BEAM-COLUMN BUCKLING

DIFFERENTIAL EQUATIONS OF BEAM-COLUMNS

Bifurcation-type buckling is essentially flexural behavior. Therefore, the free-body diagram must be based on the deformed configuration as the examination of equilibrium is made in the neighboring equilibrium position. Summing the forces in the horizontal direction in Fig. 1-4(a) gives:

$$
\begin{array}{r}
\sum F_{y}=0=(V+d V)-V+q d x \\
\frac{d V}{d x}=V^{\prime}=-q(x)
\end{array}
$$

Summing the moment at the top of the free body gives

$$
\sum M_{\mathrm{top}}=0=(M+d M)-M+V d x+P d y-q(d x) \frac{d x}{2}
$$

Taking derivatives on both sides of Eq.: $\frac{d M}{d x}+P \frac{d y}{d x}=-V$
Taking derivatives on both sides of Eq. above give:

$$
M^{\prime \prime}+\left(P y^{\prime}\right)^{\prime}=-V^{\prime}
$$

Equation (3) is the fundamental beam-column governing differential equation. Consider the free-body diagram shown in Fig. 1-4(d). Summing forces in the y direction gives

$$
\sum F_{y}=0=-(V+d V)+V+q d x \Rightarrow \frac{d V}{d x}=V^{\prime}=q(x)
$$

Figure 1-4 Free-body diagrams of a beam-column

Summing moments about the top of the free body yields

$$
\begin{aligned}
\sum M_{\text {top }}= & 0 \\
= & -(M+d M)+M-V d x-P d y-q d x d x+2 \Rightarrow \\
& -\frac{d M}{d x}-P \frac{d y}{d x}=V
\end{aligned}
$$

For the coordinate system shown in Fig. 1-4(d), the curve represents a decreasing function (negative slope) with the convex side to the positive y direction. Hence, $-E I y^{\prime \prime}=M(x)$. Thus,

$$
-\left(-E I y^{\prime \prime}\right)^{\prime}-\left(-P y^{\prime}\right)=V
$$

which leads to

$$
E I y^{\prime \prime \prime}+P y^{\prime}=V \quad \text { or } \quad E I y^{i v}+P y^{\prime \prime}=q(x)
$$

It can be shown that the free-body diagrams shown in Figs. 1-4(b) and 14(c) will lead to Eq. (3). Hence, the governing differential equation is independent of the shape of the free-body diagram assumed. Rearranging Eq. (3) and if considered $q(x)=0$ gives:

$$
E I y^{i v}+P y^{\prime \prime}=0 \Rightarrow y^{i v}+k^{2} y^{\prime \prime}=0, \quad \text { where } k^{2}=\frac{P}{E I}
$$

Assuming the solution to be of a form $y=\alpha e^{m x}$, then $y^{\prime}=\alpha m e^{m x}$, $y^{\prime \prime}=\alpha m^{2} e^{m x}, y^{\prime \prime \prime}=\alpha m^{3} e^{m x}$, and $y^{i \nu}=\alpha m^{4} e^{x}$. Substituting these derivatives back to the simplified homogeneous differential equation yields

$$
\alpha m^{4} e^{m x}+\alpha k^{2} m^{2} e^{m x}=0 \Rightarrow \alpha e^{m x}\left(m^{4}+k^{2} m^{2}\right)=0
$$

Since $\alpha \neq 0$ and $e^{m x} \neq 0 \Rightarrow m^{2}\left(m^{2}+k^{2}\right)=0 \Rightarrow m= \pm 0, \pm k i$. Hence,

$$
y_{h}=c_{1} e^{k i x}+c_{2} e^{-k i x}+c_{3} x e^{0}+c_{4} e^{0}
$$

Know the mathematical identities $\left\{\begin{array}{l}e^{0}=1 \\ e^{i k x}=\cos k x+i \sin k x \\ e^{-i k x}=\cos k x-i \sin k x\end{array}\right.$
Hence, $y_{h}=A \sin k x+B \cos k x+C x+D$ where integral constants A, B, C, and D can be determined uniquely by applying proper boundary conditions of the structure.

