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 APPROXIMATE CALCULATION OF 
CRITICAL LOADS                                    

ELASTIC BUCKLING ANALYSIS BY ENERGY METHODS 

It has been shown that energy methods provide a convenient means of 

formulating the governing differential equation and necessary natural 

boundary conditions. The solutions that are obtained by solving the 

governing equations are exact within the framework of the theory (for 

example, classical beam theory) computing unknown forces and 

displacements in elastic structures. Besides providing convenient methods 

for computing unknown displacements and forces in structures, the 

energy principles are fundamental to the study of structural stability and 

structural dynamics. 

Table 1 summarizes the energy theorem derived here.  

 

Table 1: Variation Principles of Energy Methods 
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It is noted that a duality exists between those principles and theorems 

involving generalized displacements as the varied quantities 

(displacement methods) and those involving variations in the generalized 

forces (force methods). Principles and theorems related to the principle of 

virtual work are grouped as displacement methods, and those related to 

the principle of the complementary virtual work are grouped as force 

methods. These equations apply to nonlinear as well as linearly elastic 

materials, except where noted otherwise in Table 1. 

 

STABILITY CRITERIA 

The stability criteria must be established in order to answer the question 

of whether a structure is in stable equilibrium under a given set of 

loadings. If upon  releasing the structure from its virtually displaced state 

the structure returns to its previous configuration, then the structure is 

said to be in stable equilibrium. On the other hand if the structure does 

not return to its undisturbed state following the release of the virtual 

displacements, the condition is either neutral equilibrium or unstable 

equilibrium. Stability can also be defined in terms of the total potential 

energy ∏ of the structure. Recall that ∏  is the sum of the strain energy U 

stored in the deformed elastic body and the loss of the potential of the 

generalized external forces V. If the total potential energy increases 

during a virtual displacement, then the equilibrium configuration is 

defined to be stable; if ∏ decreases or remains unchanged, the 

configuration is unstable. The stability criteria can also be expressed in 

mathematical form. For simplicity it is assumed that the structure’s 

deformation is characterized by a finite number of generalized 

displacements ∆i. If the structure is given a virtual displacement δ∆i, then 

it is possible to write the total potential energy in a Taylor series 

expansion about ∆i. Consider, for example, a two-degree-of-freedom 

system. 
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where the first variation is equal to zero by virtue of the principle of the 

minimum total potential energy. 

 

 

 

Since δ∏= 0, the second variation is the relevant term. If δ2
∏ is positive, 

then ∆∏ is positive, ∏ is a local minimum, and the equilibrium condition 

is stable. The special case in which the second variation is zero 

corresponds to a state known as neutral equilibrium. When a structure 

that is in neutral equilibrium is released from a virtual displacement, there 

is no net restoring force present, and the system remains in its virtual 

displaced state. Hence, by the first definition of stability, neutral 

equilibrium is a special case of unstable equilibrium. The criteria for 

stability are summarized as follows: 

 

∆∏ > 0 stable equilibrium 

∆∏= 0 neutral equilibrium 

∆∏ < 0 unstable equilibrium 

 

If the potential energy P is quadratic in the displacements ∆i, which is the 

case when the structure is linearly elastic and the deformations are small, 

then all variations higher than the second are necessarily zero. In this case 

the type of equilibrium is governed by the following conditions: 

 

δ2
∏ > 0 stable equilibrium 

δ2
∏  = 0 neutral equilibrium 

δ2
∏ < 0 unstable equilibrium 

these condition is called the sufficient condition. A rigid body stability 

concept can be illustrated as follows: 
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Figure 1: Concept of rigid body equilibrium 
 

RAYLEIGH-RITZ METHOD 

The energy methods introduced in previous section are a convenient 

means of computing unknown forces and displacements in elastic 

structures. They can be the basis of deriving the governing differential 

equations and required boundary conditions of the problem. They are also 

the starting point of many modern matrix/finite element methods. The 

solutions that are obtained using these methods are exact within the 

framework of the theory (for example, classical beam theory). Energy 

methods are also used to derive approximate solutions in situations where 

exact solutions are difficult or nearly impossible to obtain. The most 

widely known and used approximate procedure is the Rayleigh-Ritz 

method,6 in which the structure’s displacement field is approximated by 

functions that include a finite number of independent coefficients (or 

natural coordinates; one for the Rayleigh method and more than one for 

the Rayleigh-Ritz method). The assumed solution functions must satisfy 

the kinematic boundary conditions (otherwise, the convergence is not 

guaranteed, no matter how many functions are assumed), but they need 

not satisfy the natural boundary conditions (if they satisfy the natural 

boundary condition, a fairly good solution accuracy can be expected). 

