BEAM-COLUMN BUCKLING

DIFFERENTIAL EQUATIONS OF BEAM-COLUMNS

Bifurcation-type buckling is essentially flexural behavior. Therefore, the free-body diagram must be based on the deformed configuration as the examination of equilibrium is made in the neighboring equilibrium position. Summing the forces in the horizontal direction in Fig. 1-4(a) gives:

$$\sum F_{\mathcal{V}} = 0 = (V + dV) - V + qdx,$$
$$\frac{dV}{dx} = V' = -q(x)$$

Summing the moment at the top of the free body gives

$$\sum M_{\text{top}} = 0 = (M + dM) - M + Vdx + Pdy - q(dx)\frac{dx}{2}$$

Taking derivatives on both sides of Eq.: $\frac{dM}{dx} + P \frac{dy}{dx} = -V$

Taking derivatives on both sides of Eq. above give:

$$M'' + (Py')' = -V'$$

Equation (3) is the fundamental beam-column governing differential equation. Consider the free-body diagram shown in Fig. 1-4(d). Summing forces in the y direction gives

$$\sum F_y = 0 = -(V + dV) + V + qdx \Rightarrow \frac{dV}{dx} = V' = q(x)$$

Asst. Brof. Dr. OBheelan M. Hama

Figure 1-4 Free-body diagrams of a beam-column

Summing moments about the top of the free body yields

$$\sum M_{top} = 0$$

= $-(M + dM) + M - Vdx - Pdy - qdxdx/2 \Rightarrow$
 $-\frac{dM}{dx} - P\frac{dy}{dx} = V$

Asst. Brof. Dr. OBheelan M. Hama

For the coordinate system shown in Fig. 1-4(d), the curve represents a decreasing function (negative slope) with the convex side to the positive y direction. Hence, -EIy''=M(x). Thus,

$$-\left(-EIy''\right)' - \left(-Py'\right) = V$$

which leads to

$$EIy''' + Py' = V$$
 or $EIy^{i\nu} + Py'' = q(x)$

It can be shown that the free-body diagrams shown in Figs. 1-4(b) and 1-4(c) will lead to Eq. (3). Hence, the governing differential equation is independent of the shape of the free-body diagram assumed. Rearranging Eq. (3) and if considered q(x)=0 gives:

$$EIy^{i\nu} + Py'' = 0 \Rightarrow y^{i\nu} + k^2y'' = 0, \text{ where } k^2 = \frac{P}{EI}$$

Assuming the solution to be of a form $y = \alpha e^{mx}$, then $y' = \alpha m e^{mx}$, $y'' = \alpha m^2 e^{mx}$, $y''' = \alpha m^3 e^{mx}$, and $y^{i\nu} = \alpha m^4 e^x$. Substituting these derivatives back to the simplified homogeneous differential equation yields

$$\alpha m^4 e^{mx} + \alpha k^2 m^2 e^{mx} = 0 \Rightarrow \alpha e^{mx} (m^4 + k^2 m^2) = 0$$

Since $\alpha \neq 0$ and $e^{mx} \neq 0 \Rightarrow m^2(m^2 + k^2) = 0 \Rightarrow m = \pm 0$, $\pm ki$. Hence, $y_h = c_1 e^{kix} + c_2 e^{-kix} + c_3 x e^0 + c_4 e^0$

Know the mathematical identities $\begin{cases} e^0 = 1\\ e^{ikx} = \cos kx + i \sin kx\\ e^{-ikx} = \cos kx - i \sin kx \end{cases}$

Hence, $y_h = A \sin kx + B \cos kx + Cx + D$ where integral constants A, B, C, and D can be determined uniquely by applying proper boundary conditions of the structure.

