Theory of Elastic Stability LTB of Columns

LATERAL-TORSIONAL BUCKLING

INTROUDACTION

A transversely (or combined transversely and axially) loaded member
that is bent with respect to its major axis may buckle laterally if its
compression flange is not sufficiently supported laterally. The reason
buckling occurs in a beam at all is that the compression flange or the
extreme edge of the compression side of a narrow rectangular beam,
which behaves like a column resting on an elastic foundation, becomes
unstable. If the flexural rigidity of the beam with respect to the plane of
the bending is many times greater than the rigidity of the lateral bending,
the beam may buckle and collapse long before the bending stresses reach
the yield point. As long as the applied loads remain below the limit value,
the beam remains stable; that is, the beam that is slightly twisted and/or
bent laterally returns to its original configuration upon the removal of the
disturbing force. With increasing load intensity, the restoring forces
become smaller and smaller, until a loading is reached at which, in
addition to the plane bending equilibrium configuration, an adjacent,
deflected, and twisted, equilibrium position becomes equally possible.
The original bending configuration is no longer stable, and the lowest
load at which such an alternative equilibrium configuration becomes
possible is the critical load of the beam. At the critical load, the
compression flange tends to bend laterally, exceeding the restoring force
provided by the remaining portion of the cross section to cause the
section to twist. Lateral buckling is a misnomer, for no lateral deflection
Is possible without concurrent twisting of the section.

DIFFERENTIAL EQUATIONS FOR LATERAL-TORSIONAL
BUCKLING

If transverse loads do not pass through the shear center, they will induce
torsion. In order to avoid this additional torsional moment (thereby
weakening the flexural capacity) in the flexural members, it is customary
to use flexural members of at least singly symmetric sections so that the
transverse loads will pass through the plane of the web as shown in
Figure.
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The section is symmetric about the y-axis, and u and v are the
components of the displacement of the shear center parallel to the axes &
and #. The rotation of the shear center ¢ is taken positive about the z-axis
according to

the right-hand screw rule, and the z-axis is perpendicular to the &z plane.
The following assumptions are employed:

1. The beam is prismatic.

2. The member cross section retains its original shape during buckling.

3. The externally applied loads are conservative.

4. The analysis is limited within the elastic limit.

5. The transverse load passes through the axis of symmetry in the plane of
bending.

In the derivation of the governing differential equations of the lateral-
torsional buckling of beams, it is necessary to define two coordinate
systems:one for the undeformed configuration, X, y, z, and the other for
the deformed configuration &, #, ¢ as shown in Figure above. Hence, the
fixed coordinate axes, X, Yy, z, constitute a right-hand rectangular
coordinate system, while the coordinate axes ¢& 7, ¢ make a pointwise
rectangular coordinate system as the ¢ axis is tangent to the centroidal
axis of the deformed configuration. As the loading will constitute the
conservative force system, it will become necessary to relate the applied
load in the fixed coordinate system to those in the deformed
configuration. This can be readily accomplished by considering the
direction cosines of the angles between the axes shown in Figure. These
cosines are summarized in Table below. The curvatures of the deflected
axis of the beam in the xz and yz planes can be taken as d’u=dz® and
d’v=dz®, respectively for small deflections. M, and M, are assumed
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positive when they create positive curvatures; El, "= M, and El, & "=
M.
Since column buckling due to the axial load and the lateral-torsional
buckling of beams under the transverse loading are uncoupled in the
linear elastic first-order analysis, only the transverse loading will be
considered in the derivation of the governing differential equations.
Excluding the strain energy of vertical bending prior to buckling, the
strain energy in the neighboring equilibrium configuration is

£
U = ;/ [Efy(u”)z + EL(¢")* + GK7(¢')* | d=
0

The load w,, is lowered by a net distance of y, + [ay|(1 — cos ¢). Since ¢

is small, 1 — cos ¢ = ¢>/2. The vector distance @, is measured from the
X y z
£ 1 ¢ —du/d=
n —q¢ 1 —dv/dz
g du/dz dv/dz 1

shear center to the transverse load application point. Hence, the loss of the
potential energy of the transverse load w,, is