The unknown constants in the assumed functions are determined by 

invoking the principle of minimum potential energy. Suppose, for 
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example, the assumed function has n independent constants ai (i = 1, 

2,.,n). Since the approximate state of deformation of the structure is 

characterized (amplitude as well as shape) by these n constants, the 

degrees of freedom of the structure have been reduced from ∞ to n. 

Invoking the principle of minimum potential energy, it follows that: 

 

 

 

 

Since δai are arbitrary, the Eq. above implies that: 

 

 

 
 

This equation yields a system of n simultaneous equations that can be 

solved for the coefficients ai for static problems, and in the case of 

eigenvalue problems, the determinant (characteristic determinant) for the 

unknown constants is set equal to zero for the n eigenvalues. 

 

 

Example 1 Consider a both-ends pinned column 

shown in Fig. 2. The strain energy stored in the 

deformed body is 
                                                                                                         

Figure2:  Simple 

column model 
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Assume the solution function to be of the form: 

 

 

 

 

 

 

 

 

 

 

 

THE RAYLEIGH QUOTIENT 

The approximate solution of the eigenvalue problem usually reduces to 

the integration of a differential equation of the form 

Lw - λMw = 0 
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where w is the displacement that satisfies not only the differential 

equation below, but also certain homogeneous boundary conditions (this 

condition may preclude the cantilevered end condition), L and M are 

certain differential operators, and λ is an unknown numerical parameter. 

For the stability of a column, the governing differential equation is 

 

 

 

If a linear differential operator L has the following property, it is called a 

self-adjoint or symmetric operator: (Lu, v( =( Lv, u) 

The inner product of two functions g and h over the domain V is defined 

as:  

 

An operator is said to be positive definite if the following inequality is 

valid for any function from its field of definition, u(q) ≠ 0: 

(Lu, u) > 0, (Lu, u  ( ≡0 for u)q  ( ≡ 0 

Multiplying both sides of Eq.                                     by w and integrating 

over the domain yields 

 

Integrate the left-hand side of Eq. by parts twice, as follows: 
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For simply supported, fixed, or cantilevered end conditions, the last two 

quantities are zero. Integrating the right-hand side of Eq. gives 

 

 

 

 

 

The last expression vanishes for fixed and simple supports (not for the 

cantilevered end). Substituting the expanded integrals back into Eq. 

gives: 

 

 

It is noted that this Eq. works for cantilevered columns despite the fact 

that one of the concomitants is not zero. As mentioned earlier, the error 

involved in the approximate solution propagates much faster in the higher 

order derivatives. In order to improve the critical value computed from 

the Rayleigh quotient, d
2
w=dx

2
 in the numerator is replaced by M/EI. 

Then: 
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ENERGY METHOD APPLIED TO COLUMNS SUBJECTED TO 

DISTRIBUTED AXIAL LOADS 

 Cantilever Column 

The Rayleigh method can also be applied to the 

calculation of the critical value of the distributed 

compressive loads. As a first approximation of 

the deflection curve, the following equation may 

be tried: 

 

 

Figure 3: Cantilever column  

subjected to distributed axial load 
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The total loss of potential energy of the distributed load during 

The total loss of potential energy of the distributed load during buckling 

is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although this Eq. is only 0.65% greater than the exact solution, it would 

seem interesting to see how much the accuracy can be improved by 

taking one more term in the assumed displacement function. Consider the 

following function for the deflection of the cantilever shown in Fig. 3: 
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The total loss of potential energy of the distributed load during buckling  

is: 
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For a nontrivial solution (a and b cannot be equal to zero simultaneously), 

the determinant for the coefficient matrix for a and b must be equal to 

zero. Solving the resulting polynomial for the critical value yields: 

 

 

 

The uniform load ql reduces the critical buckling load P applied at the 

cantilever tip. It is written in the form: 

 

 

 

 

where the factor m is equal to π
2
/4 when ql is equal to zero and it 

approaches zero when q‘ approaches the value given by Eq. of qcr .Using 

the notation 

 

 

 

