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LATERAL-TORSIONAL BUCKLING                                     

INTROUDACTION 

 

A transversely (or combined transversely and axially) loaded member 

that is bent with respect to its major axis may buckle laterally if its 

compression flange is not sufficiently supported laterally. The reason 

buckling occurs in a beam at all is that the compression flange or the 

extreme edge of the compression side of a narrow rectangular beam, 

which behaves like a column resting on an elastic foundation, becomes 

unstable. If the flexural rigidity of the beam with respect to the plane of 

the bending is many times greater than the rigidity of the lateral bending, 

the beam may buckle and collapse long before the bending stresses reach 

the yield point. As long as the applied loads remain below the limit value, 

the beam remains stable; that is, the beam that is slightly twisted and/or 

bent laterally returns to its original configuration upon the removal of the 

disturbing force. With increasing load intensity, the restoring forces 

become smaller and smaller, until a loading is reached at which, in 

addition to the plane bending equilibrium configuration, an adjacent, 

deflected, and twisted, equilibrium position becomes equally possible. 

The original bending configuration is no longer stable, and the lowest 

load at which such an alternative equilibrium configuration becomes 

possible is the critical load of the beam. At the critical load, the 

compression flange tends to bend laterally, exceeding the restoring force 

provided by the remaining portion of the cross section to cause the 

section to twist. Lateral buckling is a misnomer, for no lateral deflection 

is possible without concurrent twisting of the section. 

 

 

DIFFERENTIAL EQUATIONS FOR LATERAL-TORSIONAL 

BUCKLING 

 

If transverse loads do not pass through the shear center, they will induce 

torsion. In order to avoid this additional torsional moment (thereby 

weakening the flexural capacity) in the flexural members, it is customary 

to use flexural members of at least singly symmetric sections so that the 

transverse loads will pass through the plane of the web as shown in 

Figure.  



 LTB of Columns                                         Theory of Elastic Stability  

 
 

Asst. prof. Dr. Sheelan M. Hama 

 

 

 

 

 

 

 

 

 

 

The section is symmetric about the y-axis, and u and v are the 

components of the displacement of the shear center parallel to the axes ξ 

and η. The rotation of the shear center ϕ is taken positive about the z-axis 

according to 

the right-hand screw rule, and the z-axis is perpendicular to the ξη plane. 

The following assumptions are employed: 

1. The beam is prismatic. 

2. The member cross section retains its original shape during buckling. 

3. The externally applied loads are conservative. 

4. The analysis is limited within the elastic limit. 

5. The transverse load passes through the axis of symmetry in the plane of 

bending. 

In the derivation of the governing differential equations of the lateral-

torsional buckling of beams, it is necessary to define two coordinate 

systems:one for the undeformed configuration, x, y, z, and the other for 

the deformed configuration ξ, η, ϛ as shown in Figure above. Hence, the 

fixed coordinate axes, x, y, z, constitute a right-hand rectangular 

coordinate system, while the coordinate axes ξ, η, ϛ make a pointwise 

rectangular coordinate system as the ϛ axis is tangent to the centroidal 

axis of the deformed configuration. As the loading will constitute the 

conservative force system, it will become necessary to relate the applied 

load in the fixed coordinate system to those in the deformed 

configuration. This can be readily accomplished by considering the 

direction cosines of the angles between the axes shown in Figure. These 

cosines are summarized in Table below. The curvatures of the deflected 

axis of the beam in the xz and yz planes can be taken as d
2
u=dz

2
 and 

d
2
v=dz

2
, respectively for small deflections. Mx and My are assumed 
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positive when they create positive curvatures; EIx η"= Mx and EIy ξ "= 

My.  

 Since column buckling due to the axial load and the lateral-torsional 

buckling of beams under the transverse loading are uncoupled in the 

linear elastic first-order analysis, only the transverse loading will be 

considered in the derivation of the governing differential equations. 

