Theory of Elastic Stability FLT Buckling of Columns

FLEXURAL-TORSIONAL BUCKLING OF COLUMNS

It is assumed that the cross section retains its original shape during
buckling. For prismatic members having thin-walled open sections, there
are two parallel longitudinal reference axes: One is the centroidal axis,
and the other is the shear center axis. The column load P must be placed
at the centroid to induce a uniform compressive stress over the entire
cross section. Transverse loads for pure bending must be placed along the
shear center axis in order to not induce unintended torsional response.
Since the cross sectional rotation is measured by the rotation about the
shear center axis, the only way not to generate unintended torsional
moment by the transverse load is to place the transverse load directly on
the shear center axis so as to eliminate the moment arm. It is assumed that
the member ends are simply supported for simplicity so that
displacements in the x- and y-directions and the moments about these
axes vanish at the ends of the member. Hence,
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Flexural-torsional buckling deformation

In order to consider a meaningful warping restraint, the member ends
must be welded (not bolted) thoroughly with thick end plates or
embedded into heavy bulkhead with no gap at the ends. These types of
torsional boundary conditions are not expected to be encountered in
ordinary construction practice. Strain energy stored in the member in the
adjacent equilibrium configuration consists of four parts, ignoring the
small contribution of the bending shear strain energy and the warping
shear strain energy: the energies due to bending in the x- and y-
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directions; the energy due to St. Venant shear stress; and the energy due
to warping torsion. Thus
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For an open cross section consisting of a series of rectangular elements,
the St. Venant torsional constant is evaluated by:

KT+ = %; fJgE?

The loss of potential energy of external loads is equal to the negative of
the product of the loads and the distances they travel as the column takes
an adjacent equilibrium position. Figure shows a longitudinal fiber whose
ends get close to one another by an amount D, . The distance Dy, is equal
to the difference between the arc length S and the chord length © of the

fiber. Thus
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Fiber deformations due to buckling
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As shown in Figure above when the x and y displacements of the lower
end of a differential element dz of the column are designated as u and v,
then the corresponding displacements at the upper end are u+ du and v +
dv. From the Pythagorean theorem, the length of the deformed element is

s = \/(dﬁ}2+(d§)2+ (d=)* = \/(g)—jt (dii)—jti dz

if the magnitude of the derivatives is small compared to unity. Hence,
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from which
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Lateral translation of longitudinal fiber due to rotation about shear center
where 7 and 7 are the translation of the shear center u and v plus additional

translation due to rotation of the cross section about the shear center. The
additional translations d# and dv, in the x- and y-directions, are denoted, as
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that PP' = r¢h, a = r¢p sin «, and b = r¢ cos a.

Since x = r cos & and y = rsin @, one may also write —a = —y¢ and
b = x¢. Hence, the total displacements of the fiber are
U= u—ygp
V= v+ xgp
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In order to simplify Eq above, the following geometric relations can be

used:
fdA =A, fydfl = ypA, f:x:dfl = xpA
A A A

Jﬁ+fﬁ4=&+g=ﬁa

where ry 1s polar radius of gyration of the cross section with respect to the
shear center. It should be noted that the shear center is the origin of the

coordinate system shown in Figure above. Hence,
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The total potential energy functional II is given by the sum of U and V
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7= U+V

According to the rules of the calculus of variations, P will be stationary
(minimum) if the following three Euler-Lagrange differential equations
are satisfied:

)
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These three differential equations are the simultaneous differential
equations of torsional and flexural-torsional buckling for centrally applied
loads only. Their general solution in the most general case can be
obtained by means of the characteristic polynomial approach. Assume the

be of the form
nz . Tz . W2
vy = Bsin ¢ = Csin

(0 0 (

where A, B, and C are arbitrary constants. Substituting derivatives of
these functions into the differential equations and reducing by the
common factor sin(zz/[), one obtains

(ELk* — P)A + y,PC = 0
(EL.k> — P)B — xqPC = 0

i = Asin

yoPA — x0PB+ (EL,k* + GKr — 2P)C = 0

N S
where k= = 7= /(-.

pP,—p 0 yoP
0 P.—P —xoP =0
»oP —xoP 1 (pcb - p)
where
P, = LIEI\ P, = ?Tj?r":,Pcp = iﬁ(s’EJ’wﬁ—jJr GK'J')E
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P22 P22
(Py — P)(Px — P)(Pg — P) — (Py — P)— 0 (Py—P) > 0 =0
] ]

The solution of the above cubic equation gives the critical load of the
column.
Case 1: If the cross section is doubly symmetrical, then xo = yo= 0.