Asst. Brof. Dr. OBheelan M. Hama

TRANSVERSELY LOADED BEAM SUBJECTED TO AXIAL COMPRESSION

A slender member meeting the Euler-Bernoulli-Navier hypotheses under transverse loads and inplane compressive load (see Fig.1) is called a beamcolumn. An exact analysis of a beam-column can only be accomplished by solving the governing differential equation or its derivatives (for example, slope-deflection equations). Consider a very simple case of a beam-column shown in Fig. 1. The beam-column is subjected simultaneously to a transverse load Q at its mid-span and a concentric compressive force P. Since the response of a beam-column under these loads is no longer linear, the method of superposition does not apply even if the final results are within the elastic limit.

Figure 1: Simple beam-column

Summing moments at a point x from the origin gives

$$M(x) - Py - \frac{Q}{2}x = 0 \quad \text{for } 0 \le x \le \ell/2 \quad \text{with } M(x) = -EIy''$$

or $y'' + k^2y = -\frac{Q}{2}\frac{x}{EI} = -\frac{Qx}{2P}k^2 \quad \text{with } k^2 = \frac{P}{EI}$
The general solution to this differential equation is $y = y_h + y_P$. The
homogeneous solution has been given earlier. The particular solution can be
obtained by the method of undetermined coefficients. Assume the particular
solution to be of the form

Asst. Prof. Dr. OSheelan M. Hama

 $y_P = C + Dx$ with $y'_P = D$, $y''_P = 0$

Substituting these derivatives into the differential equation yields

$$0 + k^2(C + Dx) = -\frac{Qx}{2P}k^2$$

Hence,

$$C = 0$$
 and $D = -\frac{Q}{2P} \Rightarrow y_P = -\frac{Q}{2P}x$

The total solution is

$$y = A\cos kx + B\sin kx - \frac{Qx}{2P}$$

The two constants of integration can be determined from the following boundary conditions:

$$y = 0$$
 at $x = 0 \Rightarrow A = 0$
 $y' = 0$ at $x = \ell/2$

(Note : the boundary condition, y = 0 at $x = \ell$, cannot be used

here as $0 \le x \le \ell/2$)

$$y' = Bk \cos kx - \frac{Q}{2P}, 0 = Bk \cos \frac{k\ell}{2} - \frac{Q}{2P} \Rightarrow B = \frac{Q}{2Pk \cos \frac{k\ell}{2}}$$

$$y = \frac{Q \sin kx}{2 Pk \cos \frac{k\ell}{2}} - \frac{Qx}{2 P} \quad \text{for } 0 \le x \le \frac{\ell}{2} \quad \text{with } P_{cr} = P_E = \frac{\pi^2 EI}{\ell^2}$$

By observation, the maximum lateral deflection occurs at the midspan.

$$y_{\max} \bigg|_{x = \frac{\ell}{2}} = \frac{Q}{2Pk} \bigg(\tan \frac{k\ell}{2} - \frac{k\ell}{2} \bigg) \quad \text{with } u = \frac{k\ell}{2} = \frac{\ell}{2} \sqrt{\frac{P}{EI}}$$
$$y_{\max} \bigg|_{x = \frac{\ell}{2}} = \frac{Qk^{3}\ell^{3}}{16Pku^{3}} \bigg(\tan \frac{k\ell}{2} - \frac{k\ell}{2} \bigg) = \frac{Q\ell^{3}}{48EI} \bigg[\frac{3(\tan u - u)}{u^{3}} \bigg] = \frac{Q\ell^{3}}{48EI} X(u)$$

