Theory of Elastic Stability Approximate Methods

APPROXIMATE CALCULATION OF
CRITICAL LOADS

ELASTIC BUCKLING ANALYSIS BY ENERGY METHODS

It has been shown that energy methods provide a convenient means of
formulating the governing differential equation and necessary natural
boundary conditions. The solutions that are obtained by solving the
governing equations are exact within the framework of the theory (for
example, classical beam theory) computing unknown forces and
displacements in elastic structures. Besides providing convenient methods
for computing unknown displacements and forces in structures, the
energy principles are fundamental to the study of structural stability and
structural dynamics.

Table 1 summarizes the energy theorem derived here.

Table 1: Variation Principles of Energy Methods

Displacement Methods Force Methods
Principle of Virtual Work Prineciple of Complementary Virtual Work
6Wg = 6U oWE = oU*
H n
SWE = 5 Q:0A; OWE = > 800
i=1 i=1
oU = [, aybeydV oU* = [, eyboy dV
Principle of Minimum Potential Principle of Minimum Complementary
Encrgy Energy
oIl =o6(U+V)=0 oI = 6(U*+7*) =0
U = [([} aydey) dv = [, ([ eyday) dv
A, 1+
U= [, (ve,je,j —I—Efz“)dV: U (—t’]‘_’ 9§ = 557 Jhur)ﬂ!V U
H
Vo=—> O =—Zfo
i=1 i=1
Castigliano Theorem, Part | Castigliano Theorem, Part 11
dU/ atrr  aU
Q]: - A= ——=
0A; a0  ag;
o' *U
ki = Sa.0n fi = 50.0
i04A; 0:30;

At Brof 3. OBhoslan M. SCma



Theory of Elastic Stability Approximate Methods

Nbotes: The Lamé constants A and v in the table are given by
A= HE
(1 4+ p)(1 = 2p)
E
T —
21 + )

and

Terms in “bold font™ are valid for hinearly elastic materiaks only.

It 1S noted that a duality exists between those principles and theorems
involving generalized displacements as the varied quantities
(displacement methods) and those involving variations in the generalized
forces (force methods). Principles and theorems related to the principle of
virtual work are grouped as displacement methods, and those related to
the principle of the complementary virtual work are grouped as force
methods. These equations apply to nonlinear as well as linearly elastic
materials, except where noted otherwise in Table 1.

STABILITY CRITERIA

The stability criteria must be established in order to answer the question
of whether a structure is in stable equilibrium under a given set of
loadings. If upon releasing the structure from its virtually displaced state
the structure returns to its previous configuration, then the structure is
said to be in stable equilibrium. On the other hand if the structure does
not return to its undisturbed state following the release of the virtual
displacements, the condition is either neutral equilibrium or unstable
equilibrium. Stability can also be defined in terms of the total potential
energy [] of the structure. Recall that [ is the sum of the strain energy U
stored in the deformed elastic body and the loss of the potential of the
generalized external forces V. If the total potential energy increases
during a virtual displacement, then the equilibrium configuration is
defined to be stable; if [] decreases or remains unchanged, the
configuration is unstable. The stability criteria can also be expressed in
mathematical form. For simplicity it is assumed that the structure’s
deformation is characterized by a finite number of generalized
displacements A;. If the structure is given a virtual displacement 8A;, then
it is possible to write the total potential energy in a Taylor series
expansion about A;. Consider, for example, a two-degree-of-freedom
system.
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The change in potential energy is then

1
A = O + 5 81 + -

where the first variation is equal to zero by virtue of the principle of the
minimum total potential energy.

arl aIl
)T = dA Ay = |
( ('}Tllf 1+ E{ 2 }
and the second wvariation is
1T = 6(617) & (641)% + 2 2 5A16A, + azﬂ(m )2
( = (¢ = ( 2 AR —
gz A 0A, 10T T az\ 02

Since J0]= 0, the second variation is the relevant term. If 5°[] is positive,
then AT is positive, [] is a local minimum, and the equilibrium condition
Is stable. The special case in which the second variation is zero
corresponds to a state known as neutral equilibrium. When a structure
that is in neutral equilibrium is released from a virtual displacement, there
IS no net restoring force present, and the system remains in its virtual
displaced state. Hence, by the first definition of stability, neutral
equilibrium is a special case of unstable equilibrium. The criteria for
stability are summarized as follows:

