Theory of Elastic Stability Beam-Column Buckling

SLOPE-DEFLECTION EQUATION WITHOUT AXIAL
FORCE

A typical derivation process will be traced here as it will be used again in
the development of the slope-deflection equations that include the effect of
axial compression on the bending stiffness From the deformations of a
beam shown in Fig.7, the moment at a distance x from the origin is

expressed as:
X
M, = Mg — (Mg + My,) 7
M,
El
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Knowy" =
Taking successive derivatives of the above equation gives

ELY =0
The general solution of the differential equation is

y = A+ Bx+ Cx% + Dx*
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Figure 7: Deformations of beam

y = B+ 2Cx + 3Dx>

' = 2C + 6Dx
The four kinematic boundary conditions available are

y=060;, at x =0 and y =6, at x =1

YV =6, atx=0 and YV =0, at x= /¢
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Theory of Elastic Stability Beam-Column Buckling

0, = A, 0, =B
8p = Oa+ a0 + CP* + DPP

0,0 = 0,0 + 2C0% + 3DF

26y = 20,0+ 2CH + 2D + 26,
0,0 = 0,0+ 2C0% + 3D

26, — 0,0 = 26, + 6,0 — D

from which

1
D = F—3[—2(55 — 0q) + (gﬂ + ﬁfj)ﬁ]

36, = 30,0 + 3CL% + 3D + 36,
Oyl = 0,0 +2C0* + 3D(>

30, — 00 = 35, + 20,0 + CP2

from which

1

C = 5300~ 6,) — (20, + )1
y' = ;—2[3(55 — 6q) — (204 + 6;)(] + %[—2(55 — 8a) + (0o + 63)€)x
Y/(0) = 13000 —.) — (20 + 0)8) = —2
V(0 = 300, = b) — (20, + 0)10 + -2(0 — ) + (a+ )0

Ast 'Rrof By Ohselen M SCma



Theory of Elastic Stability Beam-Column Buckling

Mﬂb 6 Mfm
_ 21 2(8y —8,) + (6, + 6,)0] =
2EI| 3
Mnb — 2‘9& T HEJ — _(55 — 5{4)
0| ;
2EI|

M ba —

3
2{‘91 gﬂ - 4 5J - 5(!
Tl b+ .E’( 1 )}

If any fixed end moments exist prior to releasing the joint constraints such

as My, fixed and My, fixed, then final member end moments become

2EI 3

Mup = / [26]& + 0y — ?(55 - 5n)j| + My, fixed
2E 3

My, = [26.‘1 + 6 — ?(55 - 6n)j| + My, Sfixed

EFFECTS OF AXIAL LOADS ON BENDING STIFENESS

The classical slope-deflections equations that are introduced in any standard
text on indeterminate structures give the moments, M,, and My, induced at
the ends of member AB as a function of end rotations 6, and 6, and by a
displacement A of one end to the other. In conventional linear structural
analysis (first-order analysis), it is customary to ignore the effect of axial
forces on the bending stiffness of flexural members. It can be shown that
the effect of amplification is negligibly small as long as the axial load

remains small in comparison with the critical load of the member. When the
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ratio of the axial load to the critical load becomes sizable, however, the
bending stiffness is reduced markedly due to the axial compression, and it is
no longer acceptable to neglect this reduction. As the first-order analysis
results may become dangerously unconservative, modern design

specifications call for a mandatory second-order analysis (AISC 2005).

It is expedient to introduce A=d, - d, With d,= 0 to avoid the rigid body
translation. The moment of the beam-column shown in Fig. 9 at a distance x

from the origin is

A "6 3p
P a
M db\‘» a 6}’ :-\I 4 P
v El: Constant b ‘\%/
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y V= (M + My, + PAY

Figure 9: Deformations of beam-column

M, = My + Py — (My + My, + PA)
g M
EI
X
EI_‘*'!H + P.]*"' - _*ﬁ"{ab + (*"1"{[-4!1 + ﬂ’{b[-a + PA\‘] ?

Taking successive derivatives on both sides yields

EJ:‘.-‘JV _|_ IJL],-"H _ 0

> P
Letk® = —
El
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Theory of Elastic Stability Beam-Column Buckling

The simplified differential equation is
Y =0
for which the general soludon is
y = Asinkx+ Bcos kx+ Cx+ D
The proper geometric boundary conditions are
p0) =0, () =4, »(0)=06, and y({) =0
The proper natural boundary conditions are

j‘Il’:fuzﬂ:l ‘:Mh.:

Y'(0) = —= and Y'(f) = —=

El’ EIf

Applying the geometric boundary condidons to eliminate the integral
constants, A, B, C, I, and solving for M, and M, gives

0=B+D
Let § = kf
A=Asinff+ Beosf+ CE+ D

#, = Ak + C

The matrix equation for the integral constanes becomes

0 1 o 1 A 0
sin 3 cos 3 £ 1 B fa
3 0 1 0 C B fa
| kcos B —ksing@ 1 0O D &,
Applving Cramer’s rule yields
0 1 0 1
A cos (3 £ 1
&, 0 1 0
4 — #n —ksin 1 0 _ D,
4] 1 o 1 Iy
sin 3 cos |3 £ 1
[ 0 1 0
kcosff —ksinf@ 1 0
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Dy