Excluding the strain energy of vertical bending prior to buckling, the 

strain energy in the neighboring equilibrium configuration is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is noted that the sign of ys is positive and ay is negative as shown in 

Figure.  
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It should be noted that the position of the transverse load ay affects the 

  lateral-torsional buckling strength significantly. When the load is 

applied at the upper flange, it tends to increase the positive rotation of the 

cross section as shown in Figure, thereby lowering the critical load. This 

could result in a significantly lower critical value than that when the load 

is applied at or below the shear center. Although the difference in the 

critical values is gradually decreasing following the increase of the span 

length, the position of the 

transverse load should be 

properly reflected whenever it is 

not negligibly small. The first 

term of Eq. above can be 

expanded by integration by parts 

using the relationships that can 

be derived from Figure. 
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   The term d
2
ys=dz

2
 represents the curvature in the yz 

plane; all deformations being small, the curvatures in 

other planes may be related as a vectorial sum indicated 

in Figure.  ys = v cos ϕ+u sin ϕ  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case when the transverse load wx is considered for a similar 

derivation, the Figure below is used, and a parallel process can be 

applied. By virtue of assumption 5, the beam cross section must be 
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doubly symmetric in order to accommodate both wx and wx 

simultaneously, and as a consequence, biaxial bending is uncoupled. 

  

 

 

 

 

 

 

 

 

The load wx is lowered by a distance xs + ǀāxǀ(1-cosϕ)as shown in Figure. 

Since ϕ is small, 1-cosϕ=ϕ
2
/2. The 

vector distance āx is measured from 

the shear center to the transverse load 

point. Hence, 

 

 

 

 

 

 

It is noted that the sign of xs is 

positive and āx is negative as is 

shown in Figure. The first term of 

Eq. can be expanded by integration 

by parts using the relationships that 

can be derived from Figure. 
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 Reflecting any combination of the geometric and natural boundary 

conditions at the ends of the beam, the two terms in the above equation 

indicated by slashes must vanish. Therefore, 

 

 

 

 

 

The term d
2
xs=dz

2
 represents the curvature in the xz plane; all 

deformations being small, the curvatures in other planes may be related as 

a vectorial sum . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For biaxial bending, the total energy functional given by: 
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It should be noted that biaxial bending can only be considered for doubly 

symmetric sections by virtue of assumption 5. П will be stationary  

(minimum) if the following Euler-Lagrange equations are satisfied: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting the followings 

into third Eq. 

 

 

 

one obtains 

 

 

 

 

These Equations  are general differential equations describing the lateral-

torsional buckling behavior of prismatic straight beams. 
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GENERALIZATION OF GOVERNING DIFFERENTIAL 

EQUATIONS 

 

If a wide flange beam is subjected to constant bending moment Mbx only, 

the three general governing differential equations are reduced to:  

 

 

                                                                            ……….(1) 

 

                                                                                                      …….(2) 

 

 

 

Integrating the first equation of Eqs. (1) twice, the second equation once, 

 

 

 

 

 

                                                                                                           …(3) 

 

where A, B, and C are arbitrary integral constants. These integral 

constants, as evident from the statically meaning of the transformation of 

Eqs. (1) into Eqs. (3), are respectively equal to the variations of the 

transverse shear force Qx acting in the initial section z = 0 in the direction 

of the axis x, of the bending moment My with respect to the axis y, and of 

the torsional moment Mz with respect to the axis z. If the variations of the 

statical factors, Qx, My, and Mz vanish in the initial section z = 0, which is 

the case in a cantilever at the free end, then the integration constants, A, 

B, and C are equal to zero and Eqs. (3) reduce to Eqs. (2). If the beam has 

at the ends a rigid or elastic fixing to restrain translation and rotation, the 

integration constants, A, B, and C will not vanish and the general Eqs. (1) 

must be used. 

 

 

LATERAL-TORSIONAL BUCKLING FOR VARIOUS LOADING 

AND BOUNDARY CONDITIONS 

 

If the external load consists of a couple of end moments so that the 

moment remains constant along the beam length, then Eqs. (1) become 
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                                                                ……………..(4) 

 

 

Equations (4) are a pair of differential equations with constant 

coefficients. Assume u = A sin πz/l and ϕ = B sin πz/l. It should be 

notedthat the assumed displacement functions are indeed the correct 

eigen functions.  Therefore, one expects to have the exact solution. 