AT] > 0 stable equilibrium
AT]= 0 neutral equilibrium
AT] < 0 unstable equilibrium

If the potential energy P is quadratic in the displacements A;, which is the
case when the structure is linearly elastic and the deformations are small,
then all variations higher than the second are necessarily zero. In this case
the type of equilibrium is governed by the following conditions:

&[] > 0 stable equilibrium
J°T] = 0 neutral equilibrium
&°T] < 0 unstable equilibrium

these condition is called the sufficient condition. A rigid body stability
concept can be illustrated as follows:
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Rigid body (ball) of weight W

and k> 0.
U+V=0+Wy=—kiW d(?v) ~0 U+V = kW
X
2
dUHY) _ ppw=oa@x—0 T _, dUHY) _oixw=0@x=0
dx dx? dx
2 2
LUV e UV _ s o
dx’ dx’
unstable equilibrium neutral equilibrium stable equilibrium

Figure 1: Concept of rigid body equilibrium

RAYLEIGH-RITZ METHOD

The energy methods introduced in previous section are a convenient
means of computing unknown forces and displacements in elastic
structures. They can be the basis of deriving the governing differential
equations and required boundary conditions of the problem. They are also
the starting point of many modern matrix/finite element methods. The
solutions that are obtained using these methods are exact within the
framework of the theory (for example, classical beam theory). Energy
methods are also used to derive approximate solutions in situations where
exact solutions are difficult or nearly impossible to obtain. The most
widely known and used approximate procedure is the Rayleigh-Ritz
method,6 in which the structure’s displacement field is approximated by
functions that include a finite number of independent coefficients (or
natural coordinates; one for the Rayleigh method and more than one for
the Rayleigh-Ritz method). The assumed solution functions must satisfy
the kinematic boundary conditions (otherwise, the convergence is not
guaranteed, no matter how many functions are assumed), but they need
not satisfy the natural boundary conditions (if they satisfy the natural
boundary condition, a fairly good solution accuracy can be expected).
The unknown constants in the assumed functions are determined by
invoking the principle of minimum potential energy. Suppose, for
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example, the assumed function has n independent constants a; (i = 1,
2,.,n). Since the approximate state of deformation of the structure is
characterized (amplitude as well as shape) by these n constants, the
degrees of freedom of the structure have been reduced from o« to n.
Invoking the principle of minimum potential energy, it follows that:

all GH oIl
6@1 aﬂ’) day,

Since daq; are arbitrary, the Eq. above implies that:

arr
aﬂi

This equation yields a system of n simultaneous equations that can be
solved for the coefficients ai for static problems, and in the case of
eigenvalue problems, the determinant (characteristic determinant) for the
unknown constants is set equal to zero for the n eigenvalues.

=0 i=1,2..,n

AP
Example 1 Consider a both-ends pinned column i l
shown in Fig. 2. The strain energy stored in the ' —T
deformed body is \
F ‘r
1 [f M2 LY (=ED"Y ' 1
U=- - ’——/( y dx——/(yﬁ )" dx /
2Jo EI 2Jo \ ’
—

Z

o ) Figure2: Simple
I/ = —PAl (the reason for the negative sign: as A increases, I/'decreases) column model

] 2
d? = di? -!-dy2 = !1 - (;—y) ]dx2=>ds = /14 O}’)de
dx
£ 4 { {
Al = / ds—/ dx:/ v/ 1 (y")%fx—/ dx
0 0 0 0
A

+ -
¢ 1 N2 £ | ¢ 2
:/ 1-{-—(’)) + .. dx—/ rfxi—/@) dx
0 2 0 2 Jo

p [t
V = — (yf)zrix
2 Jo
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5 ¢
El
/ d:x——/ (y (Il] =0
2 Jo

Assume the solution function to be of the form:

ol = oU 4061V = 5[

1" n

y = Z aih; = Zai sin(imrx /1)

i=1 i=1

¢ 14
EI P
Il = —/ @")20'3:——] (lf,)2dx
2 Jo 2 Jo

BI L7 272 imx]” p ¢ n_ i i\
— 5 i iZ(—l) 7 a; sin 7 dx—a/ﬂv —Z?a,‘COST dx

=1

259565

i=1

Recall the following orthogonality of finite integrals of
trigonometric functions: f[)(smzaa) dx = (£/2), f (L(JSZ(IX) dx = (£/2),
f[)g (sinix)(sinjx) dx = 0 (i # j), and f[)g (cosix)(cosjx) dx = 0 (i # j)

oI7 Elmt P 2 Elnt
2 = 2a)) — — —2(2a)) = 2 _
3 0 = 4P3 ( a;) — 5 F (24;) ( 7 — P ) =0