£ — £
dy 2
Vi = — wyydz +—= | uypp dz
0 2 Jo

It is noted that the sign of y; is positive and ay is negative as shown in
Figure.
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It should be noted that the position of the transverse load ay affects the
lateral-torsional buckling strength significantly. When the load is
applied at the upper flange, it tends to increase the positive rotation of the
cross section as shown in Figure, thereby lowering the critical load. This
could result in a significantly lower critical value than that when the load
Is applied at or below the shear center. Although the difference in the
critical values is gradually decreasing following the increase of the span
length, the position of the
transverse load should be !
properly reflected whenever it is M, Y Y Y Y Y Yy M, +dM,_
not negligibly small. The first C I A _i

Wy,

term of Eqg. above can be N N 7R
expanded by integration by parts 0|
using the relationships that can gl 2 o 0,,+4d0,,

be derived from Figure. y

ZFJ’ = 0 = —Quy + Quy +dQuy +wydz

dey
dz

= — ’{,{)‘y

dz
> My =0 =+M,— wydz— — (Quy + dQuy)dz — My, — dMj

d M, b

= —Qw

Hence,

£ £ - £
dQ, , dy
— K a'z = Y ﬂ'-: :L@‘/P _/ —sa'z
‘/t; wWyy, ‘/t; . Y, wyyj_]o ; wa -
dyp £ Py
= +M - A My

Reflecting any combination of the geometric and natural boundary

conditions at the ends of the beam, the two terms in the above equation
indicated by slashes must vanish. Therefore,

£ 42 — £
Y a
0 < J0

=
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A
The term dy,=dz® represents the curvature in the yz Y
plane; all deformations being small, the curvatures in A
other planes may be related as a vectorial sum indicated ¢ \y
in Figure. ys =V COS ¢+U sin ¢ a2, \
7 —» A
& s 1 "o 17 17 “ \\
T2 =V cosp+u sinp =v + du J_’_’_J
u"\’k’ A
Therefore, the loss of potential energy is Nl __4d
¢ d7%s
Viy = / My i )dz. —/ wy(ﬁ?'df, dz’

/ijv dz — /%x(bu"’a’;, —/ t,quﬁ dz

The above equation is the change of potential energy from unloaded to the
buckled state. Just prior to buckling, ¢ = u” = 0 and the static potential energy is

’
— / My, dz
S0

Hence, the loss of potential energy due to buckling (in the neighboring
equilibrium) 1s

£ Y 7 £ i
Viy = —j(; M, Pu dz—k?y/[; @~ dz

The total potential energy functional becomes
H=uU+Vv

£
_ E/ [EIy(u”)?'Jr EL(¢")’+ GKT((,b")z} dz

2

et

£ p £ 5
n o, Ay 2
_‘/0 My, pu +;./0 wyp~dz

In the case when the transverse load wx is considered for a similar
derivation, the Figure below is used, and a parallel process can be
applied. By virtue of assumption 5, the beam cross section must be
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doubly symmetric in order to accommodate both wy

W

-

___centroidal axis  —, |

I

and  wy
simultaneously, and as a consequence, biaxial bending is uncoupled.

The load wy is lowered by a distance xs + la,l(1-cosg)as shown in Figure.

Since ¢ is small, 1-cos¢g=¢*/2. The
vector distance a, is measured from
the shear center to the transverse load
point. Hence,

£ v £
2
Ve = — wiexsdz + — we@“dz
0 2 Jo

It is noted that the sign of X is
positive and a, IS negative as is
shown in Figure. The first term of '
Eqg. can be expanded by integration C
by parts using the relationships that
can be derived from Figure.

Mb_\.

ZP = —Qux + wa—I_dqu—i_wxdz =0

dQWX _
dz W
dz
Z My = Ty + 1wy fL—
dﬂffgjy
1= = T wy

LY Y Y Y Y Yy

I.

A

ol

F 3

e

dz

»

+ (Qua + dQlu.\‘) dz + ﬂ"fby + dﬂ"fb}' -

Q‘H—'.T + dQWI

Norz

Mb_‘, + de}.

