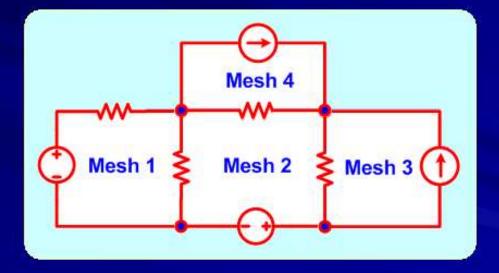
Al-Anbar University College of engineering Electrical Engineering Department fundamental of Electric Circuit 1 Assist. Lect. Yasameen Kamil Stage 1 2021-2022

LECTURE 9
MESH ANALYSIS

Topics Mesh Analysis without Current Sources Mesh Analysis with Current Sources


Objectives

- Understand mesh currents
- Relate currents through elements to mesh currents
- Apply Mesh Analysis in the absence of current sources
- Understand the concept of a super mesh
- Apply Mesh Analysis in the presence of current sources

Definition of a Mesh

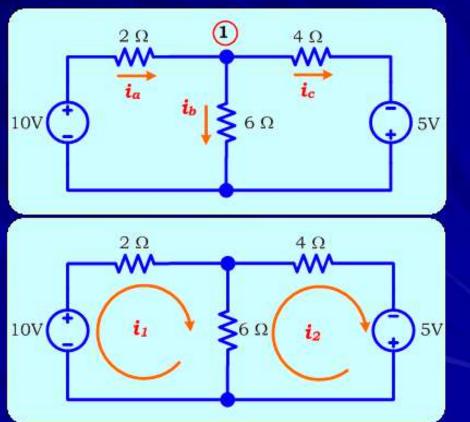
A mesh is simply a window in an electric circuit.

This circuit contains four windows (meshes).

Currents through Elements and Mesh Currents

The currents i_{C} , $i_{\tilde{b}}$, and $i_{\tilde{c}}$ are currents through elements.

KCL at node 1:

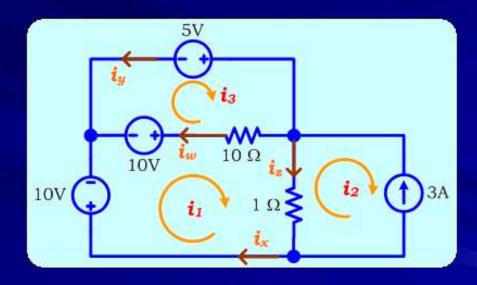

$$\Rightarrow i_a = i_b + i_c \Rightarrow i_b = i_a - i_c$$

The imaginary currents i_1 , and i_2 are mesh currents.

We imagine i_j to circulate around mesh 1 (Clockwise).

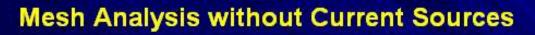
We imagine i_2 to circulate around mesh 2 (also Clockwise).

$$i_a = i_1$$
 $i_c = i_2$
 $i_b = i_a - i_b = i_1 - i_2$



Example:

Express the currents through elements (CTE) i_w , i_x , i_y , and i_z in terms of mesh currents (MC) currents i_j , i_z , and i_z

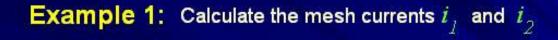

Solution:

$$i_x = i_1$$
 $i_y = -i_3$
 $i_z = i_1 - i_2$
 $i_w = i_3 - i_1$

Number of MC ≤ Number of CTE

We know all MC -> We know all CTE

The Mesh Analysis procedure for circuits without current sources will be considered first. This procedure is illustrated below:


Mesh Analysis

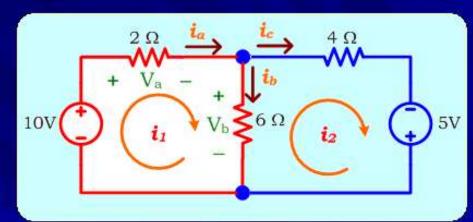
Mesh Analysis

Solution:

Procedure:

First we will deal with Mesh 1

1. KVL:
$$\implies -10 + V_a + V_b = 0$$

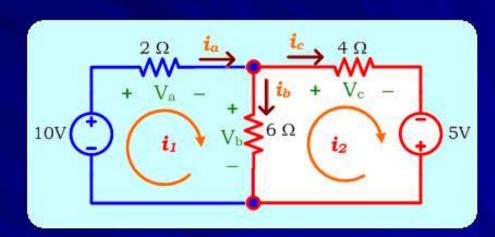

2. Ohm's Law:

$$\Rightarrow$$
 $-10+2i_a+6i_b=0$

3. KCL:

$$\implies$$
 $-10+2i_1+6(i_1-i_2)=0$ (CTE are expressed in terms of MC)

Simplify:
$$\Rightarrow$$
 $8i_1 - 6i_2 = 10$ (1)


Solution (contd):

We will repeat the procedure for Mesh 2

1. KVL:
$$\Rightarrow -V_b + V_c - 5 = 0$$

2. Ohm's Law:

$$\implies -6i_b + 4i_c - 5 = 0$$

3. KCL:
$$\implies -6(i_1-i_2)+4i_2-5=0$$
 (CTE are expressed in terms of MC)

Simplify:
$$\Rightarrow \left(-6i_1+10i_2=5\right)$$
 (2)

From the previous slide
$$8i_1 - 6i_2 = 10$$
 (1)

Equations (1) and (2) contain only mesh unknowns \boldsymbol{i}_j and \boldsymbol{i}_2

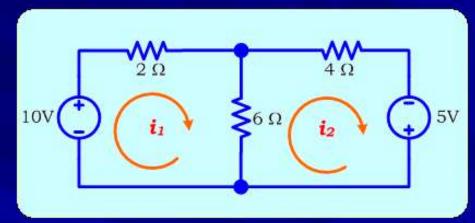
Solving (1) and (2), we get:
$$\implies$$
 $i_1 = 2.955A$ $i_2 = 2.273A$

Example 2:

Calculate the mesh currents i_1 and i_2 . Repeat the previous example by combining steps 1, 2, and 3.