2n2El w2 El ,
Asa # 0, P; = 7 or (PC,,)le = 7 <= exact solution

THE RAYLEIGH QUOTIENT

The approximate solution of the eigenvalue problem usually reduces to
the integration of a differential equation of the form

Lw-/Mw =0
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where w is the displacement that satisfies not only the differential
equation below, but also certain homogeneous boundary conditions (this
condition may preclude the cantilevered end condition), L and M are
certain differential operators, and 4 is an unknown numerical parameter.

For the stability of a column, the governing differential equation is

[ = d? Bl d?
T odxZ T dx2 d? Bl d% _ _p d*w
d? dx? dx2 ) dx2
dx
A=D

If a linear differential operator L has the following property, it is called a

self-adjoint or symmetric operator: (Lu, v) = Lv, u)

The inner product of two functions g and h over the domain V is defined
as:

(¢,h) = inner product of gand h = / gl dv
|24

An operator is said to be positive definite if the following inequality is

valid for any function from its field of definition, u(q) # O:

(Lu,u) >0, (Lu,u)=0foru@)=0

dx2 dx2 dx2

Multiplying both sides of Eq. (H “’2“’) _ _p®» pywand integrating

over the domain yields

¢ 2 Jud?’w { p ¢ 2y 1’
w > dxy = — 1w dx
o dx? dx? o dx?

Integrate the left-hand side of Eq. by parts twice, as follows:
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/g d? £r d% 1 e — ff I d% 1 21’—[— d EI d%
0 Va2 o2 )T 0 o2 ) T dx>
¢
0

¢
0

dw dPw

—_—

dx dx?

For simply supported, fixed, or cantilevered end conditions, the last two
quantities are zero. Integrating the right-hand side of Eq. gives

¢ 2y ¢/ a\ 2 duy
— P w—7 dx = P — | dx — Pw—
o dx® 0 \dx dx

The last expression vanishes for fixed and simple supports (not for the
cantilevered end). Substituting the expanded integrals back into Eqg.
gives:

¢
0

vl o 9\ 2
El 1“w/dx®) dx
P = {)(c M/M ) = (Cl Jllethod.)

ﬁf(dw/dx)?’dx

It is noted that this Eq. works for cantilevered columns despite the fact
that one of the concomitants is not zero. As mentioned earlier, the error
involved in the approximate solution propagates much faster in the higher
order derivatives. In order to improve the critical value computed from
the Rayleigh quotient, d®w=dx? in the numerator is replaced by M/EI.
Then:

(1 / EI) Jo M dx

( C2 metho d)
fgf (w") 2 dx

P, =
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ENERGY METHOD APPLIED TO COLUMNS SUBJECTED TO
DISTRIBUTED AXIAL LOADS

e Cantilever Column s
The Rayleigh method can also be applied to the
calculation of the critical value of the distributed % |7,
compressive loads. As a first approximation of m |y ['n
the deflection curve, the following equation may kB
be tried:
X £1¢ v
y = (3(1—(:039{?) X
+
M = / q(n —y)dz ‘ >
X %
The deflection 1 15 also expressed as Figure 3: Cantilever column

subjected to distributed axial load

IV
N = ( _Lmﬂ

W f Y
q/ (1 — y)dE = ;[/ nn‘f—y(#'—.\")]

g . ) 20 . mg| ¢
/x ndé = 5/x (I—COS%)({E = 5l(£_x)_;sin;—; A:|

~ 5 [(E — X — %(1 — sin E)]

~
|

- 20

M = b :(g —x) — 2;(1 — sin %) — (1 — cos %) (¢ — x)]
= 46 :(e — x)cos % - 2;(1 — sin %)]
i e - )

and the work done by the distributed load above the section mn 1s
1 dy 2
Eq(ﬂ’ —a) (E) dx
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The total loss of potential energy of the distributed load during
The total loss of potential energy of the distributed load during buckling

IS

(e dy\ Lo [* ™ in )
o— — /D (g_k)(ﬁ) dx = —Eqﬁ fo(ﬂ—k)(ﬁsmi) dx

52@ 2
=™ Y
o oU v 8PP (—192+ 54w+ ) dq, , _
= + =0 = E ——(m—4) =0
do do do 6L 16 ( )
(m* — 4) 6EIT EI
g = — —— = 7.888 —
16 (=192 + 547 + w3) 3 (3

