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BEAM-COLUMN BUCKLING                                    

 

DIFFERENTIAL EQUATIONS OF BEAM-COLUMNS 

Bifurcation-type buckling is essentially flexural behavior. Therefore, the 

free-body diagram must be based on the deformed configuration as the 

examination of equilibrium is made in the neighboring equilibrium position. 

Summing the forces in the horizontal direction in Fig. 1-4(a) gives:  

 

 

 

Neglecting the second-order term leads to:   

Taking derivatives on both sides of Eq.: 

Taking derivatives on both sides of Eq. above give:  

 

Equation (3) is the fundamental beam-column governing differential 

equation.  Consider the free-body diagram shown in Fig. 1-4(d). Summing 

forces in the y direction gives 
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Since the convex side of the curve (buckled shape) is opposite from the 

positive y axis, M = EIy" & V' = - q(x). Hence,   (EIy")"+(Py')'= q(x)    For 

a prismatic (EI = const.) beam-column subjected to a constant compressive 

force P, the equation is simplified to 

EIy
iv 

+ Py"= q(x) ……….(3) 
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For the coordinate system shown in Fig. 1-4(d), the curve represents a 

decreasing function (negative slope) with the convex side to the positive y 

direction. Hence, -EIy"=M(x). Thus, 

 

 
 

 

 

It can be shown that the free-body diagrams shown in Figs. 1-4(b) and 1-

4(c) will lead to Eq. (3). Hence, the governing differential equation is 

independent of the shape of the free-body diagram assumed. Rearranging 

Eq. (3) and if considered q(x)= 0 gives: 
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TRANSVERSELY LOADED BEAM SUBJECTED TO AXIAL 

COMPRESSION  

A slender member meeting the Euler-Bernoulli-Navier hypotheses under 

transverse loads and inplane compressive load (see Fig.1) is called a beam-

column. An exact analysis of a beam-column can only be accomplished by 

solving the governing differential equation or its derivatives (for example, 

slope-deflection equations). Consider a very simple case of a beam-column 

shown in Fig. 1. The beam-column is subjected simultaneously to a 

transverse load Q at its mid-span and a concentric compressive force P. 

Since the response of a beam-column under these loads is no longer linear, 

the method of superposition does not apply even if the final results are 

within the elastic limit. 

 

 

Figure 1: Simple beam-column 

Summing moments at a point x from the origin gives 

 

 

The general solution to this differential equation is y = yh +   yP. The 

homogeneous solution has been given earlier. The particular solution can be 

obtained by the method of undetermined coefficients. Assume the particular 

solution to be of the form 
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The previous section showed that the deflection at the mid-span of a simple 

beam-column subjected to a 

lateral load shown in Fig. 3 is 

 

Figure 3: simple beam-column  

                                                                           subjected to a lateral load 
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  is amplification factor for bending moment due to a concentrated load. 
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The variation of δ with Q as given by the amplification factor is plotted on 

the left side of Fig. 4 for P = 0, P = 0.4Pcr, and P = 0.7Pcr. The curves show 

that the relation between Q and δ is linear even when P≠0, provided P is a 

constant. However, if P is allowed to vary, as is the case on the right side of 

Figure 4, the load-deflection relation is not linear. This is true regardless of 

whether Q remains constant (dashed curve) or increases  

as P increases (solid curve). The deflection of a beam-column is thus a 

linear function of Q but a nonlinear function of P. 

 

 

 

 

Figure 4: Lateral displacements of beam-column 

  BENDING OF BEAM-COLUMNS BY COUPLES 

 Case 1: one end is subjected to moment 

the deflection curve is obtained by: 
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to simplify these expressions let: 

   

 Case 2: both ends are subjected to moments 

 

 

By substituting Ma  by Mb  and x by (l-x) in the same equation of case one. 

Adding the two results together, then the deflection curve for this case:  

 

Substituting  Ma=Pea & Mb=Peb we obtain: 

 

  

 

Case 3: both ends are subjected to equal moments (Ma= Mb= Mo) 

 

 

The deflection at the center of the beam is obtained by substituting x=l/2  

 

The slope at the ends are: 
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The max. bending moment which obtained at the middle of span: 

 

 

BEAM-COLUMNS WITH BUILT UP ENDS  

Case 1: one end is fixed 

The rotation at the fixed due to the 

uniform load and the moment 

equal to zero 

                                                                                                                  = 

 

 Case 2: both ends are fixed 

The deflection curve is 

symmetric and the moment at 

fixed ends are equals   (Ma= Mb= Mo) 

 

 

Case 3: unsymmetrical loaded beam  