The following illustration is an example case of using the energy method 

to compute values of n and m interactively. The moment due to the 

concentrated load P is: 
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 H.W.: Using energy method for find critical load for column 

subjected to distributed load axial load q and concentrated load p at 

the top of column for following B.C.: 

 

1. Simply –supported column if y=δ sinπx/l 

2. Pinned –clamed column if y= a(l
3
x – 3lx

3
  + 2x

4( 
3. Clamed – Pinned column if y= a(3l

2
x

2
 – 5lx

3
  + 2x

4( 
4. Both – ends clamped column if y=a(1 – cos2πx/l) 
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ELASTICALLY SUPPORTED BEAM-COLUMNS 

 

As an example of the stability of a bar on elastic supports, consider a 

prismatic continuous beam simply supported at the ends on rigid supports 

and having several intermediate elastic supports.  

Let q= force developed in the spring=ky. Then the work done by the 

spring is (1/2)qy=(1/2) ky
2
. Rotational spring can also be considered at 

any support. Total potential energy function of the system becomes: 

 

 

 

 

 

Let k1 = k2 = k and x1  l/3; x2 = 2l/3 to simplify the computation effort. It 

appears that at least three sine functions need to be considered for the 

three-span configuration shown in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

Figure 4: Column resting on elastic supports 
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Assuming l= 3L and Pcr = 9PE for three equal spans,  

k = 65.8PE/(3L) =65.8PE/9/(3L)=2.437Pcr = β Pcr/L 

 

This equivalent β value of 2.437 is slightly less than that (β = 2.437) 

obtained for three equal spans rigid body system, which is logical as the 

elastic strain energy stored in the deformed body shares a portion of the 

energy provided by the spring system. 

 

 

 

COLUMN BUCKLING ANALYSIS BY FINITE DIFFERENCE 

METHODS 

The basic differential equation of beam -column is: 

 

This can be written in difference equation form, if we know that  

 
  

  
 
         

  
          

   

   
 
             

  
 

 
   

   
 
                    

   
               

   

   
 
                          

   
 

 

 

 

 

 

Figure 5: column division for finite 

difference method  
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Figure 3:Hinge- fixed ends column 

Then:       (    )     (     )   (    )            

 

   
   

    
                       

 

 
 

Example: Use the F.D.M.  to find Pcr for the column shown in 

the Fig 6. 

1. Assume n=2   

     (    )     (     )   (    )    
        

@ fixed end :          

@ hinge end :           

     (     )          

(     )                  
   

    
   

     
 

   
     

    

  
 

 

H.W.: Resolve the previous example  

1. Using advantage of B.C. 

2. assume n=3 & n=4 

  

H.W.: For the beam rest on elastic foundation knowing k is subgrade 

reaction along the beam (KN/m). calculate Pcr use n=2. 
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COLUMN BUCKLING ANALYSIS BY MATRIX METHODS 

Consider a prismatic column shown in Figure 6. The axial strain of a 

point at a distance y from the neutral axis is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first integral in Eq. above yields the stiffness matrix for a bar element 

associated with the kinematic degrees of freedom u1 and u2. The second 

integral yields the stiffness matrix for a beam element. The third integral 

sums the work done by the external load P when differential elements dx 

are stretched by an amount [(dv/dx)
2
×dx/2] (there exists another 

interpretation of the third integral: a change in the potential energy of the 

applied load during buckling). The third integral leads to the derivation of 

the element geometric stiffness matrix K. The lateral displacement field v 

of the beam and its derivative dv/dx are: 
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Figure 7: Column model, degrees-of-

freedom 

Example: Consider a propped (fixed-

pinned) column shown in Fig. 7. The 

prismatic column length is L. Using the 

numbering scheme, one obtains the 

following stiffness relationship: As the 

global coordinate system and the local 

coordinate system are identical, there is 

no need for coordinate transformation. 

Let  φ=Al
2
 /I . 

Superimposing element stiffness 

matrices of bar element and beam 

element, one obtains an element stiffness 

matrix for a two-dimensional frame element. 
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The elastic stiffness matrices KE and the stability matrices KG can now be 

assembled, reduced, and rearranged, separating the degrees of freedom 

associated with the axial deformations and the flexural deformations, 

respectively. Assembling the element stiffness matrices to construct the 

structural stiffness matrix is of course to combine the element 

contribution to the global stiffness. Reducing the assembled stiffness 

matrix is necessary to eliminate the rigid body motion, thereby making 

the structural stiffness matrix nonsingular. 