Although this Eq. is only 0.65% greater than the exact solution, it would
seem interesting to see how much the accuracy can be improved by
taking one more term in the assumed displacement function. Consider the
following function for the deflection of the cantilever shown in Fig. 3:

TX Amx
y = ;1(1 — COS —) + i;<1 — COS )
i 2/ 2/

& 3mé
n = u(l — COS ) = J'J(l — COS )

20 2/

PR o i3 3rE\] .
ndz = all —cos— | +b| 1 — cos— dz
Jx Jx 2¢ 2¢

2/ e

y _ y 20 . 3wE|t
= a|(f — x) — —sin — +b|(f — x) — —sin —
' T 261 | T 20 | 5
21 TX
= al|(f— x) ——(1 —sm—) + bl (£ — x)
T 2¢

2¢ - 3mx
4+ — 1 + sin
AT 2f
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( a[(é’ —x) — %(1 — sin %) — (1 — €Oos %) (£ — Jx):|

M = gX« 0

2/ - 3mx ImTx
+b !(P — x) +§(1 -+ sin ?) — (1 — COos ?) (£ — a)] J

\

mx 2L L TX 3mx 20 3mx
= q{a l(*ﬂ - X)CUSQ—; - _(1 — sin 9—;)] ——b{(f — ;\":)cos% -——[<1 + sin ?)] }

™ 2 ¢ 37 2/
1 4
2F1 Jo
_ 203 [ (—1728 4 486w + 97°) @ + (64 + 54w + 97)
108mEL| 4 (384 — 97)ab

The total loss of potential energy of the distributed load during buckling
IS:

1 ¢ ™ X 3 3mx )2
— —aq‘/[) (£ — x) (ﬁsinz—;a—[—ﬂsin 2;1)) dx

= ——g [(Wz _ 4)a2 1+ (971'2 — 4)(;2 + 24«:;(;]

IH=uU+V

ol oU 9V P

— 3456 L+ 9727 + 187 384 — 977)i
da da + da 1087T3E1[( 20+ o fom )a T ( W) )}

— 5a[(27* = 8)a+248] =0

o dU av PP

= 128 + 10 1873) b+ (384 — 9
db 6(J+3b 1087r3b‘;[( 8 + 108w + SW)J‘I‘(S 'ﬂ')a]

1
~ 5 (187% — 8)b +24a| = 0
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For a nontrivial solution (a and b cannot be equal to zero simultaneously),
the determinant for the coefficient matrix for a and b must be equal to
zero. Solving the resulting polynomial for the critical value yields:

EI

¢3

The uniform load gl reduces the critical buckling load P applied at the
cantilever tip. It is written in the form:

g = 7.888

B mil=1
{,_2

o T

where the factor m is equal to n%/4 when gl is equal to zero and it
approaches zero when q° approaches the value given by Eq. of ., .Using
the notation

ego|

The following illustration is an example case of using the energy method
to compute values of n and m interactively. The moment due to the
concentrated load P is:

n —

. - )3 _3).‘.‘71'.\'
Mp = P(o—vy) = ol tl)&ﬂ)—{

x 2 X
M, = qo {(E — .\“}CUSE — —(1 — s1n 1——;)]

2/ T

X Tx 2/ . TTX
M = Mp+ M, = 0 PCOS’)_P_I_q (¢ — x)cosr)—F—;(l - smr)—p)

{

|
()T - A/Izdx
2EI Jo

B 5% ¢ Pe ‘ﬂ‘x+ (f ) RES 2/ {— X za'"
= 271 i L(JSZ, q |l mLoszé - sng X

= 0% (—12mlmqP + 54027q? — 19202* + (P f + 3w P2

+ 3¢mqP) / (12EI7)
2

"

6
= 12E1 +(93.01883P% + 55.3197182(9P + 8.65228¢)
LBl
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au