TRANSVERSELY LOADED BEAM SUBJECTED TO AXIAL COMPRESSION

A slender member meeting the Euler-Bernoulli-Navier hypotheses under transverse loads and inplane compressive load (see Fig.1) is called a beamcolumn. An exact analysis of a beam-column can only be accomplished by solving the governing differential equation or its derivatives (for example, slope-deflection equations). Consider a very simple case of a beam-column shown in Fig. 1. The beam-column is subjected simultaneously to a transverse load Q at its mid-span and a concentric compressive force P . Since the response of a beam-column under these loads is no longer linear, the method of superposition does not apply even if the final results are within the elastic limit.

Figure 1: Simple beam-column

Summing moments at a point x from the origin gives

$$
\begin{aligned}
M(x)-P y-\frac{Q}{2} x & =0 \quad \text { for } 0 \leq x \leq \ell / 2 \quad \text { with } M(x)=-E I y^{\prime \prime} \\
\text { or } y^{\prime \prime}+k^{2} y & =-\frac{Q}{2} \frac{x}{E I}=-\frac{Q x}{2 P} k^{2} \quad \text { with } k^{2}=\frac{P}{E I}
\end{aligned}
$$

The general solution to this differential equation is $y=y_{h}+y_{P}$. The homogeneous solution has been given earlier. The particular solution can be obtained by the method of undetermined coefficients. Assume the particular solution to be of the form

$$
y_{P}=C+D x \quad \text { with } y_{P}^{\prime}=D, y_{P}^{\prime \prime}=0
$$

Substituting these derivatives into the differential equation yields

$$
0+k^{2}(C+D x)=-\frac{\mathrm{Q} x}{2 P} k^{2}
$$

Hence,

$$
C=0 \quad \text { and } \quad D=-\frac{Q}{2 P} \Rightarrow y_{P}=-\frac{Q}{2 P} x
$$

The total solution is

$$
y=A \cos k x+B \sin k x-\frac{Q x}{2 P}
$$

The two constants of integration can be determined from the following boundary conditions:

$$
\begin{array}{ll}
y=0 & \text { at } x=0 \Rightarrow A=0 \\
y^{\prime}=0 & \text { at } x=\ell / 2
\end{array}
$$

(Note : the boundary condition, $y=0$ at $x=\ell$, cannot be used here as $0 \leq x \leq \ell / 2$)

$$
y^{\prime}=B k \cos k x-\frac{Q}{2 P}, 0=B k \cos \frac{k \ell}{2}-\frac{Q}{2 P} \Rightarrow B=\frac{Q}{2 P k \cos \frac{k \ell}{2}}
$$

$$
y=\frac{\mathrm{Q} \sin k x}{2 P k \cos \frac{k \ell}{2}}-\frac{\mathrm{Q} x}{2 P} \quad \text { for } 0 \leq x \leq \frac{\ell}{2} \quad \text { with } P_{c r}=P_{E}=\frac{\pi^{2} E I}{\ell^{2}}
$$

By observation, the maximum lateral deflection occurs at the midspan.

$$
\begin{gathered}
\left.y_{\max }\right|_{x=\frac{\ell}{2}}=\frac{\mathrm{Q}}{2 P k}\left(\tan \frac{k \ell}{2}-\frac{k \ell}{2}\right) \quad \text { with } u=\frac{k \ell}{2}=\frac{\ell}{2} \sqrt{\frac{P}{E I}} \\
\left.y_{\max }\right|_{x=\frac{\ell}{2}}=\frac{Q k^{3} \ell^{3}}{16 P k u^{3}}\left(\tan \frac{k \ell}{2}-\frac{k \ell}{2}\right)=\frac{\mathrm{Q} \ell^{3}}{48 E I}\left[\frac{3(\tan u-u)}{u^{3}}\right]=\frac{\mathrm{Q} \ell^{3}}{48 E I} X(u)
\end{gathered}
$$

$$
\begin{gathered}
\left.y_{\max }\right|_{x=\frac{\ell}{2}}=\delta_{\max }=\frac{\mathrm{Q} \ell^{3}}{48 E I} \quad \text { when } P=0 \\
u^{2}=\frac{\ell^{2}}{4} \frac{P}{E I} \Rightarrow P=\frac{4 E I u^{2}}{\ell^{2}} \quad \text { and } \quad P_{E}=\frac{\pi^{2} E I}{\ell^{2}} \\
\frac{P}{P_{E}}=\frac{4 E I u^{2}}{\ell^{2}} \frac{\ell^{2}}{\pi^{2} E I}=\frac{4 u^{2}}{\pi^{2}}, \quad X(u)=\frac{3(\tan u-u)}{u^{3}}
\end{gathered}
$$