 

 

 

 

 

 

 

 



Theory of Elastic Stability                                           Approximate Methods   

 
 

Asst. Prof. Dr. Sheelan M. Hama 

 Noting that K
*

G is equal to KG for P =1, one can set up the stability 

determinant  |KE  + λ K
*

G | =0. This leads to 
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FREE VIBRATION OF COLUMNS UNDER COMPRESSIVE LOADS 

 

In previous lectures, deflection-amplification-type buckling and 

bifurcation-type buckling were discussed. In order to reach the solution of 

the critical load of the column problem, three different approaches were 

applied. In the deflection amplification-type problem, the concern is: 

What is the value of the compressive load for which the static deflections 

of a slightly crooked column become excessive? In the bifurcation-type 

buckling problem, two general approaches were taken: eigenvalue 

method and energy method. In the eigenvalue method, the concern is: 

What is the value of the compressive load for which a perfect column 

bifurcates into a nontrivial equilibrium configuration? In the energy 

method, the concern is: What is the value of the compressive load for 

which the potential energy of the column ceases to be positive definite? 

The body will return to its un deformed position upon release of the 

disturbing action if the potential energy is positive and the system is in 

stable equilibrium. On the other hand, if the potential energy of the 

system is not positive, the disturbed body will remain at the displaced 

position or be displaced further upon the release of the disturbing action. 

All of these approaches are based on static concepts. The fourth approach 

is based on the dynamic concept. In this approach the concern is: 

What is the value of the compressive load for which the free vibration of 

the perfect column ceases to occur? 

It will be demonstrated that the natural frequency of the column is altered 

depending on the presence of the axial compressive load on the column. 

The governing differential equation of a prismatic column is given by 

 

 

 

 

where m is the mass per unit length of the column and the right-hand side 

of Eq. above is the inertia force per unit length of the column. Note that 

the inertia force always develops in the opposite direction of the positive 

acceleration. Invoking the method of separation of variables, the 

deflection as a function of the position coordinate x and time t is given by 

 

 

Substituting into governing differential equation gives 
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  Dividing both sides of Eq. by YT yields: 

 

The left-hand side of this Eq. is independent of t, and the right-hand side 

of Eq. is independent of x and is equal to the expression on the left. 

Being independent of both x and t, and yet identically equal to each other, 

each side of Eq. must be a constant. Let this constant be α so that 

 

 

 

 

This Eq. will be separated into two homogeneous ordinary differential 

equations as: 

 

 

 

 

 

 

 

 

 

 

 

 

It is seen that α is a nonzero, positive constant. Following the procedure 

of the characteristic equation, the general solutions for the two ordinary 

linear differential equations with constant coefficients, the two Eqs. are 

obtained. The general solution for these two Eqs. are: 

 

 

 

 

 

 

 

 

 

For a simply supported column, the boundary conditions to determine the 

integral constants are 
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By virtue of Y(x), Eqs. above  can only be satisfied when:  A1 =A2 =0 

 

 

 

 

 

 

 

For a nontrivial solution for A2 and A4, the coefficient determinant must 

vanish. 

 

 

 

 

 

 

 

 

Except for the case, α=0, (α2=0), which is a trivial case, this Eq. is 

satisfied only when: 

 

                                                  

 

 

 

 

 

 

 

 

 

 

Two initial conditions determine the other integral constants, B1 and B2 in 

T(t). Assume the vibration is initiated by an initial displacement such that: 
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Hence, the general solution of Eq. y(x,y) for the simply supported column 

is given by an infinite sum of natural vibration modes: 

 

 

 

 

Where Cn = A2B2. The coefficient Cn can be determined from: 

 
 

 

 

Since this Eq. is a Fourier series expansion for the given initial deflection, 

the coefficient can be readily determined by use of the orthogonally 

condition: 

 

 

 

 

 

As the initial deflection ω(x) is assumed to be known, this Eq. can be 

evaluated. Note that∫            ⁄
 

 
. The general solution of the free 

vibration of a simply supported column is: 

 

 

 

 

 

It is of interest to note in mω
2
n Eq. at the frequency of the vibration of the 

compressed column is reduced due to the presence of the compressive 

load. Once the load P reaches PE, the frequency becomes equal to zero 

and the column vibrates with an infinitely long period. 


