Theory of Elastic Stability Beam-Column Buckling

BEAM-COLUMN BUCKLING

DIFFERENTIAL EQUATIONS OF BEAM-COLUMNS

Bifurcation-type buckling is essentially flexural behavior. Therefore, the
free-body diagram must be based on the deformed configuration as the
examination of equilibrium is made in the neighboring equilibrium position.

Summing the forces in the horizontal direction in Fig. 1-4(a) gives:

dV
o V= —q(x)

Summing the moment at the top of the free body gives

d.
Z Moy = 0= (M’ + (fM') — M + Vdx+ Pdy — q(rfx) Ex

Taking derivatives on both sides of Eq.: dj +p ﬂ = —V
dx dx

Taking derivatives on both sides of Eq. above give:
ﬂ/f” _|_ (Pyr)f — V!

Equation (3) is the fundamental beam-column governing differential
equation. Consider the free-body diagram shown in Fig. 1-4(d). Summing
forces in the y direction gives

dl’
ZF}' =0=—(V+dV)+ Vit qdx = —— = V= g(x)
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Figure 1-4 Free-body diagrams of a beam-column

Summing moments about the top of the free body yields
E M, =0

= —(M +dM) + M — Vidx — Pdy — qdxdx72=>

dM pdy _
dx dx
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For the coordinate system shown in Fig. 1-4(d), the curve represents a
decreasing function (negative slope) with the convex side to the positive y
direction. Hence, -Ely"=M(x). Thus,

—(-ED') = (=R) =V
which leads to

E{l’m-l‘ F:l” — 1V  or Efjf‘m—l— Py” — cj(:u.“)

It can be shown that the free-body diagrams shown in Figs. 1-4(b) and 1-
4(c) will lead to Eqg. (3). Hence, the governing differential equation is
independent of the shape of the free-body diagram assumed. Rearranging
Eq. (3) and if considered q(x)= 0 gives:

. , P
EI_}?W—I—P_}?” _ D=>y”’—|—k2y” _ D, where k2 — ﬁ

Assuming the solution to be of a form y =aé™, then )y = ame™,
2 1 F . . . .
Y= am’e™, Y = am’e™, and " = am’e". Substituting these derivatives

back to the simplified homogeneous differential equation yields
ij4€mx + &szmZE:mc — )= O:E:mc(mﬁr + kZmE} — 0
Sinceaw # 0 and ¢ #0 = m>(m®> ++*) = 0= m = +0, ki Hence,
Y, = d e e M 4 paxe® + gy
& =1
Know the mathematical identities § ¢* = cos kx 4 i sin kx
¢ R% — Cos kx — isin kx
Hence, y;, = A sin kx + B cos kx + Cx + D where integral constants A,

B, C, and D can be determined uniquely by applying proper boundary
conditions of the structure.
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TRANSVERSELY LOADED BEAM SUBJECTED TO AXIAL
COMPRESSION

A slender member meeting the Euler-Bernoulli-Navier hypotheses under
transverse loads and inplane compressive load (see Fig.1) is called a beam-
column. An exact analysis of a beam-column can only be accomplished by
solving the governing differential equation or its derivatives (for example,
slope-deflection equations). Consider a very simple case of a beam-column
shown in Fig. 1. The beam-column is subjected simultaneously to a
transverse load Q at its mid-span and a concentric compressive force P.
Since the response of a beam-column under these loads is no longer linear,
the method of superposition does not apply even if the final results are

within the elastic limit.
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Figure 1. Simple beam-column

u|iQ~

Summing moments at a point x from the origin gives
M(x) — Py — gx =0 for0<x<//2 with M(x) = —ED/

"o, o2 Q x Qx5 I P
or + 'y = —— = k= with B = —
Y Y 2 EI 2P EI
The general solution to this differential equation is'y = y, + Yp. The

homogeneous solution has been given earlier. The particular solution can be
obtained by the method of undetermined coefficients. Assume the particular

solution to be of the form
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Beam-Column Buckling
yp = C+Dx with y, = D, y =0

Substituting these derivatives into the differential equation yields

Qx
0+ k*(C+Dx) = ——k
Hence,
C =0 and D:—giypz—gx
2P 2P

The total solution 1s

: Qx
= A cos kx + Bsin kx —
y C + >p

The two constants of integration can be determined from the following
boundary conditions:

y=0 atx =0=A4=20

Yy =0 at x = {/2

(Note : the boundary condition,y = 0

at x = ¢, cannot be used
here as 0 < x < ¢/2)
94
y’:Bkcosk’x—%,O:Bkcos——%iB:L]{’p
2 Pk cos —
2
sin kex x l mEI
y = QQ sin kx 7Qx for 0<x<”
k{ 2P 2

with P, = Pg

2
2 Pk cos — ¢
2

By observation, the maximum lateral deflection occurs at the midspan.