Asst. Zrof. Dr. OSheelan M. Hama

$$y_{\max} \bigg|_{x = \frac{\ell}{2}} = \delta_{\max} = \frac{Q\ell^3}{48EI} \quad \text{when } P = 0$$
$$\ell^2 P = 4EIu^2 \quad \text{in } P = \pi^2 EI$$

$$u^2 = \frac{\ell^2}{4} \frac{P}{EI} \Rightarrow P = \frac{4EIu^2}{\ell^2}$$
 and $P_E = \frac{\pi^2 EI}{\ell^2}$

$$\frac{P}{P_E} = \frac{4EIu^2}{\ell^2} \frac{\ell^2}{\pi^2 EI} = \frac{4u^2}{\pi^2}, \quad X(u) = \frac{3(\tan u - u)}{u^3}$$

$$\delta = y_{\max} = \delta_0 \; \frac{3(\tan u - u)}{u^3}$$

Figure 3: simple beam-column

subjected to a lateral load

where

$$\delta_0 = \frac{Q\ell^3}{48EI}, u = \frac{k\ell}{2}, \text{ and } k = \sqrt{\frac{P}{EI}}$$

y

Recall the power series expansion of $\tan u$ given by

$$\tan u = u + \frac{u^3}{3} + \frac{2u^5}{15} + \frac{17u^7}{315} + \dots$$

Hence,

$$\delta = \delta_0 \left(1 + \frac{2u^2}{5} + \frac{17u^4}{105} + \dots \right)$$

Asst. Prof. Dr. OSheelan M. Hama

Noting

$$u^{2} = \frac{k^{2}\ell^{2}}{4} = \frac{P\ell^{2}}{4EI}\frac{\pi^{2}}{\pi^{2}} = 2.46\frac{P}{P_{E}}$$
$$\delta = \delta_{0}\left[1 + 0.984\frac{P}{P_{e}} + 0.998\left(\frac{P}{P_{e}}\right)^{2} + \dots\right]$$
$$\doteq \delta_{0}\left[1 + \frac{P}{P_{E}} + \left(\frac{P}{P_{E}}\right)^{2} + \dots\right]$$
$$= \delta_{0}\frac{1}{1 - \frac{P}{P_{E}}} \Leftarrow \text{ from power series sum for } \frac{P}{P_{E}} < 1$$

where

$$\frac{1}{1-\frac{P}{P_E}}$$
 is called amplification factor or magnification factor.

The maximum bending moment is

$$M_{\max} = \frac{Q\ell}{4} + P\delta = \frac{Q\ell}{4} + \frac{PQ\ell^3}{48EI} \frac{1}{1 - \frac{P}{P_E}} = \frac{Q\ell}{4} \left(1 + \frac{P\ell^2}{12EI} \frac{1}{1 - \frac{P}{P_E}} \right)$$
$$= \frac{Q\ell}{4} \left(1 + 0.82 \frac{P}{P_E} \frac{1}{1 - \frac{P}{P_E}} \right)$$

or

$$M_{\rm max} = \frac{Q\ell}{4} \left(\frac{1 - 0.18 \frac{P}{P_E}}{1 - \frac{P}{P_E}} \right)$$

where
$$\left(\frac{1-0.18\frac{P}{P_E}}{1-\frac{P}{P_E}}\right)$$

is amplification factor for bending moment due to a concentrated load.

Asst. Brof. Dr. OSheelan M. Hama

The variation of δ with Q as given by the amplification factor is plotted on the left side of Fig. 4 for P = 0, P = $0.4P_{cr}$, and P = 0.7Pcr. The curves show that the relation between Q and δ is linear even when P \neq 0, provided P is a constant. However, if P is allowed to vary, as is the case on the right side of Figure 4, the load-deflection relation is not linear. This is true regardless of whether Q remains constant (dashed curve) or increases

as P increases (solid curve). The deflection of a beam-column is thus a linear function of Q but a nonlinear function of P.