0
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£ £ £
de - / dx_g
— Wyex.dz = [ xdz = x| — Qur—dz
/o Jo d=z JO Jo dz
dx P2y
= + T — Mby ?dz
A0

Reflecting any combination of the geometric and natural boundary
conditions at the ends of the beam, the two terms in the above equation
indicated by slashes must vanish. Therefore,

dux_c ¢ 2
/ Mby dz ? e~ dz
dz* 2 .Jo

The term d?x,=dz® represents the curvature in the xz plane; all
deformations being small, the curvatures in other planes may be related as
a vectorial sum .

d’x
y ,}S = ' cosp— " sinp=u" — "
2

Therefore, the loss of potential energy is

£ - £
Vi = = [ Myl = 9tz + 5 [ g2
0 2 Jo
£ £ v £
—/ Mwuna’z—l—/ M,rjy(}'w”a'z—i—_x/ wx(f)zdz
0 0 2 Jo

The above equation is the change of potential energy from unloaded
to the buckled state. Just prior to buckling, ¢ = +// = 0, and the static

potential energy is
£
7"
- / iju
0

Hence, the loss of potential energy due to buckling (in the neighboring
equilibrium) is

2 f f
I//:g,lx — / \Ijbd)f”f{zu i “J‘_‘Lq[:lEdZ
Jo 2

JO

For biaxial bending, the total energy functional given by:

At prof 3. Obheelan M. FCma



Theory of Elastic Stability LTB of Columns

1 £
=3 / [Efy (w’") > L EL (v”) * 4 EI, (q&”) >+ GKr (q.')") 2
0

£ £ £
1
— / ij(bu"dz + f ng(ﬁv“dz + 5/ (ﬁxwx + ayf'f’;,:) ¢'2] dz
0 0 0

£

= / P(u"", v ¢, ¢, (ﬁ”) dz “doubly

0 -
SYHIIEUIL STLUUID Wy VvIlwe Ul assuliipuull 9. 17 win we sdtionary

(minimum) if the following Euler-Lagrange equations are satisfied:

du  dz= 0 | d=2 ou dz

9 d= 00 a2 a0 d=2

OF d OF d°> OF

OF d OF d* OF W A
+ = 0 EIyH ) ij¢ =

OF d 0F d*> OF N
— 0  ELJ" + My | =

0

0

EL,¢"

— — 7T — = 0
dp dz d¢"  dz2 d¢”
Noting that
F F F ,
u 0 ol 0 oul Bl = Myt
. . . dP _ M I — —
Substituting the followings 5 = —Mirt” + My + { @xwy +aywy | @
into third Eq.
aF ; OF
oy~ KT g =
one obtains

Efw(,bfu - GKT(;bH - ij“” + MJJJVH + (Ex wy + E)’“ﬁ’) ¢' =0

These Equations are general differential equations describing the lateral-

torsional buckling behavior of prismatic straight beams.
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GENERALIZATION OF GOVERNING DIFFERENTIAL
EQUATIONS

If a wide flange beam is subjected to constant bending moment My, only,
the three general governing differential equations are reduced to:

2

&

, d
EIyHm — E(qu_’)) i 0
ELu" — My = 0
L 2)

EIWQS”" — GKT(}T' + ""V]{J!Jx”r _ ﬂ'fbx"” + / A"‘L"thx H”d&" = 0
J0

Integrating the first equation of Eqgs. (1) twice, the second equation once,

and applying in the second equation integration by parts (fﬁd}lxu"‘ra'z =
My — fu"be"a'z = My — My u —I~fﬂzﬁjx”udz), one obtains

E'Iyu” + My, = Az+ B

£
EL,¢"" — GKr¢’ + My’ — My, u —I—/ M ud= = C ...(3)
0

where A, B, and C are arbitrary integral constants. These integral
constants, as evident from the statically meaning of the transformation of
Egs. (1) into Egs. (3), are respectively equal to the variations of the
transverse shear force Q, acting in the initial section z = 0 in the direction
of the axis x, of the bending moment M, with respect to the axis y, and of
the torsional moment M, with respect to the axis z. If the variations of the
statical factors, Qy, My, and Mz vanish in the initial section z = 0, which is
the case in a cantilever at the free end, then the integration constants, A,
B, and C are equal to zero and Egs. (3) reduce to Egs. (2). If the beam has
at the ends a rigid or elastic fixing to restrain translation and rotation, the
integration constants, A, B, and C will not vanish and the general Egs. (1)
must be used.

