recall that

1 B 1
g
1 — P 1-——=
Pr Ter
and
P P >

voo _ Proc _ o voe _ (€)%
I Ar® r2 r/

The total stress is then

2
C 1
g = J,,j:crn(—) Yo 7.

¥ 61__
Ty

Thus, the magnitude of the bending stress, the second term in Eq. above
depends on P represented in sa; the shape of the cross section (c/r); and
the initial curvature (yo/c). As the critical stress, o, =a"E/(I/r)? is a
function of the stiffness of the material of the column and the slenderness
ratio, it is convenient to make the expression for stress dimensionless by

dividing the stress Eq. by o¢. Thus 2

a T4 Ta(cC _.1 0 1
(TLT JL’F C‘rfr r C ] — d

JL’F
The value of shape factor (c/r ) ranges from 1.0 for a section in which all

(most) of the area is assumed concentrated in the flanges to 3 for
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rectangular section and 2.0 for a solid circular section. Rolled shapes
generally used for columns have (c/r)? in the vicinity of 1.4 about the
strong axis and 3.8 about the weak axis. S shapes (wide flange shapes
with sloped flanges) run the values of 5.0 and over about the weak axis.
Reasonable values of ( yo/c) are more difficult to estimate since the initial
crookedness may be the result of either lack of straightness of the
member itself or imperfection of the alignment of loading through the
connections. Pending better establishment of the values, the combined
constant [(c/r)* ( yo/c)] has been assumed to range from 0.01 to 1.0. Since
it is usually more convenient to express the initial crookedness y, in terms

of the length of the member, [(c/r)? ( yo/c)] may be written as:

[(c/r)* (yole)] = (yo/l) (Ir) (c/r)

Where: yofl = lack of straightness, I/r = slenderness ratio, and c/r = shape
factor. The acceptable tolerances for straightness of rolled shapes are
listed in some specifications (AISC 2005).

BUCKLING OF COLUMN WITH CHANGE IN CROSS-SECTION

The critical load on columns of stepped
(variable) cross section as used in
telescopic power cylinders can be
computed applying differential
equations considering continuity at the
junctures. In order to limit the >
computational complexity, only two-  _+
stepped columns shown in the sketch are
considered. Multiple-stepped columns.

(ex)

P
Figure 8: Stepped columns
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are best analyzed by a means of computerized structural analysis
methods. Consider the stepped cantilever column shown in Fig. 8(a). The
bending moment of the column at any section along the member x-axis
can be written for each segment as

E'ija" = P[::ﬁ —y1} and EI:J/E = P[:’i—yzj

2 .
Let b = —and k5 = ——, then the equations becomes

ElL El,

Wtk = kid ¥y = 0+ Ccos kyx + Dsin kyx
y"_,f + k_%_yz = k%(ﬁ Vo = 0+ Acos kax + Bsin kax
In order to determine the integral constants A4 and B for segment 2,
consider the following boundary conditions:
Yo =0 aax=0=A= -0
¥p=0 atx=0=B=0=y = 81— cos kx)
At the top of the column for yy, it requires that
O+ Ccoskif+ Dsinkf =86 = Ccoskif + Dsinkyf = 0=
C = —Dan k¥
The continuity at the juncture requires that
§ + C cos k1f2 + Dsin k1fz = 6(1 — cos kabz) = § — & cos kafa

sin k£

cos k£

—tan k£ cos kyfsD 4 Dsin ki fs = —( cos ki #3 — sin kjfz) D
= —d cos k>

6 cos kafs cos k£
sin k1f cos B2 —sin i fo cos b f

i cos kafacos b f
s5in k] [4‘!:]] + f:]z) cOs k] f:.]z —sin .i{]fz cO5 k] [4‘!:]] + Fz)

6 cos kafs cos kbl
sin k£
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i cos kafs cos ki€ 6 cos kabs sin k£
sin j’c’] E-j o sin jt’-jf-]

C = —tan k#

The continuity condition that the two segments of the deflected curve have
the same slope at the juncture (@x = £5) gives

51&‘2 sin j&'zfz = _C}c’] sin .l'c‘-]f-] + Dj&’] COs5 j&’-jﬁz
g cos kafs sin ke f

= kq sin k£
sin k1 15 At
6 cos kyfs cos ki d
cos ke 5 cos ky b1 cos kifs
sin k€4

Rearranging gives
ley sin ko sin kq€y = ky cos kafa( sin kyfq cos kifs
+ cos ki1 sin ky£2) sin ki fa
+ k1 cos kafa(cos ks cos kb
—sin ki £y sin ky£2) cos kifs
= ki(cos k1€1 cos kalfa)

. 1 —_ .. .
which leads to tan k£ tan kabr = — <= stability condition equadon.
el

e

The same stability condition equation can be obtained by setting the
coefficient determinant equal to zero. There are a total of four integral
constants to be determined. As the governing differential equation is in
second order, only one boundary condition at each support is to be used.
Hence, the other owo conditions are to be extracted from the continuicy
condition as used above.

h =0 atx = 0=B= 0=y, = 6+ A cos kax (a)
yr =0(ory] =0) ax =f=Ccoskif+Dsinkif =0 (b)
¥y =¥a atx = fr=>Acoskyfy — Ccos kyfa —Dsinkfs = 0 (o)

¥y =5 atx = 3= Abk; sin kol — Chy sin kyfs + Dy cos kyfz = 0
(d)
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Setting the determinant for the coefficients, A, C, and D equal to zero
yields the identical stability condition equation. Knowing I,=I, and I,=l,,
the solution of the transcendental equation can be found. By substituting
a/2 for |, and 1/2 for I, the result obtained can be directly applied to the
column shown in sketch (b). Coefficient m for P, = mEL/I? is given in
Table 1. The table should be used for the case shown in sketch (b). For
the case of stepped columns shown in sketch (a), values for m should be
taken from Table 2. Consider a stepped cantilever column similar to that
shown in Fig. 8 (a). The length of each segment is 20 inches. The cross-
sectional area of the bottom segment is 4 in? and the upper segment is 1
in? The modulus of elasticity of the material is assumed to be 29,000 ksi.
The stability condition equation now becomes  tan(80k;) tan(20k;)= 4
Gives k, = 0.0184315, which leads to P., =13.136 kips.

Table 1: Buckling coefficients for step column

ik a/t
0.2 0.4 0.6 0.8

0.01 0.15 0.27 0.60 2.26
0.1 1.47 2.40 4.50 8.59
0.2 2.80 4.22 6.69 9.33
0.4 5.09 6.68 8.51 9.67
0.6 6.98 8.19 9.24 9.78
0.8 8.55 9.18 9.63 9.84

Table 2: Buckling coefficients for step column

li/k £/t
0.2 0.4 0.6 0.8

0.01 0.038 0.068 0.150 0.563
0.1 0.367 0.600 1.124 2.147
0.2 0.699 1.056 1.674 2.332
0.4 1.272 1.669 2.127 2.419
0.6 1.745 2.046 2.311 2.446
0.8 2.138 2.294 2.408 2.459
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