35

1 ¢ dy 2 | ¢ T TX\2
—Eq/[) (£ — x) (E) dx = —Eqﬁ /[) (£ — x) (gsm%) dx

092
> (> — 4)
’prmN2t 6%q, o
V= VeV = =5(5) 5 - -4
1)
S (0.6168503 710 18342513&;)
WV _ 505t P2 40148678816 e P + 0.0232541088 £
96 T EI SRS 4 T er

b

1
— (0.6168503 7 0.183425138q = 0

If P = 0, then

7.88786LE]
Ej

Jer —

Ifn = 1(q = 7T2EI/4€3), then

P, =

1.7223 El/ﬁz < (.13% greater than the exact solution.

e H.W.: Using energy method for find critical load for column
subjected to distributed load axial load q and concentrated load p at
the top of column for following B.C.:

e

Simply —supported column if y=0¢ sinzx/I

Pinned —clamed column if y= a(I>x — 31x® + 2x*)
Clamed — Pinned column if y= a(3I° — 5Ix® + 2x*)
Both — ends clamped column if y=a(1 — cos2zx/l)
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ELASTICALLY SUPPORTED BEAM-COLUMNS

As an example of the stability of a bar on elastic supports, consider a
prismatic continuous beam simply supported at the ends on rigid supports
and having several intermediate elastic supports.

Let g= force developed in the spring=ky. Then the work done by the
spring is (1/2)qy=(1/2) ky®. Rotational spring can also be considered at
any support. Total potential energy function of the system becomes:

gt ., prto, 1 ¢
o . I LT / L -
I=U+V = 2/00»)0'9» 2/{)0})rh+2§ kiy;

i=1

Let ky; = ky=kand x; 1/3; x, = 21/3 to simplify the computation effort. It
appears that at least three sine functions need to be considered for the
three-span configuration shown in Fig. 4.

X
- «—P

AR k. _--0
. - = -7 G
2 g
M 4
v "

Figure 4: Column resting on elastic supports

X - 2mx - 31mx
-+ a> sin -+ a3 sin 7

1 £

i EI ¢ my\2 . wx 27\ | 27x 3m\2 _ 3wx gd
= — = {l — 511l — = {1 —_— 511l ——— = ¢] _— 5111 —— X
2 Jo '\ ¢ 2\¢ ¢ P\ ¢

P]E T ?rx+ 27 2?rx+ 37T 3Tx 2(3
—_ — i — | COS8 — i — | CO§ — i — | 08 — x
2 o ITP\¢ ¢y ¢ P\ ¢ ¢

1L T 2\ 2 27 49\ 2
-1—2 a151n3+a351n3 +- ﬂ151ﬂ3+ﬂ251ﬂ3

Assume y = gaq sin
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Noting that

. (0 for i#]
T ITmx | WX
/ sstdexZ W and
0 ’ ’ —fori=j
2
P , (0 for ij
iTx  jTx
/ ccrschrsTa’x: W
0 - g gfar i=7

2

EIx* Pr
I = (a% + 1643 + 81a§) - —(af + 4a3 + 9&%)

443 4f
3
‘f‘gk(ﬂ%‘f‘ﬂ%)

oIt Elw* pr? 3 Eln*t pr?
— =0= 2a1) — —(2 “k(2a;) = — k
Gy 0T T ) — g (G + gkQa) (83 ‘ +3)‘”

n X EI?r"'+3L _ﬂ251+3ﬁe€_p 2 kf

A NTERS B w> Pg

P, '+ 3kf
Pr_. a ’J'TEP;"_.
a1l EIr? Pr? 3 4EI7 Pm> 3
— =0= 32ay) — Zk(2as) = - “k
o= 0 = S0 - o (sm) + 3402a0) = (-T2
¢ (4EIx* 3 4Bl 3kf 3 ke
pr —_ —,I?_, = —t P 4 -
‘ 11*2( & +4) ¢ +4?r2 E( +49r2 PE)
P, it 3kl
E 472 P

all 0 Ef«:ﬁ._”ﬂ ] P?TE._IH ) 9EIT> P

— =0 = 2azy) — —— 13) = ——]a

das g3\ 10203) = (1843 B 7)®
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» ¢ 9EIn*\  9m°El P, o
S 27 Py
TR PP N SR L . P
72 Pg 472 Pp w2 4)pp 7 P
3kt kel 4
9= =5 — ¢58
4?T"p1; P‘E 3

Assuming |I= 3L and P, = 9P for three equal spans,
k = 65.8P¢/(3L) =65.8P¢/9/(3L)=2.437P = 8 P/L

This equivalent £ value of 2.437 is slightly less than that (8 = 2.437)
obtained for three equal spans rigid body system, which is logical as the
elastic strain energy stored in the deformed body shares a portion of the
energy provided by the spring system.