Differentiating the assumed functions, one obtains  

  

 

 

 

 

 

 

 

 

 

 

 

 

Substituting these derivatives into Equations (4) yields: 

 

 

 

 

 

 

 

 

 

 

                                                                                                       ……..(5) 

 

In the case of a uniformly distributed load wy , the bending moment in 

a simple beam as shown in Figure below becomes Mx(z)= wyz(l-z)/2. For 

this load, Eqs. (1) become:  
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                                                                                    ………(6) 

 

 

Equations (6) are coupled differential 

equations with variable coefficients. 

 integrated Eqs. (6) by the method of 

infinite series. The critical load (wyl)cr is 

given by: 

 

 

                                                                                           ……..(7) 

 

 

 

 

                                                                                          ……..(8)      

 

Table 1 gives a series of values of γ1 for a wide range of combination of 

the load positions and m for beams with doubly symmetric sections.  

 

 

Table 1: Values of γ1 for simply supported I-beam under uniformly 

distributed load 

 

 

 

 

 

 

 

 

If the beam is loaded by a concentrated load 

at its mid-span as shown in Figure, the 

bending moment becomes Mx(z) = Pz/2 For 

this load, Eqs. (1) become 
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                                                                                     ………(9)           

 

 

Integrated Eqs. (9) by the method of infinite series. The critical load Pcr is 

given by: 

 

 

 

The stability coefficient γ2 depends on the parameter m defined by Eq. 

 (8). Table 2 gives a series of values for a wide range of combination of 

γ2  and m for beams with doubly symmetric section. 

 

Table 2: Values of γ2 for simply supported I-beam under concentrated 

load at the mid-span  

 

 

 

 

 

 

 

 

If both ends fixed beams are subjected to a uniformly distributed load, the 

critical loads may be expressed by: 

 

 

 

The stability coefficient γ3 depends on the parameter m defined by Eq. 

(8). Table 3  gives a series of values for a wide range of combinations of 

γ3 and m for beams with doubly symmetric sections. 

 

Table 3: Values of γ3 for both ends fixed I-beam under uniformly 

distributed load 
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If beams with simple-fixed end conditions are loaded by a concentrated 

load, the critical load may be expressed by 

 

 

 

 

The stability coefficient γ4 depends on the parameter m defined by Eq. 

(8). Table 4 gives a series of values for a wide range of combinations of 

γ4 and m for beams with doubly symmetric sections. 

 For beams with simple-fixed end conditions subjected to a uniformly 

distributed load, the critical load may be expressed by: 

 

 

 

 

Table 5: Values of γ5 for simple-fixed I-beam under a uniformly 

distributed load 

 

 

 

 

 

 

 

 

If beams with simple-fixed end conditions are loaded by a concentrated 

load, the critical load may be expressed by: 

 

 

The stability coefficient γ6 depends on the parameter m defined by Eq. 

(8). Table 6 gives a series of values for a wide range of combinations of 

γ6 and m for beams with doubly symmetric sections. 

 

Table 6: Values of γ6 for simple-fixed I-beam under concentrated load at 

the mid-span 
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LATERAL-TORSIONAL BUCKLING BY ENERGY METHOD 

The determination of the critical lateral-torsional buckling loads by 

longhand classical methods is very complex and tedious, particularly for 

non-uniform bending, as this will result in a system of differential 

equations with variable coefficients. In this section, the Rayleigh-Ritz 

method will be used to determine approximately the critical lateral-

torsional buckling loads. In any energy method, it is required to establish 

expressions for the strain energy stored in the elastic body and the loss of 

potential energy of the externally applied loads. It is relatively simple to 

come up with the expression for the strain energy by: 

 

 

 

 

 

 

 

 

 

 

1. Uniform Bending 

Consider a prismatic, simply supported doubly symmetric (for simplicity) 

I-beam subjected to a uniform bending moment Mx as shown in Figure 

below. The strain energy stored in the beam during buckling consists of 

two parts: the energy associated with bending about the y-axis and the 

energy due to twisting about the z-axis. Thus the strain energy is 

 

 

 

For a beam subjected to pure bending, the loss of potential energy V is 

equal to the negative product of the applied moments and the 

corresponding angles due to buckling. Hence, 

 

 

 

 

 

 

 



 LTB of Columns                                         Theory of Elastic Stability  

 
 

Asst. prof. Dr. Sheelan M. Hama 

  where θ is the angle of rotation about the x-axis at each end of the beam 

as shown in Figure. By the definition of the simple support, neither 

twisting of the beam nor lateral deformations of the flanges is allowed at 

the support. Hence, the top flange deflects more than the bottom flange, 

as illustrated in Figure below. Thus, the angle θ is: 

 

 

 

where h is the depth of the cross section. 