Iy,

fwl !h

1 0 1 0 1 1
=f cosfB £ 1{+|A cos 3 1
—ksinf@ 1 0 fy —ksing@ 0

= fafcos B+ Bsin B — 1)+ — ksin BA — & cos 3
= Hi(cos B+ BsinB — 1)+ 8,(1 —cos 8) — ksin§ A

sin3 £ 1 sin 3 cosff £
= — I 1 0)— k 1] 1
kcosff 1 0 kcos —ksinfg 1

= —k+kcosf — k(cos” § +sin® B) + k @sin § + k cos §

= —2k+2kcos 3+ k Bsinf = k(2cosf+ Ssin §—2)

0 0 01
sinff A £ 1
ke s 1 0
B — kecos@ # 1 0 =&
Dy Dy
sinff A £
= - ke f, 1
kcos@ & 1

= —fsinf—@F —kcosfB A+8,Bcosf+k A48, sinf
= ﬂ,,[ﬁ cos § —sin ﬁ}"‘ﬂh[ﬁ‘lﬂﬁ—ﬁ)-l-ﬁ[k—kcmﬁ}
3 = Ak cos kx — Blsin kx + C

3 = — Ak sin kx — Bl cos kx

= —EL/'(0) = EIB¥

ERZ

_ | | [(B cos B —sin 8)8, + (sin § — 3)8

k(2 cos B4 B sinff —2)]
+ (ke — kcos B)A]
EIf

—_ |:[||3 cos § —sin 8)8, + (sin § — )&

1£(2 cos B4 B sin § — 2)]

(8= cos ]
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Let

. B(f cos f —sin 3)
 2cos B+ Bsinf—2

(sin § — @)
2cos B+ Bsinff—2

51 =35

I.qz —

R.ecall identities
sin 3 = 2sin(/2)cos(B/2)
cos § = cos>(8/2) —sin®(B/2) = 1 —2sin*(8/2)

Dividing the numerator and denominator of §; by sin [§ gives

¢ _g_ BBeorf—1) _ B(BcorB—1)
B L = denl + 3

where

2 2cosfB—2 201 —2sin®(8/2) —1
denl = 2 cot f — _ 2cosf — [ sin”(B/2) ]

sinff sinf 2sin(8/2)cos(B/2)
= —2tan(f/2)
oo BlBeorf—1)
T T 2 (8/2)+ 8
1 —fcotf
ST
g
B(sin B — §)

Let 5 = C =
=2 2cosfF+PGsinff—2

Taking the same procedure used above gives

S = C = B(1 —pcosecf)  B(1 — fcosecf)

gmtﬁ_qijﬁ'kﬁ  —2tan (B/2)+ 3
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_ _ Bcosecf—1
2= T s
g8

-1

o BB BoosB)t
Let§ = SC = 2cosff+ fFsinff—2

Again dividing the numerator and denominator of Sz by sin £ gives:

g = SC = B(8 cosec # — B cot 3) /£ B B(8 cosec f — B cot B) /£
o * s e+

zmtﬁ_qinﬁ_'_ﬁ
B (B cot § — @ cosec 3) /£ _ [—(1 =8 cot8) — (B casec f — 1)] /¥

Emn[ﬁ;@]_l Etanfﬁjzj_l
g g

81+ 52 S+ C
Lqﬁ_'; — qu: — = —
) £ £

Recall My, = M(0) = —EL/(0).
But M, = —M(£) = EIY"(£) (note the negative sign!)

3" = —Ak® sin kx — BE cos kx

My, = -I-Ef_}’fJI (£)

—EnZ ]
N k(2 cos B+ B sin § —2)
(sin B[f,(cos B+ Bsin 8 — 1)+ #{1 —cos ) — A ksin 3]

+ cos B[8,(8 cos § —sin ) + @4(sin § — 8)
+ Ak — k cos )]

—_ .

. —En:
B (Ec:mﬁ—l—ﬁsinﬁ—E)
#.(cos Bsin 8 + B sin® § —sin B + B cos® — cos 3 sin 8)

+ #4(sin 3 — cos @ sin 8 + cos @sin § — @3 cos )
+ Ak cos # — k cos® § — ksin® §)
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£ (2 cos B+ @ sinf—2)
_ (u) (0.5(sin B — ) + 0,8(8 cos f — sin B) + AB(S — B cos )/

_ ( E'Iﬁ) [0.(8 — sin 8) + @4(sin § — B cos ) + A(kcos § — k)]

£ [Ecmﬁ-l—ﬁﬂnﬁ 2)
EIf Al
ﬂ»"f;!b = — nS‘_I H" + LQEHFJ - (hS] + L‘;E:J_
£ £
EIT Al
My, = 7 Safl, + S8, — [:S] + 53]?

If M, = 00 {(when the support A is either pinned or roller), then

El A
Ma = ?[Sj H:: + Slﬂh - (Sj + SE)?} =0

A
g = _[— Safly + (S +53]?}
¥ A

Substituting {0, into M, vields

v, = 22| (s qd& Si+8)[1-2)2
fh.:—f 1 91 h— 1 I3 S] 7

— 1 . 2 2
Let &5 = o (S — 83), then
S

Hh.:l = —|S

= 1 ¥ i
S = E(s; - 55)

_ |:—2 ta.n[:ﬁf2j+|l9:||: B2 (B cot f —1)° B 82(1 — cosec 3)* i|
BB cot f—1) (—2 tan({3/2) + ﬁ]g (—2 tan(8/2) -ngz

_ B
 (Beot f — 1)[-2aan(B/2) + 6]

[(8 cot B — 1)* — (1 — cosec 8)7]

_F
1— 8 cotfs

IBE

= Beotf-D—zan@m) +a) 2ol =
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