Theory of Elastic Stability LTB of Columns

LATERAL-TORSIONAL BUCKLING BY ENERGY METHOD

The determination of the critical lateral-torsional buckling loads by
longhand classical methods is very complex and tedious, particularly for
non-uniform bending, as this will result in a system of differential
equations with variable coefficients. In this section, the Rayleigh-Ritz
method will be used to determine approximately the critical lateral-
torsional buckling loads. In any energy method, it is required to establish
expressions for the strain energy stored in the elastic body and the loss of
potential energy of the externally applied loads. It is relatively simple to
come up with the expression for the strain energy by:

U= (]fl:l‘/!IJTa;‘dv

where g1 = transpose of the stress vector, ¢ = strainvector, and v= volume of
the body. Although the loss of the potential energy of the applied loads is
simple in concept as being the negative product of the genemlized force and
the corresponding deformation during buckling, the expression for the
corresponding deformation usually requires considerable geometric analyses.

1. Uniform Bending
Consider a prismatic, simply supported doubly symmetric (for simplicity)
I-beam subjected to a uniform bending moment M, as shown in Figure
below. The strain energy stored in the beam during buckling consists of
two parts: the energy associated with bending about the y-axis and the
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For a beam subjected to pure bending, the loss of potential energy V is

equal to the negative product of the app — —opg ¢ and the
corresponding anales duie to hucklina. Hence '
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where @ is the angle of rotation about the x-axis at each end of the beam
as shown in Figure. By the definition of the simple support, neither
twisting of the beam nor lateral deformations of the flanges is allowed at
the support. Hence, the top flange deflects more than the bottom flange,

as illustrated in Figure below. Thus, the angle & is: 1t
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where h is the depth of the cross section. A, = 1 / (u])2d=
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where u; and uy are the lateral displacements of the top and bottom of the

web, respectively,
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It is now necessary to assume proper buckled shapes # and ¢. Sine
functions are selected for both # and ¢ for the lowest buckling mode as
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mz . Mz

= A sirlT ¢ = Bsin 7

Since M, and M, are defined to be positive when they produce positive
curvature, M,=Elv" and M, =El,u". M, =¢ M. Thus
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The assumed function for u can now be written y = —— — Sin—
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2. One Concentrated Load at Mid-span

Consider an element dz of the beam at a distance z from the left support
as shown in Figure. Due to lateral bending, there is a small vertical
translation du at the support
between the tangents drawn to the
elastic curve at the two end points
of the element. The value of the
translation is, according to the
moment-area theorem, given by:

.'1’1-11
du = zdz
E

.
For small deformations, the increment in the vertical displacements dv
corresponding to du is: M
dv = ¢pdu = —L pzd=
EL,
Thus the vertical displacement v, at the shear center at mid-span is

£/2 92 g
vy = j dv = ] —}(f)za’:«:
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If the load P is applied at a distance “@” above the shear center, an
additional lowering of the load must be considered. If ¢ is the twisting
angle of the member at mid-span, the additional lowering of the load is:

i
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and an additional loss of the potential energy 1s
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Assume ¢ to be of the form
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At the critical load, the first variation of U + 7 with respect to B must

vanish. Thus,

d U+ V) B PP (%4 6) + GKrm +EIH.1'T4
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which leads to
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3. _Uniformly Distributed Load
The procedure described above for
the case of a concentrated load at
Mid-span can also be used when the
I-beam  carries a  uniformly
distributed load. However, the u, "
expression for the loss of potential
energy of the externally applied load
must be determined.

Assume ¢b to be of the form

0
Jn"f:l
mz
¢ = Bsin? Vo = ‘/HEE—;"@’GIQ

vg = uggp, v1 = i, and v =

where Upand u, are the lateral displacements of the beam at mid-span and
at a distance z from the support, respectively, and u, is equal to uy
subtracted by u; as shown in Figure.

Substituting the expression for the moment M, and the rotation ¢, the
vertical displacement of the beam at nudspan takes the following form:
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At the critical load, the first variation of U + " with respect to B must
vanish. Thus,
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which leads to
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DESIGN SIMPLIFICATION FOR LATERAL-TORSIONAL
BUCKLING

The preceding sections determined the critical loading for beams with
several different boundary conditions and loading configurations. A
simply supported wide flange beam subjected to uniform bending has
been shown to be in neutral equilibrium (unstable) when the applied
moment reaches the value

T i EL,m?
"'MLT = E EI}: erT + Ez

The critical concentrated load applied at mid-span of the same beam has
been found by the energy method to be

p, = 2 g (G4 B
« =\ mre o\ Tt

Likewise, the critical uniformly distributed load on the same beam has
been found to be

(w,0) = 23 30 = ok +Equr2
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Examination of these equations reveals that it may be possible to express
the critical moment in the form

|'
T o El,m2
M, = a=|EL| GKy +
ey

where the coefficient a is equal to 1.0 for uniform bending, 1.13 for a
uniformly distributed load, and 1.36 for a concentrated load at applied at
mid-span.
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Various lower-bound formulas have been proposed for a, but the most
commonly accepted are the following:

M M\ 2
C, = 1.75 + 1.{)5(?‘) 403 (—‘) <23

Mo

Their original equation has been modified slightly to give the following:

o 12.5 My o
b SMo + 3Ma4 + 4Mg + 3Mp

Mg is the absolute value of the moment at the centerline, M, and M are
the absolute values of the quarter point and three quarter-point moments,
respectively, and Mya IS the maximum moment regardless of its location
within the brace points. The unbraced length L, required for compact
sections to reach the plastic bending moment M, is

L 1.7€ E
—_ i it -
v 'J?J_ G_y

where E = elastic modulus, r, = radius of gyration with respect to the weak

axis, and ¢, = null specified minimum yield stress.

The limiting value of the unbraced length for girders of compact sections
to buckle in the elastic range is given by L,. In the presence of residual
stress, the maximum elastic critical moment is defined by

M, = Si(oy —0,) = 0.78:0, = 0,5«

where S, = elastic section modulus about the x-axis, o, = residual stress
0.3 g, for both rolled and welded shapes.
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where I, = th%/4 for doubly symmetric I-beams with rectangular
flanges and ¢ = hy+/I,/I,/2 and hence, ¢ = 1.0 for a doubly symmetric

I-beam.

L = 195 /X1 4 1+ 6767 (2% Sio ’
~ 070,V Seho PPI\TE Kre

when L, < L, <L, , the nominal flexural strength M, of compact sections
is linearly interpolated between the plastic moment M, and the elastic
critical moment M, = 0:7S,0, as

- L
L,—L,

Lateral-distortional buckling is basically a combined mode of lateral-
torsional buckling (global buckling) and local buckling, and the
derivation of a closed form solution is, therefore, not straightforward.

At prof 3. Obheelan M. FCmma