COLUMN BUCKLING ANALYSIS BY FINITE DIFFERENCE
METHODS

The basic differential equation of beam -columniis:  E[y" 4+ Py’ = 4(x)

This can be written in difference equation form, if we know that

4y _ Yir1—Vi-1 d’y _ Yi+1=2YitYi-1
dx 2h dx? h?
a3y — Yi+3~Vit1+ YVi-1—Yi-3 d*y — Vit2=4Yi+1+6Yi—4Vi—-1—YVi—>
dx3 2h3 dx* 2h3
-1 I 1+1

Figure 5: column division for finite
difference method
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Then: yipp + (ky — DYigr + (6 — 2kp)y; + (ky —4)Yi1 +yi2 =0

_pL2 2 h—L
" n2E] n

Example: Use the F.D.M. to find P, for the column shown in
the Fig 6.

DY
0

1. Assume n=2

Visz t (ky —4)yip1 + (6 — 2k)y; + (kyy — 4)yi4
+Yi2=0

@ fixedend: y;_, = y; 2
Figure 3:Hinge- fixed ends column

@ hingeend : y;., = —y;
yi+0+(6—-2k)y;+0—-y; =0

P12 P.. X L2 1212
- 3 = =

— p.o=_""
n2E] AE] T TRl

(6 — an)Yi =0-kp_z k=

H.W.: Resolve the previous example
1. Using advantage of B.C.

2. assume n=3 & n=4

H.W.. For the beam rest on elastic foundation knowing k is subgrade
reaction along the beam (KN/m). calculate P, use n=2.

P
P A -~ 4+— P

SN k -~ O
T~ - _ I 2 - s
: = ==
1
" » .
w T
} ¢
L 4 "
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COLUMN BUCKLING ANALYSIS BY MATRIX METHODS

Consider a prismatic column shown in Figure 6. The axial strain of a
point at a distance y from the neutral axis is:

2 . 2
du a:f—v_|_ 1 [ dv
o —_ .
e = ——V—=+—|—
dx dx= 2\dx
where # and v are displacement components in the x and y directions,
respectively, and

duf/dx = axial strain;
—y(d*v)/(dx*) = strain produced by curvature; and
'lfﬂi{du]/r{dx)jz = nonlinear part of the axial strain.

With dI7 = dAdx, the element strain energy 1s

1 1 5
U = f eadl/ 23/ / E & dAdx
I <Jr Ja

where E = modulus of elasticity.

, i
j dA = A, / ydA = 0, j V2 dA = I, and f EZdA = p
A A A 4 dx

where P 1s the axial force, positive in tension, leads the strain energy to be
written:

o '1/‘{191 du 2{ —I—ll‘/‘fEI dv 231 +'1ffp dv 2{
ST 2 o \dx o 2 Jo dx o 2Jo dx o

The first integral in Eq. above yields the stiffness matrix for a bar element
associated with the kinematic degrees of freedom ul and u2. The second
integral yields the stiffness matrix for a beam element. The third integral
sums the work done by the external load P when differential elements dx
are stretched by an amount [(dv/dx)*xdx/2] (there exists another
interpretation of the third integral: a change in the potential energy of the
applied load during buckling). The third integral leads to the derivation of
the element geometric stiffness matrix K. The lateral displacement field v
of the beam and its derivative dv/dx are:

v = |NJ{A}

1 |
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dv

a‘[NJ

Al = [GHA
== S} = [GHa)
where
A =1vi 01 »n 6]
: 32 +2x3 2% X 3x0 2% o2 ox
i W PO et S Wl “r ot ot
IN| = 2% (7 o2 B (e
6x N 62 4x  3xF 6x  6x° 2x N 32
Gl =] ¢~ A A
The third mtegral 1s expanded as
1 1 .F - -
Jalkel{a} = Jallp [ {G)lGlix|{a)
< = 0
Hence,
. » [f 6x 62\ 6P
p— —_— P x _
Gl1 i 7 I :
© b € 6x 6> ke 32 ; P
= T Ve = —
¢z Tzt A 10
Other elements are evaluated likewise.
(36 3 36 3]
30 42 30 —p?
Ke = ——
300 —36 —3¢ 36 —3/f
30 -2 =30 4|
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Theory of Elastic Stability Approximate Methods

Example: Consider a propped (fixed- 1
pinned) column shown in Fig. 7. The .