LATERAL-TORSIONAL BUCKLING FOR VARIOUS LOADING
AND BOUNDARY CONDITIONS

If the external load consists of a couple of end moments so that the
moment remains constant along the beam length, then Egs. (1) become
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ELu"” —M¢" = 0
P OPPPPPU 4
EL.¢" — GKr¢" — Mi" = 0 @

Equations (4) are a pair of differential equations with constant
coefficients. Assume u = A sin zz/l and ¢ = B sin zz/l. It should be
notedthat the assumed displacement functions are indeed the correct
eigen functions. Therefore, one expects to have the exact solution.
Differentiating the assumed functions, one obtains

, T wz o, m\2_ wz m\3 7wz
u = A?CDST, w = —Al—| sin—, u = —A|—-| cos—

14 ¢ 14 ¢’
Y (R R
H = 7 smﬁ

;_opt  TE oy Ezf m o E3 Tz
¢ = fcosﬁ,e = B(E)smﬁ,(ﬁ = B(E)cosﬁ,

Substituting these derivatives into Equations (4) yields:

A2
(E) EI, M
a2
M 7 ) Elw+ GKr

Solving this characteristic equation for the critical moment gives

|
o

v
M, = E\/EI"’(EIMQ /02 + GKr)

In the case of a uniformly distributed load w, , the bending moment in

a simple beam as shown in Figure below becomes M(z)= wyz(I-z)/2. For
this load, Egs. (1) become:
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) 1
EL" —[—%[:—:(E —2)p]" =0

EL¢" — G +22(l -2 =0 oo

Equations (6) are coupled differential A
equations with variable coefficients.
integrated Eqs. (6) by the method of

o g

infinite series. The critical load (wyl)., is
given by:

¥1+/EL GKr

(“’_]’E)rr — Eg

The coefficient v depends on the parameter

GKpf?
m =
EIL,

k.

Table 1 gives a series of values of y; for a wide range of combination of
the load positions and m for beams with doubly symmetric sections.

Table 1: Values of y, for simply supported I-beam under uniformly

distributed load

m
Load at 0.4 4 8 16 32 64 128 256 512
TF 92.1 359  30.1 271 25.9 257 26.0 264 269
SC 1442 529 425 36.1 325 305 294 289 286
BF 226.0 782 60.0 482 408 363 334 316 305
Notes: TF = Top flange, SC = Shear center, BF = Bottom flange.

If the beam is loaded by a concentrated load

|

at its mid-span as shown in Figure, the 4 i |

bending moment becomes M,(z) = Pz/2 For

¢

-

this load, Egs. (1) become
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P
Bl +(2¢") = 0
; p
Bl" — GKrd! + 2z =0 (9)

Integrated Egs. (9) by the method of infinite series. The critical load P, is
given by:

The stability coefficient y, depends on the parameter m defined by Eq.
(8). Table 2 gives a series of values for a wide range of combination of
v, and m for beams with doubly symmetric section.

Table 2: Values of y, for simply supported I-beam under concentrated
load at the mid-span

m
Load
at 0.4 4 8 16 32 64 128 256 512
TF 50.7 19.9 16.8 15.3 14.7 14.8 15.0 15.4 15.7
SC 86.8 31.9 25.6 21.8 19.5 18.3 17.7 17.3 17.1

BF 1488 50.9 38,7 308 258 227 207 194 18.6

Notes: TF = Top flange, SC = Shear center, BF = Bottom flange.

If both ends fixed beams are subjected to a uniformly distributed load, the
critical loads may be expressed by:

¥3+/EL GKr

(w}‘ F) a fjg

The stability coefficient y; depends on the parameter m defined by Eq.
(8). Table 3 gives a series of values for a wide range of combinations of
y3 and m for beams with doubly symmetric sections.