Figure 4: Lateral displacements of beam-column

BENDING OF BEAM-COLUMNS BY COUPLES

• Case 1: one end is subjected to moment

the deflection curve is obtained by:

$$y = \frac{M_b}{P} \left(\frac{\sin kx}{\sin kl} - \frac{x}{l} \right)$$

$$\theta_a = \left(\frac{dy}{dx}\right)_{x=0} = \frac{M_b}{P} \left(\frac{k}{\sin kl} - \frac{1}{l}\right) = \frac{M_b l}{6EI} \frac{3}{u} \left(\frac{1}{\sin 2u} - \frac{1}{2u}\right)$$

$$\theta_b = -\left(\frac{dy}{dx}\right)_{x=l} = -\frac{M_b}{P} \left(\frac{k\cos kl}{\sin kl} - \frac{1}{l}\right) = \frac{M_b l}{3EI} \frac{3}{2u} \left(\frac{1}{2u} - \frac{1}{\tan 2u}\right)$$

Asst. Prof. Dr. OSheelan M. Hama

to simplify these expressions let:

$$\phi(u) = \frac{3}{u} \left(\frac{1}{\sin 2u} - \frac{1}{2u} \right)$$
$$\psi(u) = \frac{3}{2u} \left(\frac{1}{2u} - \frac{1}{\tan 2u} \right)$$

• Case 2: both ends are subjected to moments

By substituting M_a by M_b and x by (l-x) in the same equation of case one. Adding the two results together, then the deflection curve for this case:

$$y = \frac{M_b}{P} \left(\frac{\sin kx}{\sin kl} - \frac{x}{l} \right) + \frac{M_a}{P} \left[\frac{\sin k(l-x)}{\sin kl} - \frac{l-x}{l} \right]$$

Substituting $M_a = Pe_a \& M_b = Pe_b$ we obtain:

$$y = e_b \left(\frac{\sin kx}{\sin kl} - \frac{x}{l} \right) + e_a \left[\frac{\sin k(l-x)}{\sin kl} - \frac{l-x}{l} \right]$$
$$\theta_a = \frac{M_a l}{3EI} \psi(u) + \frac{M_b l}{6EI} \phi(u)$$
$$\theta_b = \frac{M_b l}{3EI} \psi(u) + \frac{M_a l}{6EI} \phi(u)$$

Case 3: both ends are subjected to equal moments $(M_a = M_b = M_o)$

$$y = \frac{M_0}{P \cos(kl/2)} \left[\cos\left(\frac{kl}{2} - kx\right) - \cos\frac{kl}{2} \right]$$
$$= \frac{M_0 l^2}{8EI} \frac{2}{u^2 \cos u} \left[\cos\left(u - \frac{2ux}{l}\right) - \cos u \right]$$

The deflection at the center of the beam is obtained by substituting x=l/2

$$\delta = (y)_{x=l/2} = \frac{M_0 l^2}{8EI} \frac{2(1 - \cos u)}{u^2 \cos u} = \frac{M_0 l^2}{8EI} \lambda(u)$$

The slope at the ends are:

Asst. Zrof. Dr. OSheelan M. Hama

$$\theta_a = \theta_b = \left(\frac{dy}{dx}\right)_{x=0} = \frac{M_0 l}{2EI} \frac{\tan u}{u}$$

The max. bending moment which obtained at the middle of span:

$$M_{\max} = -EI\left(\frac{d^2y}{dx^2}\right)_{x=l/2} = M_0 \sec u$$

BEAM-COLUMNS WITH BUILT UP ENDS

Case 1: one end is fixed

The rotation at the fixed due to the uniform load and the moment equal to zero

$$\frac{ql^{3}}{24EI} \chi(u) + \frac{M_{0}l}{2EI} \frac{\tan u}{u} = 0$$
$$M_{0} = -\frac{ql^{2}}{12} \frac{\chi(u)}{(\tan u)/u}$$

$$\chi(u) = \frac{3(\tan u - u)}{u^3}$$

Case 2: both ends are fixed

$$\frac{ql^3}{24EI} \chi(u) + \frac{M_0 l}{2EI} \frac{\tan u}{u} = 0$$
$$M_0 = -\frac{ql^2}{12} \frac{\chi(u)}{(\tan u)/u}$$

Case 3: unsymmetrical loaded beam

Asst. Zrof. Dr. OSheelan M. Hama