prismatic column length is L. Using the x /454 > ;@ 2
numbering scheme, one obtains the v
following stiffness relationship: As the '
global coordinate system and the local /T
coordinate system are identical, there is : 6 a‘ ?
no need for coordinate transformation. 4
Let ¢=Al/I. 2
Superimposing element stiffness v | (}8
matrices of bar element and beam .
element, one obtains an element stiffness 7

matrix for a two-dimensional frame element. Figure 7: Column model, degrees-of-
freedom

EI31 0 60 442

0 6f 22 0 —6f 44>
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1 T0 T
210 6/5
a2 i - a2
0 p3|0 €10 202/15
Ko = =7
410 0 0 0
510 —6/5 —¢/10 0 6/5
6 L0 £/10 —£2/30 0 —£/10 2£/15]
4T0 T
510 6/5
) p6|0 £/10 20%/15
Ko = =7
710 0 0 0
810 —6/5 —£/10 0 6/5
9O L0 £/10 —£2/30 0 —£/10 202/15 ]

The elastic stiffness matrices Kg and the stability matrices Kg can now be
assembled, reduced, and rearranged, separating the degrees of freedom
associated with the axial deformations and the flexural deformations,
respectively. Assembling the element stiffness matrices to construct the
structural stiffness matrix is of course to combine the element
contribution to the global stiffness. Reducing the assembled stiffness
matrix is necessary to eliminate the rigid body motion, thereby making
the structural stiffness matrix nonsingular.

1o 0 0 0 0
410 0 0 0 0

Kg = —? 3o o 202/15 —£/10 —£2/30
50 0 —£/10  12/5 0

610 0 —£2/30 0  4£/15 |
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Noting that K'g is equal to Kg for P =1, one can set up the stability
determinant |Kg + A K ¢ | =0. This leads to

b —¢ 0 0 0
—¢p  2¢ 0 0 0
, 2 A2 1 A , 1 a¢
0 0 4 15 EI 66+ 10 EI 2t +3() Er| _ 0
3 03 5 2
0 0 —ere LA 5, 12H 0
10 EI 5 EI
1 Af4 4 1
( 0 2P 4+— ( [ ———
: ) + 30 EI ) 8 15 EI

Let u = A% /EI

¢ —¢ 0 0 0
—¢ 20 0 0 0

0 0 2(2—%) —6+f—:} 2+;—:'} .,
0 0 —6—}—1‘% 12(2 —%) 0

0 0 2+ 3‘% 0 4 (2 - %)

Expanding this determinant, one obtains a cubic equation in

3 — 22002 + 3, 8401 — 14,400 = 0

The lowest root of this equation 1s ¢ = 5.1772=5.1772 = }LEE/EI

Hence,
~ 5.1772EI  5.1772EI  20.7088EI  2.098m°EI
a §2 - (G.SL)E - 12 - 1.2
20.19EI
= 1.026Pecas = 1.026( ——

Considering the fact that only two elements were used to model the
column, this (2.6% difference) 1s a fairly good performance.
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FREE VIBRATION OF COLUMNS UNDER COMPRESSIVE LOADS

In  previous lectures, deflection-amplification-type buckling and
bifurcation-type buckling were discussed. In order to reach the solution of
the critical load of the column problem, three different approaches were
applied. In the deflection amplification-type problem, the concern is:
What is the value of the compressive load for which the static deflections
of a slightly crooked column become excessive? In the bifurcation-type
buckling problem, two general approaches were taken: eigenvalue
method and energy method. In the eigenvalue method, the concern is:
What is the value of the compressive load for which a perfect column
bifurcates into a nontrivial equilibrium configuration? In the energy
method, the concern is: What is the value of the compressive load for
which the potential energy of the column ceases to be positive definite?
The body will return to its un deformed position upon release of the
disturbing action if the potential energy is positive and the system is in
stable equilibrium. On the other hand, if the potential energy of the
system is not positive, the disturbed body will remain at the displaced
position or be displaced further upon the release of the disturbing action.
All of these approaches are based on static concepts. The fourth approach
is based on the dynamic concept. In this approach the concern is:
What is the value of the compressive load for which the free vibration of
the perfect column ceases to occur?
It will be demonstrated that the natural frequency of the column is altered
depending on the presence of the axial compressive load on the column.
The governing differential equation of a prismatic column is given by
awy azy azy
EIG:{4 4 PG:{E mafz

where m is the mass per unit length of the column and the right-hand side
of Eq. above is the inertia force per unit length of the column. Note that
the inertia force always develops in the opposite direction of the positive
acceleration. Invoking the method of separation of variables, the
deflection as a function of the position coordinate x and time t is given by

y(x,1) = Y(x)T ()
Substituting into governing differential equation gives

EIYYT + PY"T = —mYT"
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Y:':r YH TH
Dividing both sides of Eq. by YT yields: g~ + p— — _;;—