(Py = P)(Px = P)(Py —P) = 0

The three roots and corresponding mode shapes are:

T EI _
P, =P = 2 A # 0,B = C = 0= pure flexural buckling
mEL .
P, =P = 7 : B+# 0,A = C = 0=pure flexural buckling
1 /7*El, ‘
pff == qu = ;8 EZ + GKT .

C # 0,A = B = 0= pure torsional buckling

Coupled flexural-torsional buckling does not occur in a column with a cross
section where the shear center coincides with the center of gravity. Doubly
symmetric sections and the Z purlin section have the shear center and the
center of gravity at the same location.

symmetry as shown in Figure, say the S e .
X axis, then shear center lies on the x \
axis and yo = 0. Then:

Case 2: If there is only one axis of / o JC
SSJC .

Singly symmetric
sections

P22
B[ = Py =2 =251 = 0
0
This equation is satisfied either if

Py :Pl

or if
Pz
(P, —P)(Py—P) ——2 = 0

"o

The first expression corresponds to pure flexural buckling with respect to
the y axis. The second i1s a quadratic equation in P and its solutions
correspond to buckling by a combination of flexure and twisung, that is,
flexural-torsional buckling. The smaller root of the second equation is
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Pp_1 =

1 5
e {Pc_b + P —\/(Py + P - 4KPP,

Case 3: If there is no axis of symmetry, then x#0; y,#0 and Eq. of
buckling torsion cannot be simplified. In such cases, bending about either
principal axis is coupled with both twisting and bending about the other
principal axis. All the three roots to Eq. correspond to torsional-flexural
buckling and are lower than all the separable critical loads. Hence, if P, <
Py < P¢g, then

p{y{p1{p1{pfb

TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING UNDER
THRUST AND END MOMENTS

In the previous section, the total potential energy functional of a column for
torsional and flexural-torsional buckling expressed with respect to the shear
center was derived. When it is desired to express the same in the centroidal
coordinate systemn, it can be done readily, provided that the sign of xy and
o needs to be reversed as they are defined in two separate coordinate
systems (this time they are measured from the centroid). Hence,

178 (du 108 /2> 1 [t i
oy (s [ (E2) L[ ()
1 f th)
EIL, dz
o (i)
and 1/ P/‘{ du j—l— dv j—l— 5 [ d j—l—q du dd
= — — — | — 2
2/, [\ =) T \a= Yo\az )\ =
dv\ do
_9 d=>
20(2) )|

It should be noted that ry is the polar radius of gyration of the cross
section with respect to the shear center.
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PURE TORSIONAL BUCKLING

In order to show how a compressive load may cause
purely torsional buckling, consider a column of a
cruciform with four identical thin-walled flanges of
width b and thickness t as shown in Figure. As
demonstrated by Case 1 in the previous section, the
torsional buckling load will be the lowest for the
cruciform column unless the column length is longer
than 40 times the flange width where the thickness is
5% of the width. It is imperative to draw a slightly
deformed configuration of the column corresponding to

the type of buckling to be examined (in this case,
torsional buckling). The controidal axis z (which
coincides with the shear center axis in this case) does not bend but twists
slightly such that mn becomes part of a curve with a displacement
component of v in the y-direction. Consider an element mn shown in
Figure in the form of a strip of length dz located at a distance r from the
z-axis and having a cross sectional area tdr. The displacement of this
element in the y-direction becomes: v=r¢