 

 

 

 

 

 

 

 

 

 

 

where ut and ub are the lateral displacements of the top and bottom of the 

web, respectively, 
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Since Mx and My are defined to be positive when they produce positive 

curvature, Mx=EIxv" and My =EIyu". My =ϕ Mx. Thus  

 

 

 

The assumed function for u can now be written 
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2. One Concentrated Load at Mid-span 

 

Consider an element dz of the beam at a distance z from the left support 

as shown in Figure. Due to lateral bending, there is a small vertical 

translation du at the support 

between the tangents drawn to the 

elastic curve at the two end points 

of the element. The value of the 

translation is, according to the 

moment-area theorem, given by: 

 

 

 

For small deformations, the increment in the vertical displacements dv 

corresponding to du is: 

 

 

Thus the vertical displacement v0 at the shear center at mid-span is 

 

 

 

 

 

 

 

 

 

 

If the load P is applied at a distance “a” above the shear center, an 

additional lowering of the load must be considered. If ϕ0 is the twisting 

angle of the member at mid-span, the additional lowering of the load is: 
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3.  Uniformly Distributed Load 

The procedure described above for 

the case of a concentrated load at 

Mid-span can also be used when the 

I-beam carries a uniformly 

distributed load. However, the 

expression for the loss of potential 

energy of the externally applied load 

must be determined. 

 

 

 

 

 

 

 

where u0 and u1 are the lateral displacements of the beam at mid-span and 

at a distance z from the support, respectively, and u2 is equal to u0 

subtracted by u1 as shown in Figure. 
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H.W.  Show  that the critical load in 

case of two concentrated applied  
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DESIGN SIMPLIFICATION FOR LATERAL-TORSIONAL 

BUCKLING 

The preceding sections determined the critical loading for beams with 

several different boundary conditions and loading configurations. A 

simply supported wide flange beam subjected to uniform bending has 

been shown to be in neutral equilibrium (unstable) when the applied 

moment reaches the value 

 

 

 

 

The critical concentrated load applied at mid-span of the same beam has 

been found by the energy method to be 

 

 

 

 

Likewise, the critical uniformly distributed load on the same beam has 

been found to be 

 

 

 

 

 

 

 

 

 

 

 

 

 

Examination of these equations reveals that it may be possible to express 

the critical moment in the form 

 

 

 

where the coefficient a is equal to 1.0 for uniform bending, 1.13 for a 

uniformly distributed load, and 1.36 for a concentrated load at applied at 

mid-span. 
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Various lower-bound formulas have been proposed for a, but the most 

commonly accepted are the following: 

 

 

 

 

Their original equation has been modified slightly to give the following: 

 

 

 

 

MB is the absolute value of the moment at the centerline, MA and MC are 

the absolute values of the quarter point and three quarter-point moments,  

respectively, and Mmax is the maximum moment regardless of its location 

within the brace points. The unbraced length Lp required for compact 

sections to reach the plastic bending moment Mp is 

 

 

 

 

 

 

 

The limiting value of the unbraced length for girders of compact sections 

to buckle in the elastic range is given by Lr. In the presence of residual 

stress, the maximum elastic critical moment is defined by 

 

 

 

where Sx = elastic section modulus about the x-axis, σr = residual stress 

0.3 σy for both rolled and welded shapes. 
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I-beam.  

 

 

 

 

 

when Lp < Lb ≤ Lr , the nominal flexural strength Mn of compact sections 

is linearly interpolated between the plastic moment Mp and the elastic 

critical moment Mr = 0:7Sxσy as 

 

 

 

 

Lateral-distortional buckling is basically a combined mode of lateral-

torsional buckling (global buckling) and local buckling, and the 

derivation of a closed form solution is, therefore, not straightforward. 


