Theory of Elastic Stability Elastic Buckling of Columns

LARGE DEFLECTION THEORY (THE ELASTICA)

Although it is not likely to be encountered in the construction of buildings
and bridges, a very slender compression member may exhibit a nonlinear
elastic large deformation so that a simplifying assumption of the small
displacement theory may not be valid. Consider the simply supported

wiry column shown in Fig. 9.
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Figure 9: Large deflection model

Aside from the assumption of small deflections, all the other idealizations
made for the Euler column are assumed valid. The member is assumed
perfectly straight initially and loaded along its centroidal axis, and the
material is assumed to obey Hooke’s law. From an isolated free body of
the deformed configuration of the column, it can be readily observed that
the external moment, Py, at any section is equal to the internal moment, -
Ellp. Thus Py=- El/p.

where 1/p is the curvature. Since the curvature is defined by the rate of
change of the unit tangent vector of the curve with respect to the arc

length of the curve, the curvature and slope relationship is established.
1/p=d6lds then Eld6/ds+ Py=0 but k’=P/EI ... dO/ds+ k*y=0

Differentiating Eq. respect to s and replacing dy/ds by siné yields:
d*0

-2 + B sinf = 0
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Multiplying each term of Eq. by 2dd and integrating gives:
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R ecalling the following mathematical identities
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Carrying out the integration gives
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Notice the negative sign is eliminated by reversing the limits of
integration. Making use of mathematical identities:
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In order to simplify this Eq. further, let
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and introduce a new variable ¢ such that
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Then ! = 0=¢ = Oand § = Oy=sing = 1=¢ = 7/2.
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which can be rearranged to show
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If the lateral deflection of the member is
very small (just after the initial bulge),
then 6, is small and consequently «, sin® _
¢ in the denominator of K becomes ~* | ™
negligible. The value of K approaches
/2 and . 8,

Small A theory

P=pP,= m EI/¢ Figure 10: Postbuckling behavior

The midheight deflection, y,, (or 8), can be determined from dy = ds sin 6.

P sin f dff
r = v2k+/cos f — cos

Integrating the above equation gives
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Recallsin(#/2) = asing and dff = 2oecosdp dp/ /1 — o2 sin® ¢
Hence
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The distance between the two load points (x-coordinates) can be deter-
mined from

dx = dscosf
cos 6 df
V2ky/cos @ — cos By

Integrating (x,, is the x-coordinate at the midheight) the above equation
gives
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where E(e) 1s the complete elliptic integral of the second kind
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The complete elliptic integral of the first kind can be evaluated by an infinite

—1

series given by
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Summing the first four terms of the above infinite series for &« = 0.5 yields
K = 1.685174.

Likewise, the complete elliptic integral of the second kind can be evaluated
by an infinite series given by
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Summing the first four terms of the above infinite series for a = 0.5 yields
E =1.46746.

Question: How can you explain the contraction between analytical and
experimental results.
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