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BUCKLING OF  FRAMES                                    

BUCKLING OF FRAME 

Consider an elastically constrained column AB shown in Fig. 1. The two 

members, AB and BC, are assumed to have identical member length and 

flexural rigidity for simplicity. The moments, m and M, are due to the 

rotation at point B and possibly due to the axial shortening of member 

AB. Since Q =(M + m)/l<<< pcr , Q is set equal to zero and the effect of 

any axial shortening is neglected. 

 

 

 

Figure 1: Buckling of simple frame 
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BUCKLING MODES OF FRAMES 

Consider first the frame in which side sway is prevented by bracing either 

internally or externally. It is obvious that the upper end of each column is 

elastically restrained by the beam to which the column is rigidly framed, 

and that the critical load of the column depends not only on the column 

stiffness, but also on the stiffness of the beam. It would be very 

informative to assume the beam stiffness to be either infinitely stiff or 

infinitely flexible as these two conditions constitute the upper and lower 

bounds of the connection rigidities. When the beam is assumed to be 

infinitely stiff, the beam must then remain straight while the frame 

deforms as shown in part (a), (1) Sidesway prevented, Fig. 2. Under this 

condition, the columns behave as if they were fixed at both ends, and the 

critical load of the column is equal to four times the Euler load of the 

same column pinned at its both ends. As the other extreme case of the 

opposite side, the beam can be assumed to be infinitely flexible. The 

frame then deforms as shown in part (b), (1) Sidesway prevented, Fig. 2, 

and the columns behave as if they were pinned at the top, and the critical 

load is the same as that of the propped column: approximately twice that 

of the Euler load of the same column pinned at both ends. 

For an actual frame, the stiffness of the beam must be somewhere 

between the two extreme cases examined above. The critical load on the 

column in such a frame can be bounded as follows: 

4PE > Pcr > 2PE 

where Pcr is the critical load of the column and PE is the Euler load of the 

same column pinned at both ends. 

It is just as informative to apply the same logic to frames in which 

sidesway is permitted. If the beam is assumed to be infinitely stiff, the 
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frame buckles in the manner shown in part (a), (2) Sidesway permitted, 

Fig. 2. The upper ends of the columns are permitted to translate, but they 

cannot rotate by definition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Modes of buckling 
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Hence, the critical load on each column in the frame is equal to the Euler 

load of the same column pinned at both ends. On the other extreme, if the 

beam is assumed infinitely flexible, the upper ends of the  columns are 

both permitted to rotate and translate as shown in part (b), (2) Sidesway 

permitted, Fig. 2. In this extreme case, each column acts as if it were a 

cantilever column, and the critical load on each column is equal to one-

fourth the Euler load of the same column pinned at both ends. The critical 

load on each column of the frame in which sidesway is permitted can be 

bounded as follows: 

PE > Pcr > 1/4 PE 

 

Pcr, braced frame > Pcr, unbraced frame 

A portal frame will always buckle in the sidesway permitted mode unless 

it  is braced. Unlike the braced frame where sidesway is inherently 

prohibited, both the sidesway permitted and prevented modes are 

theoretically possible in the unbraced frame under the loading condition 

shown in Fig. 2. The unbraced frame, however, will buckle first at the 

smallest critical load, which is the one corresponding to the sidesway 

permitted mode. This conclusion is valid for multistory frames as well as 

for single-story frames. The reason appears to be obvious as the effective 

length of the compression member in an unbraced frame is always 

increased due to the frame action, while that in the braced frame is always 

reduced unless the beams in the frame are infinitely flexible.  

CRITICAL LOADS OF FRAMES 

1. Review of the Differential Equation Method 

Case 1: Antisymmetric buckling  

It is assumed that a set of usual assumptions normally employed in the 

classical analysis of linear elastic structures under the small displacement 

theory is valid. The sidesway buckling mode shape assumed and the 

forces acting on each member are identified in Fig. 3(a) and (b), 

respectively. The moment of the left vertical member at a point x from 

the origin based on the coordinate shown in Fig. 3(c) is (moment 

produced by the continuity shear developed in BC is neglected) 
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Figure 3: Buckling of unbraced frame 

 

The general solution of Eq.  above is given by 

 

y = A sin k1x +B cos k1x  Mab/P 

Two independent boundary conditions are needed to determine the 

integral constants, A and B. They are : 

y=0 @ x=0 …..B=- Mab/P    and     y'=0 @ x=0 ….. A=0 

 

y = Mab/P(1-cos k1 x) 

Denoting the horizontal displacement at the top of the column (x = l1) by 

δ, then 

δ= Mab/P(1-cos k1 l1) 

Summing the moment of member AB at A gives:  

Pδ- Mab - Mba= 0 ….. Substituting in Eq. above give Mab cosk1l1+ Mba= 0 

Since it is assumed that there is no axial compression presented in 

member BC, the slope-deflection equations without axial force apply. 

Hence, 

Mba=2EI/l2(2θb+θc)   …….. but θb=θc ……. Mba=(6EI/l2)θb 

The compatibility condition at joint B requires that θb equal to the slope at 

x = l1. Hence, 

                                                or 
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 Setting the coefficient determinant equal to zero gives: 

 

The critical load of the frame is the smallest root of this transcendental 

equation. For  I2=I1=I,  l1 = l2 =l .........  tankl/kl=-1/6 

By using any transcendental equation:  kl=2.71646  and   Pcr=7.38EI/l
2
 

Case 2: Symmetric buckling ……..H.W. 

2. Application of Slope-Deflection Equations to Frame Stability 

 

It is assumed again that the axial compression in member BC would be 

negligibly small. 

 

 

 

 

but θb=-θc ……..  

Case 1: Antisymmetric buckling  

Since there is no axial force in member BC, (S1)2 = 4 and (S2)2 = 2. For 

joint equilibrium Mba and Mbc are the same in magnitude and opposite in 

sign. Thus 

 

 

 

For which S1=2 will lead to the critical load of Pcr=25.18EI/l
2
 

Case 2: Symmetric buckling ……..H.W. 
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 SECOND-ORDER ANALYSIS OF A FRAME BY SLOPE-

DEFLECTION EQUATIONS 

The current AISC (2005) specification stipulates that “any second-order 

elastic analysis method that considers both P - Δ and P-δ effects may be 

used.” Since both the joint rotation (P - δ effect) and joint translation (P - 

Δ effect) are reflected by the slope-deflection equations with axial force 

by a means of stability functions, S1 and S2, an elastic analysis using the 

slope deflection equations is considered to be acceptable second-order 

analysis. 

 

Example: Buckling of a rigidly connected equilateral triangle shown in 

Fig. 4. Take the counterclockwise moment and rotation as positive 

quantities as adopted in the derivation of the slope-deflection equations in 

previous Chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Equilateral triangle 

 

The moment at each end of each member is then given by: 
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Setting the determinant of the augmented matrix equal to zero for the 

stability condition (a nontrivial solution) gives: 

 

 

Two buckling modes are indicated by this Eq.: 

 

 

 

S1(  S1+ S1'+ S2')- S2
2
=0    give     kl=4.0122 &  Pcr =16.1EI/l

2 

 

 S1+ S1'- S2'=0       give     kl=5.3217 &  Pcr =28.32EI/l
2
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The buckling mode shape is given  

in Fig. 5. 

 

 

 

 
 

Figure 5: Equilateral triangle antisymmetric buckling mode 

 

 

  

 

 

 

 

 

 

 

 

 

The buckling mode shape is given graphically  

in Fig. 6. 
Figure 6: Equilateral triangle  

symmetric buckling mode 