Table 3: Values of y; for both ends fixed I-beam under uniformly
distributed load

m
Load at 0.4 4 3 16 32 64 128 256 512
TF 610.6 206.8 156.7 125.0 107.0 98.9 97.1 98.7 101.6
SC 1316.8 434.1 3204 2444 1954 165.1 1468 135.8 128.8
BF 2802.0 900.3 6472 482.0 352.6 272.7 220.0 185.4 1624

Notes: TF = Top flange. SC = Shear center. BF = Bottom flange.
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If beams with simple-fixed end conditions are loaded by a concentrated
load, the critical load may be expressed by

Y4+/ELGKr

Prr — tﬂ

The stability coefficient y, depends on the parameter m defined by Eq.
(8). Table 4 gives a series of values for a wide range of combinations of
v4 and m for beams with doubly symmetric sections.

For beams with simple-fixed end conditions subjected to a uniformly
distributed load, the critical load may be expressed by:

vs+/EL GKr

(“’}‘E)cr — 72

Table 5: Values of ys for simple-fixed I-beam under a uniformly
distributed load

m
Load at 0.4 4 8 16 32 64 128 256 512
TF 259.0 92.4 73.0 61.6 56.0 542 543 553 565
SC 468.3 1604 1223 97.8 82.8 740 690 66.1 643
BF 838.8 2759 203.0 1538 121.4 1006 87.3 787 73.0
Notes: TF = Top flange, SC = Shear center, BF = Bottom flange.

If beams with simple-fixed end conditions are loaded by a concentrated

load, the critical load may be expressed by:

Ye+/ EL GKT
(2
The stability coefficient y¢ depends on the parameter m defined by Eq.
(8). Table 6 gives a series of values for a wide range of combinations of
ve and m for beams with doubly symmetric sections.

Pfr:

Table 6: Values of yq for simple-fixed I-beam under concentrated load at
the mid-span

m
Load at 04 4 3 16 32 64 128 256 512
TF 129.1 46.1 365 309 282 274 277 285 294
SC 257.4 88.0 67.0 535 451 40.2 373 35.6 345
BF 499.6 160.6 118.1 892 70.0 57.4 492 438 402

Notes: TF = Top flange, SC = Shear center, BF = Bottom flange.
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LATERAL-TORSIONAL BUCKLING BY ENERGY METHOD

The determination of the critical lateral-torsional buckling loads by
longhand classical methods is very complex and tedious, particularly for
non-uniform bending, as this will result in a system of differential
equations with variable coefficients. In this section, the Rayleigh-Ritz
method will be used to determine approximately the critical lateral-
torsional buckling loads. In any energy method, it is required to establish
expressions for the strain energy stored in the elastic body and the loss of
potential energy of the externally applied loads. It is relatively simple to
come up with the expression for the strain energy by:

U= (]fl:l‘/!IJTa;‘dv

where g1 = transpose of the stress vector, ¢ = strainvector, and v= volume of
the body. Although the loss of the potential energy of the applied loads is
simple in concept as being the negative product of the genemlized force and
the corresponding deformation during buckling, the expression for the
corresponding deformation usually requires considerable geometric analyses.

1. Uniform Bending
Consider a prismatic, simply supported doubly symmetric (for simplicity)
I-beam subjected to a uniform bending moment M, as shown in Figure
below. The strain energy stored in the beam during buckling consists of
two parts: the energy associated with bending about the y-axis and the

eneri , | e 1
U = —] EI},(u”)zdz-J——f GKr(¢')d= +—/ EL,(¢") dz
2 0 2 0 2 0

Pl

Pl

For a beam subjected to pure bending, the loss of potential energy V is

equal to the negative product of the app — —opg ¢ and the
corresponding anales diie to hucklina. Hence '
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where @ is the angle of rotation about the x-axis at each end of the beam
as shown in Figure. By the definition of the simple support, neither
twisting of the beam nor lateral deformations of the flanges is allowed at
the support. Hence, the top flange deflects more than the bottom flange,

as illustrated in Figure below. Thus, the angle & is: 1t
A= f (1)) dz
) = ‘ﬁ! - ‘ﬁh 0
h
. . £
where h is the depth of the cross section. A, = 1 / (u])2d=
2 4 D h

where u; and uy are the lateral displacements of the top and bottom of the

web, respectively,
h h

u; = r1—|—§q{) up = rf—E(,'f}
1 £ , h , 2. _1 £ , h , 2
ﬁ! = I/[; (‘M +§('b) dz ﬁlfj = 1‘/[] i —5(}{) dz
1 £ £
0 = —f (') (¢")d=z V = —M.f (u/)(¢)dz
2J0 0
nm=u+Vv