Y Y T
The left-hand side of this Eqg. is independent of t, and the right-hand side
of Eq. is independent of x and is equal to the expression on the left.
Being independent of both x and t, and yet identically equal to each other,
each side of Eq. must be a constant. Let this constant be o so that

Y!'!’ Yh’ TH

+P— = —m—= =«

EI
Y Y T

This Eqg. will be separated into two homogeneous ordinary differential
equations as:

Y¥ +1PY —aY =0

T —I—r:uzT = (

where
2 _ P
ET
" aEl
0y = —
m

It is seen that o is a nonzero, positive constant. Following the procedure
of the characteristic equation, the general solutions for the two ordinary
linear differential equations with constant coefficients, the two Egs. are
obtained. The general solution for these two Eqgs. are:

Y(x) = A; cos ajx + Az sin ayx + Az cosh aox + Ayg sinh anx

4V +4a — + Ve + 4a
2 ' 2

2
ay,

[ ]

T{fj = Bycosw {+ Basinw t

For a simply supported column, the boundary conditions to determine the
integral constants are
Y(0) =0 Y'0) =0

v(0) =0 Y'({) =0
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The first and second conditions yield
A1+ A3 =0
—{E%r‘ll + Uri%fl} =0
By virtue of Y(x), Eqs. above can only be satisfied when: A; =A, =0

unless &y = ap = (), which corresponds to the case of P = 0, which 1s
a trivial case. The third and fourth conditions give

Assin af + Ay sinh axf = 0
— a3 Az sin ad + a3 Ay sinh axf = 0

For a nontrivial solution for A, and A, the coefficient determinant must
vanish.

sin o £ sinh anf
= 0

2 - 2 -
—aj sin apf a5 sinh apf

Expanding the determinant gives

({E% + ﬂﬂ%) sin a1 £ sinh arf = ()

Except for the case, a=0, (a,=0), which is a trivial case, this Eq. is
satisfied only when:

sin aqé = 0 w d = nm Ay =0

o ”;-]-4__;32!'.;2 I'E ‘21'1. '1‘2{2
«= ({) (1 F) Y= Vf?(”;) V!(l _HZWZ)

n2ar? (w22
2\ EI—P|(n=1,2,...)

2 _
mw,, =

nx
4

Two initial conditions determine the other integral constants, B; and B, in
T(t). Assume the vibration is initiated by an initial displacement such that:

dy(x, 0)

¥(x,0) = w(x) and a9, = 0

Yy(x) = A»sin
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Then
Y(x)(B1 cos wt+ By sin wt)|_, = w(x)
Y(x)( — B1 sin wt+ By cos wi)|,_g= 0

from which one obtains the following:

B1Y(x) = w(x) and By =0

Hence, the general solution of Eq. y(x,y) for the simply supported column
Is given by an infinite sum of natural vibration modes:

. . nmx
y(x, 1) = E C, sin i COS (0,1

n=1

Where C, = A,B,. The coefficient C, can be determined from: B1Y(x) = w(x)

oo

Z C, sin m;’:r = w(x)

n=1
Since this Eq. is a Fourier series expansion for the given initial deflection,

the coefficient can be readily determined by use of the orthogonally
condition:

2 [ s
Cp, = —/ w(x) Siﬂ%dﬁf (n=1,2,...)
I:I -

As the initial deflection w(x) is assumed to be known, this Eq. can be
evaluated. Note that fol sin® nxdx = l/z. The general solution of the free

vibration of a simply supported column is:

,jm

£
Z - nwkE L onIx
y(x, 1) = 7 E [A w(&) sin Tﬂ‘f} sin —;— cos ),

“n=1

It is of interest to note in mw?, Eq. at the frequency of the vibration of the
compressed column is reduced due to the presence of the compressive
load. Once the load P reaches Pg, the frequency becomes equal to zero
and the column vibrates with an infinitely long period.
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