The previous section showed that the deflection at the mid-span of a simple beam-column subjected to a lateral load shown in Fig. 3 is

$$
\delta=y_{\max }=\delta_{0} \frac{3(\tan u-u)}{u^{3}}
$$

Figure 3: simple beam-column subjected to a lateral load
where

$$
\delta_{0}=\frac{\mathrm{Q} \ell^{3}}{48 E I}, u=\frac{k \ell}{2}, \quad \text { and } \quad k=\sqrt{\frac{P}{E I}}
$$

Recall the power series expansion of $\tan u$ given by

$$
\tan u=u+\frac{u^{3}}{3}+\frac{2 u^{5}}{15}+\frac{17 u^{7}}{315}+\ldots
$$

Hence,

$$
\delta=\delta_{0}\left(1+\frac{2 u^{2}}{5}+\frac{17 u^{4}}{105}+\ldots\right)
$$

Noting

$$
\begin{aligned}
& u^{2}=\frac{k^{2} \ell^{2}}{4}=\frac{P \ell^{2}}{4 E I} \frac{\pi^{2}}{\pi^{2}}=2.46 \frac{P}{P_{E}} \\
& \delta=\delta_{0}\left[1+0.984 \frac{P}{P_{e}}+0.998\left(\frac{P}{P_{e}}\right)^{2}+\ldots\right] \\
& \doteq \delta_{0}\left[1+\frac{P}{P_{E}}+\left(\frac{P}{P_{E}}\right)^{2}+\ldots\right] \\
&=\delta_{0} \frac{1}{1-\frac{P}{P_{E}}} \Leftarrow \text { from power series sum for } \frac{P}{P_{E}}<1
\end{aligned}
$$

where
$\frac{1}{1-\frac{P}{P_{E}}}$ is called amplification factor or magnification factor.
The maximum bending moment is

$$
\begin{array}{r}
M_{\max }=\frac{\mathrm{Q} \ell}{4}+P \delta=\frac{\mathrm{Q} \ell}{4}+\frac{P Q \ell^{3}}{48 E I} \frac{1}{1-\frac{P}{P_{E}}}=\frac{\mathrm{Q} \ell}{4}\left(1+\frac{P \ell^{2}}{12 E I} \frac{1}{1-\frac{P}{P_{E}}}\right) \\
=\frac{\mathrm{Q} \ell}{4}\left(1+0.82 \frac{P}{P_{E}} \frac{1}{1-\frac{P}{P_{E}}}\right) \\
\quad \text { or } \\
M_{\max }=\frac{\mathrm{Q} \ell}{4}\left(\frac{1-0.18 \frac{P}{P_{E}}}{1-\frac{P}{P_{E}}}\right)
\end{array}
$$

where

$$
\left(\frac{1-0.18 \frac{P}{P_{E}}}{1-\frac{P}{P_{E}}}\right)
$$

is amplification factor for bending moment due to a concentrated load.

The variation of δ with Q as given by the amplification factor is plotted on the left side of Fig. 4 for $\mathrm{P}=0, \mathrm{P}=0.4 \mathrm{P}_{\mathrm{cr}}$, and $\mathrm{P}=0.7 \mathrm{Pcr}$. The curves show that the relation between Q and δ is linear even when $\mathrm{P} \neq 0$, provided P is a constant. However, if P is allowed to vary, as is the case on the right side of Figure 4, the load-deflection relation is not linear. This is true regardless of whether Q remains constant (dashed curve) or increases
as P increases (solid curve). The deflection of a beam-column is thus a linear function of Q but a nonlinear function of P .