£ £
1 1
= - / EL (") dz + / GKr(¢')dz + > A EL,(¢")dz

It is now necessary to assume proper buckled shapes # and ¢. Sine
functions are selected for both # and ¢ for the lowest buckling mode as
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mz . Mz

= A sirlT ¢ = Bsin 7

Since M, and M, are defined to be positive when they produce positive
curvature, M,=Elv" and M, =El,u". M, =¢ M. Thus

> M,
(lf) — &”” Jq — _B 3 -
M, T EY
. . BE? M, 2
The assumed function for u can now be written  y = —— — Sin—
= EI, ¢
H=U+V
1 B2M2 ff = 1 w2t =
= — = sin” —dz+—GK7tB " — | cos”—d=
2 EI, /D g ErRORTE g | ¢
4 pf 2502 pf
T M M-B mZ
4+ —EI,B>— [ sin®? —dz— = cos” —dz

Since

e Ut — 1/ GKyB7? +EIH.BZ’IT4 M2B*
o T4 ¢ 2 EI,

dn dUu+Vv)
dB dB 2

= ()

B{GKrm® EL,m* M2

GKrn®  ElL,nt M2
— X =)
l 6 ElL

M., = i%/ EL(GKr + n2EL,/2)
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2. One Concentrated Load at Mid-span

Consider an element dz of the beam at a distance z from the left support
as shown in Figure. Due to lateral bending, there is a small vertical
translation du at the support
between the tangents drawn to the
elastic curve at the two end points
of the element. The value of the
translation is, according to the
moment-area theorem, given by:

.'1’1-11
du = zdz
E

.
For small deformations, the increment in the vertical displacements dv
corresponding to du is: M
dv = ¢pdu = —L pzd=
EL,
Thus the vertical displacement v, at the shear center at mid-span is

£/2 92 g
vy = j dv = ] —}(f)za’:«:

62 5.2 42

P P=¢

M, = M,¢p = —z¢ vy = / dz
? 2 o 2EI

If the load P is applied at a distance “@” above the shear center, an
additional lowering of the load must be considered. If ¢ is the twisting
angle of the member at mid-span, the additional lowering of the load is:

i

=~
2 [

a(1l — cosgpy) =

ol

and an additional loss of the potential energy 1s

Pagh?
2

i)

AV =
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H=uU+Vv
PE ffZ

1 £ 1 £
= _ | GKr(d' 2d3+—[ ElL,(¢")dz — 22 4=
[ orr@)e s [ B - [

Assume ¢ to be of the form

Tz
¢ = Bsin—
‘ ¢
PR [t 5 . 2 M2 GKrB*n? ¢ Mz
U+ V = ———— z"sin” —dz + ———— s d=z
N iEL J, TN T T T /D T
EL Bt (¢ =z
—— | sin®—dz
Tz A
Substituting the definite integrals
£/2 %
! “y "_IWE E -y .
sn T —dz = T+ 6
/{: Sin 7 48WE{T )
] / )
5 T2 5 W2 ¢
/ sin® —dz = / cos"—dz = —
0 4 0 4 2
PB*e GKrB*7® EIL,B*w?
UtV = ————(m +6)+ +
( ) 44 43

192EL, 2

At the critical load, the first variation of U + 7 with respect to B must

vanish. Thus,

d U+ V) B PP (%4 6) + GKrm +EIH.1'T4
dB 2| 48ELn? ’ / [

which leads to
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3. _Uniformly Distributed Load
The procedure described above for
the case of a concentrated load at
Mid-span can also be used when the
I-beam  carries a  uniformly
distributed load. However, the u, "
expression for the loss of potential
energy of the externally applied load
must be determined.