The compressive forces acting on the ends of the element mn are —aotdr,

where ¢ = P/A. The statically equivalent fictitious lateral load is
then —(otdr)(d*v/dz?) or — (otrdr)(d*¢/dz?). The twisting moment
about the z-axis due to this fictitious lateral load acting on the element mn is

then (—a)(d?¢/dz*)(dz)(t)(r*dr). Summing up the twisting moments for
the entire cross section yields

5 d> 5 d’
¢ rr‘dr = —J—?dz/ rrdA = —cr—(,{)dzi},
=Ry d== /4 d

-~

where I is the polar moment of inertia of the cross section with respect to
the shear center S, coinciding in this case with the centroid. Recalling the
notation for the distributed torque, one obtains

ﬂ'fﬁ
dA.,

m. =
For a distributed torque
m, = EL,¢" — GKr¢"
EL.¢" — (GKT — cly)¢" = 0
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For column cross sections in which all elements meet at a point such as
that shown in Figure above, angles and tees, the warping constant
vanishes. Hence, in the case of torsional buckling, Eq. above is satisfied if

GKT—O'IQ = 0

which yields
GKr (4/3)iPG  GP

JE‘I‘ p— p— p— 5

In (4/3)tb° b

Introduce k* = (¢l — GKr)/(EL,) then ¢ + p2¢" —

a similar form to a beam—column equation. The general %Olutl{)ﬂ of this
equation is given by ¢ = asin kz + b cos kz + ¢z + d. Applying boundary
conditions of a simply supported column gives ¢ = asin k/ = 0, from

which kf = nm. Substituting for k yields

1 n2ar>
o GK —UFI,
? 10( TTm )

FLEXURAL-TORSIONAL BUCKLING

C
Consider an unsymmetrical section shown in Figure. &X N
S 20

The x and y are principal axes, and X, and Yy, are the
coordinate of the shear center ‘ CLo

S measured from the centroid C. During buckling the centroid translates
to C' and then rotates to C"’. Therefore, the final position of the centroid « -k
is #+yod and v — xp¢p. If only central load P is applied on a smlply

supported column, the bending moments with respect to the principal

i

dXES are

My = —P(v—x0¢) and My = —P(u+ )

The sign convention for M, and M, is such that they are considered positive

when they create positive curvature

EI\.L’” = +M, = —P(v— JCn(fJ)

Ell’ = +My = —P(u+y09)

Consider a small longitudinal strip of cross section tds defined by
coordinate x and y as was done in the case of pure torsional buckling. The

components of its displacements in the - x and y directions during buckling
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the products of the compressive force acting on the slightly bend element,
otds and the second derivative of the displacements give a fictitious
lateral load in the x- and y-directions of intensity

({2
_ (mds)F[u + (vg — )¢

~

7

— [(Tm's)dtg[v — (x0 — x) ]

~

These fictitious lateral loads produce twisting moment about the shear
center per unit length of the column of intensity

[+ (o — )8 (vo — »)

&

d
dm, = —(atds)d

2
2

—i—(o’ta’s) diz[v — (xo — x)(,b](xo — x)

Integrating over the entire cross-sectional area and realizing that

0'/ tds = P, /xrds :/)frds =0, /)fzrds = I
A A A A

[q tds = L, Iy= L + L+ A(xj +17)

one obtains
" " "
My = /dmz = Plxov’ —yu') — rgpff)
A
2
where 17 = IO/A.

EL,¢" — (GKr — 12)¢" — xo P’ + yo P = 0

TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING UNDER
THRUST AND END MOMENTS

Consider the case when the column is subjected to bending moments M,

and M, applied at the ends in addition to the concentric load P The bending
moments M, and M, are taken positive when they produce positive
curvatures in the plane of bending. It is assumed that the effect of P on the
bending stresses can be neglected and the initial deflection of the column
due to the moments is considered to be small. Under this assumption, the
normal stress at any point on the cross section of the column is independent

of z and is given by
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P My Myx
g = ——— —_—
A L