Figure 4: Lateral displacements of beam-column

BENDING OF BEAM-COLUMNS BY COUPLES

- Case 1: one end is subjected to moment the deflection curve is obtained by:

$$
y=\frac{M_{b}}{P}\left(\frac{\sin k x}{\sin k l}-\frac{x}{l}\right)
$$

$\theta_{a}=\left(\frac{d y}{d x}\right)_{x=0}=\frac{M_{b}}{P}\left(\frac{k}{\sin k l}-\frac{1}{l}\right)=\frac{M_{b} l}{6 E I} \cdot \frac{3}{u}\left(\frac{1}{\sin 2 u}-\frac{1}{2 u}\right)$
$\theta_{b}=-\left(\frac{d y}{d x}\right)_{x=l}=-\frac{M_{b}}{P}\left(\frac{k \cos k l}{\sin k l}-\frac{1}{l}\right)=\frac{M_{b} l}{3 E I} \frac{3}{2 u}\left(\frac{1}{2 u}-\frac{1}{\tan 2 u}\right)$
to simplify these expressions let:

$$
\begin{aligned}
& \phi(u)=\frac{3}{u}\left(\frac{1}{\sin 2 u}-\frac{1}{2 u}\right) \\
& \psi(u)=\frac{3}{2 u}\left(\frac{1}{2 u}-\frac{1}{\tan 2 u}\right)
\end{aligned}
$$

- Case 2: both ends are subjected to moments

By substituting M_{a} by M_{b} and x by $(l-x)$ in the same equation of case one. Adding the two results together, then the deflection curve for this case:

$$
y=\frac{M_{b}}{P}\left(\frac{\sin k x}{\sin k l}-\frac{x}{l}\right)+\frac{M_{a}}{P}\left[\frac{\sin k(l-x)}{\sin k l}-\frac{l-x}{l}\right]
$$

Substituting $M_{a}=P e_{a} \& M_{b}=P e_{b}$ we obtain:

$$
\begin{gathered}
y=e_{b}\left(\frac{\sin k x}{\sin k l}-\frac{x}{l}\right)+e_{a}\left[\frac{\sin k(l-x)}{\sin k l}-\frac{l-x}{l}\right] \\
\theta_{a}=\frac{M_{a} l}{3 E I} \psi(u)+\frac{M_{b} l}{6 E I} \phi(u) \\
\theta_{b}=\frac{M_{b} l}{3 E I} \psi(u)+\frac{M_{a} l}{6 E I} \phi(u)
\end{gathered}
$$

Case 3: both ends are subjected to equal moments $\left(M_{a}=M_{b}=M_{o}\right)$

$$
\begin{aligned}
y & =\frac{M_{0}}{P \cos (k l / 2)}\left[\cos \left(\frac{k l}{2}-k x\right)-\cos \frac{k l}{2}\right] \\
& =\frac{M_{0} l^{2}}{8 E I} \frac{2}{u^{2} \cos u}\left[\cos \left(u-\frac{2 u x}{l}\right)-\cos u\right]
\end{aligned}
$$

The deflection at the center of the beam is obtained by substituting $x=l / 2$

$$
\delta=(y)_{x-1 / 2}=\frac{M_{0} l^{2}}{8 E I} \frac{2(1-\cos u)}{u^{2} \cos u}=\frac{M_{0} l^{2}}{8 E I} \lambda(u)
$$

The slope at the ends are:

$$
\theta_{a}=\theta_{b}=\left(\frac{d y}{d x}\right)_{x=0}=\frac{M_{0} l}{2 E I} \frac{\tan u}{u}
$$

The max. bending moment which obtained at the middle of span:

$$
M_{\max }=-E I\left(\frac{d^{2} y}{d x^{2}}\right)_{x-l / 2}=M_{0} \sec u
$$

BEAM-COLUMNS WITH BUILT UP ENDS

Case 1: one end is fixed
The rotation at the fixed due to the uniform load and the moment

equal to zero

$$
\begin{aligned}
& \frac{q l^{3}}{24 E I} \chi(u)+\frac{M_{0} l}{2 E I} \frac{\tan u}{u}=0 \\
& M_{0}=-\frac{q l^{2}}{12} \frac{\chi(u)}{(\tan u) / u}
\end{aligned}
$$

Case 2: both ends are fixed
The deflection curve is symmetric and the moment at
 fixed ends are equals $\left(M_{a}=M_{b}=M_{o}\right)$

$$
\begin{gathered}
\frac{q l^{3}}{24 E I} x(u)+\frac{M_{0} l}{2 E I} \frac{\tan u}{u}=0 \\
M_{0}=-\frac{q l^{2}}{12} \frac{\chi(u)}{(\tan u) / u}
\end{gathered}
$$

Case 3: unsymmetrical loaded beam