Q kl  kt _ k{ ¢ /P
Yimax = tan —— — withy = — = —/—
Ty = % 2 Pk 2 2 2V EI
A T @[3 _ Ve
Ymax — Q tan— — — = Q (tan " H) — Q X(M)
™oL 16PkP\ 2 2 48Kl w2 ASEI
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ES
Ymax / — 5n1ax — % when P = 0
> p AEL? T2ET
2 p— — - —
_?ﬁﬁp_ 7 and P = 12
P 4ELP 2 4P X(u) = 3(tan u — )
P 2 wEl 7%’ = 3

The previous section showed that the deflection at the mid-span of a simple

beam-column subjected to a X l J
- - - P ” '& " O‘ P
lateral load shown in Fig. 3 is £ f
L2 |2
' | |
y
3(tan u — u)
0 = Ymax = 00 3 Figure 3: simple beam-column
subjected to a lateral load
where
£ ol J2
50 — Q ]H — L_, Fllld k — —
43E] 2 EI

Reecall the power series expansion of tan u given by

) B +u3+2u5+17u7+
e N T T- R

Hence,

2w 174
6 =01+ +——+ ...
“( 5 ' 105 )
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Noting
, K?  pix? P
W = —— = — = 2.46 —
4 4EI 7 Pr
6 = 0g|1+0.984 P—|—0998 P 2—I—
= 0p . p, TO D,
= 0g|1+ P + P)? +
0 Pr Pr ces
1 .
= dp P = from power series sum for — < 1
1—— E
Pp
where
1 . o .
—p s called amplification factor or magnification factor.
1—
Pg

The maximum bending moment is

QY Q¢ PQA 1 QY P 1
Mpye = —+P6 = = +- >~ = |14+~
! 4 48E1, P 4 121, P
Pr Pg
¢ P 1
_ QY +0.82 —
4 Ppy_ P
Pg
or D
ot 1-0.18 o
*"‘"fmﬁ - T 2
T
where
p
1—0.18—
Pr
p
1 — —
Pg

is amplification factor for bending moment due to a concentrated load.
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The variation of 6 with Q as given by the amplification factor is plotted on
the left side of Fig. 4 for P =0, P = 0.4P, and P = 0.7Pcr. The curves show
that the relation between Q and o is linear even when P+#0, provided P is a
constant. However, if P is allowed to vary, as is the case on the right side of
Figure 4, the load-deflection relation is not linear. This is true regardless of

whether Q remains constant (dashed curve) or increases

as P increases (solid curve). The deflection of a beam-column is thus a

linear function of Q but a nonlinear function of P.

P=0
A l P=04P;
l P=07P_ R
= +— () : Proportional to P
Bending P -
stiffness P, ’
1 "1— () : Constant .
5 E?{} EJ“

Figure 4: Lateral displacements of beam-column

BENDING OF BEAM-COLUMNS BY COUPLES

9 6
e Case 1: one end is subjected to moment 2__ 4 y ¢ rﬁ:‘_f

the deflection curve is obtained by: l_

_ M, (sinkz _ =

Y=7p \snml "1/
oy Mo K 1\_ M3/ 1 1
be =\Zz).oo = P\l 1) " 6EIu\sin2u ~ 2u

o\ _ _ My(keoshl _1\_ M3 (1 _ 1
b = = dz /...  ~ P \sinki I/ 3EI2u\2« tan2u
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to simplify these expressions let: 3 1 1
o) = (sin 2u ﬁt_:)

1 1
Y = (2u tan 2u)
e Case 2: both ends are subjected to moments

M, 8 M,

Pl s\ } { m p £ A B P
é;gﬁ %Eg % x TI
!, : ‘4 T_ “ z
g (a) ly 03]

By substituting M, by M, and x by (I-x) in the same equation of case one.
Adding the two results together, then the deflection curve for this case:

M smk:c.___:g_l_M sink(l—2) 1—a2
P sinkl 1

Substituting M,=Pe, & My=Pe, we obtain:

_, (sinkx - z\  Isink(l—2z) l—=x
V=o\cam ,_._z *"’“[ “Enkl 1 ]

o= 3@1 o w(w) + é‘;*'} o(u)

b = g7 Y0 + g7 0

Case 3: both ends are subjected to equal moments (M= My= M,)

M, ko \ _ E]
Y= Poos (kl/2) [008 (5 k:c) co8 3

Mg 2 A ]

~ 8EI u’cosu[cos( l ) gos 4

The deflection at the center of the beam is obtained by substituting x=1/2

My? 2(1 — cosu) _
§= Wit = 3ET " wPcosu SE'I Mﬂ)

The slope at the ends are:
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Moltanu
b = s = dz,., 5ET " w

The max. bending moment which obtained at the middle of span:

d! .
M,..= —EI ( dx’)m;g = Mysec u

BEAM-COLUMNS WITH BUILT UP ENDS

Case 1: one end is fixed P yq A
. NARERAN SN INR R NARREANEN

The rotation at the fixed due to the 4

uniform load and the moment

equal to zero

Md tan U
24E1"( Ytemr—w =0 x() - 3““““1 u)
Moo @ x@ U
R 1 (tan (tan u)/u
Case 2: both ends are fixed
' ' ASNEENNEANSENSANRARANAEAE
The deflection curve is _62“[ . Bfé'?
symmetric and the moment at |y
fixed ends are equals (M= M,= M,) )
gk Ml tan u
sagl X togr— =0
@ x(uw)
Mo=—13 (tan u)/u
Case 3: unsymmetrical loaded beam
' Q
M, _ c— M,
b = 000 + 22t ¢()+ ¢(u)—0 YN | l.— B\ P
3EI BEI _é% @_
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