As is customarily done in the elastic buckling analysis, any prebuckling
deformations are not considered in the adjacent equilibrium condition.
Additional deflections # and v of the shear center and rotation ¢ with respect
to the shear center axis are produced during buckling, and examination is
being conducted on this new slightly deformed configuration. Thus, the
components of deflection of any longitudinal fiber of the column are

u+ (yg —y)¢ and v — (xg — x)¢. Hence, the fictitious lateral loads and
distributed twisting moment resulting from the initial compressive force in
the fibers acting on their slightly bent and rotated cross sections are obtained

in a manner used earlier.
¥’

= = [ (o i+ Gy =)0l

aTE

& = —[q (crm's)@[v — (%0 — x)¢]

ol

2

me = — [ (o5l + (o = )40 —)

a1 d>¢
4x = —p@ — (Pyg M«c)&?
d*v ¢
= Pt (P = M)
du d*v ¢
m, = —(Pyy — fo)@ + (Pxp — M})@ — (M8 + My, + fSP)E

where the following new cross-sectional properties are introduced:

1
B, =— f}ﬂ3dd+fx2JJdA — 2y
' L.\ Ja A
1 3, 2.
B, = — xdA+ | xy dA | — 2xg
L\ Ja A
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The three equations for bending and torsion of the column are
Ebu + P+ (Pyg — M)#" = 0
ELv" + P — (Pxo — My)¢" = 0

EL,¢" — (GKT — My, — MyB, — 5P)¢" + (Pyg — My )u/”

T — (Pxo — M, =0 | constant
COcrnviErS. relive, uie oliuudl vdiue> Ul ule exteriidal 1uiceS can be
computed for any combinations of end conditions. If the load P is applied
eccentrically with the coordinate of the point of application of P by e, and
e, measured from the centroid, the end moments become M, = Pe, and M,
= Pe,. Then

ELu” + Pu" + P(yy — &))" = 0
ELs"Y + P — P(xg — e )@ = 0
EL¢" — (GKr — Py, — PeufB, — 15P)¢" + P(yy — ey )ut”
— P(xg —e )" =0

If the thrust P acts along the shear center axis (X, = € and y, = e,), Egs.
above become very simple as they become independent of each other.
The first two equations yield the Euler loads, and the third equation gives
the critical load corresponding to pure torsional buckling of the column.

If the thrust becomes zero, one obtains the case of pure bending of a
beam by couples My and M, at the ends. Equations above became:

EI},u"" — MG" =0
ELv" + My¢" = 0
EL,¢" — (GKr — M8, — MyB,)¢" — Ml + Myp” = 0

Assume the x-axis is the strong axis. If M, = 0, then the critical lateral
torsional buckling moment can be computed from

Ef},r.f'” — Mp" =0

El,¢" — (GKT — M 8,)¢" — Mal/" = 0
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If the ends of the beam are simply supported, the displacement functions
for 4 and ¢ can be taken in the form

Asi we (f) B wz
u = Asin — = Bsin —
¢ {

Substituting derivatives of the displacement functions, one obtains the
following characteristic polynonual for the critical moment:
) 2
7w EL, B
§2

Incorporating the following notations

b _ T2EI, s = 2 cir + EI 72
J-’ gg 1 ¢ f[% T !{J’gz

M? 4 Py M, — i P,Py = 0

p_}’ﬁx p}’lﬁx 2 2
M\:H: —_— 2 ﬂ:\/( 2 +fﬁp_]’:lp¢;

“

If the beam has two axes of symmetry, £, vanishes and the critical
moment becomes

> ,ELm 1 i
2 2

0 £
T 2

where * sign implies that a pair of end moments equal in magnitude but
opposite in direction can cause lateral-torsional buckling of a doubly
symmetrical beam. In this discussion, considerations have been given for
the bending of a beam by couples applied at the ends so that the normal
stresses caused by these moments remain constant, thereby maintaining
the governing differential equations with constant coefficients. If a beam
Is subjected to lateral loads, the bending stresses vary with z and the
resulting differential equations will have variable coefficients, for which
there are no general closed-form solutions available and a variety of
numerical integration schemes are used.
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