Assume ¢b to be of the form

0
Jn"f:l
mz
¢ = Bsin? Vo = ‘/HEE—;"@’GIQ

vg = uggp, v1 = i, and v =

where Upand u, are the lateral displacements of the beam at mid-span and
at a distance z from the support, respectively, and u, is equal to uy
subtracted by u; as shown in Figure.

Substituting the expression for the moment M, and the rotation ¢, the
vertical displacement of the beam at nudspan takes the following form:

W] N2 2 pff2 a
— B
i

EL Jep2 2 ‘ 2EI, 7
”"1'5264 st 1277 + 1 44)
) = ——— AW 2 A
" = 768w ElL"
= M, w, B2 [~ e
¥ 'y 2 _ 5
1y = ;—zd)d’g: / c —E?'g ¢ — z)sin— ﬂfg
wyffi2
vy =
7687 EI,

5atet — 48P — 16837 2 + 120472 — 96271222 cos

4 + 4827222 + 144¢° c052$ — 968t cm?sin?

mz mz mz
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At the critical load, the first variation of U + " with respect to B must
vanish. Thus,

aBUT =5 ~ 120ElL*
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¢ %

which leads to
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H.W. Show that the critical load in Lz \
case of two concentrated applied
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DESIGN SIMPLIFICATION FOR LATERAL-TORSIONAL
BUCKLING

The preceding sections determined the critical loading for beams with
several different boundary conditions and loading configurations. A
simply supported wide flange beam subjected to uniform bending has
been shown to be in neutral equilibrium (unstable) when the applied
moment reaches the value

T i EL,m?
"'MLT = E EI}: erT + Ez

The critical concentrated load applied at mid-span of the same beam has
been found by the energy method to be

p, = 2 g (G4 B
« =\ mre o\ Tt

Likewise, the critical uniformly distributed load on the same beam has
been found to be

(w,0) = 23 30 = ok +Equr2
e T e\ e P\ T T2

Pl o EI,m?

and

(W}:E)H E‘? s E‘rw?rz
-'-'Wrr = 3 = 113E E..l{],: GKT+ gz

Examination of these equations reveals that it may be possible to express
the critical moment in the form

|'
T o El,m2
M, = a=|EL| GKy +
ey

where the coefficient a is equal to 1.0 for uniform bending, 1.13 for a
uniformly distributed load, and 1.36 for a concentrated load at applied at
mid-span.
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Various lower-bound formulas have been proposed for a, but the most
commonly accepted are the following:

M M\ 2
C, = 1.75 + 1.{)5(?‘) 403 (—‘) <23

Mo

Their original equation has been modified slightly to give the following:

o 12.5 My o
b SMo + 3Ma4 + 4Mg + 3Mp

Mg is the absolute value of the moment at the centerline, M and Mc are
the absolute values of the quarter point and three quarter-point moments,
respectively, and Mya IS the maximum moment regardless of its location
within the brace points. The unbraced length L, required for compact
sections to reach the plastic bending moment M, is

L 1.7€ E
—_ i it -
v 'J?J_ G_y

where E = elastic modulus, r, = radius of gyration with respect to the weak

axis, and ¢, = null specified minimum yield stress.

The limiting value of the unbraced length for girders of compact sections
to buckle in the elastic range is given by L,. In the presence of residual
stress, the maximum elastic critical moment is defined by

M, = Si(oy —0,) = 0.78:0, = 0,5«

where S, = elastic section modulus about the x-axis, o, = residual stress
0.3 g, for both rolled and welded shapes.
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. /LEL
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e —

where I, = th%/4 for doubly symmetric I-beams with rectangular
flanges and ¢ = hy+/I,/I,/2 and hence, ¢ = 1.0 for a doubly symmetric

I-beam.

L = 195 /X1 4 1+ 6767 (2% Sio ’
~ 070,V Seho PPI\TE Kre

when L, < L, <L, , the nominal flexural strength M, of compact sections
is linearly interpolated between the plastic moment M, and the elastic
critical moment M, = 0:7S,0, as

- L
L,—L,

Lateral-distortional buckling is basically a combined mode of lateral-
torsional buckling (global buckling) and local buckling, and the
derivation of a closed form solution is, therefore, not straightforward.
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