Solution:

Mesh 1: KVL, & Ohm's Law, & KCL

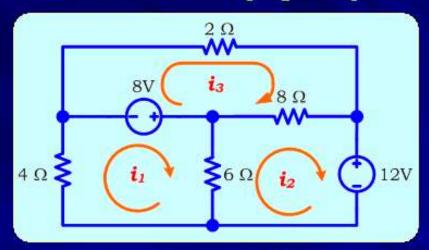

$$\implies$$
 -10+2 i_1 +6(i_1 - i_2) = 0

$$8i_1 - 6i_2 = 10$$
 (1)

Mesh 2: KVL, & Ohm's Law, & KCL

$$\implies$$
 6 $(i_2-i_1)+4i_2-5=0$

$$6i_1 + 10i_2 = 5$$
 (2)



Current through resistors = CTR

Always imagine CTR to be in the same direction as KVL.

Express the imagined CTR in terms of MC (Mesh Currents).

Example 3: Calculate the mesh currents i_j , i_2 and i_3 .

Solution:

Mesh 1:
$$\Rightarrow 4i_1 - 8 + 6(i_1 - i_2) = 0$$
 $\Rightarrow (10i_1 - 6i_2 = 8)$ (1)

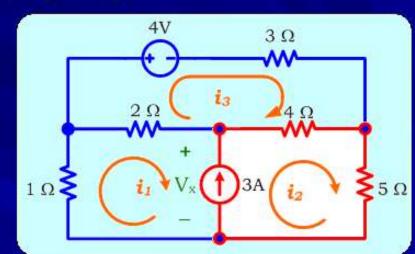
Mesh 2:
$$\Rightarrow 6(i_2-i_1)+8(i_2-i_3)+12=0 \Rightarrow (-6i_1+14i_2-8i_3=-12)$$

Mesh 3:
$$\Rightarrow 2i_3 + 8(i_3 - i_2) + 8 = 0$$
 $\Rightarrow (-8i_2 + 10i_3 = -8$ (3)

Solving (1), (2), and (3), we get:
$$\Rightarrow (i_1 = -1.24A \quad i_2 = -3.40A \quad i_3 = -3.52A)$$

Mesh Analysis with Current Sources

When the circuit contains current sources, the previous procedure is modified.


Example 1: Calculate the mesh currents i_1 , i_2 and i_3

Solution:

KVL around Mesh 1:

$$1i_1 + 2(i_1 - i_3) + V_x = 0$$
 (problem!)

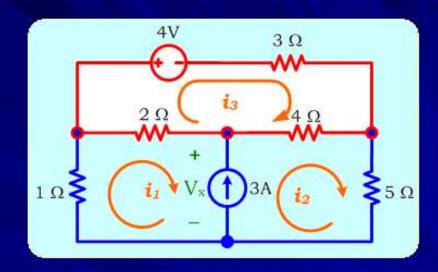
We cannot directly replace V_X by mesh currents, because Ohm's law does not apply to current sources.

KVL around Mesh 2:

$$-V_x + 4(i_2 - i_3) + 5i_2 = 0$$
 (similar problem!)

Solution (contd):

Mesh 1 & 2 contain a current source (they share the 3A source)

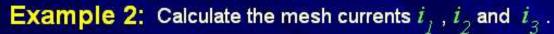

What to do in this case?

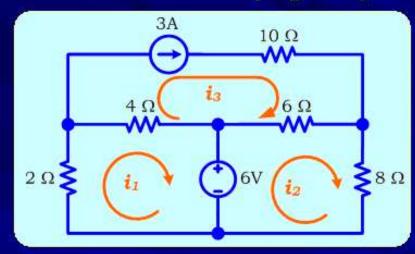
Combine Mesh 1 & Mesh 2 into a Super Mesh (SM).

To avoid V_{χ} , apply KVL around SM

$$\Rightarrow 1i_1 + 2(i_1 - i_3) + 4(i_2 - i_3) + 5i_2 = 0$$

$$3i_1 + 9i_2 - 6i_3 = 0$$
 (1)


We need one more equation.


Apply KCL
$$\Rightarrow (i_2 - i_1 = 3)$$
 (2)

Mesh 3 does not contain a current source > No special treatment

KVL around Mesh 3
$$\implies 4+3i_3+4(i_3-i_2)+2(i_3-i_1)=0 \implies (-2i_1-4i_2+9i_3=-4)$$

Solving (1), (2) and (3), we get:
$$\Rightarrow$$
 $i_1 = -2.708A$ $i_2 = 0.292A$ $i_3 = -0.917A$

Solution: Mesh 1 & 2 does not contain current sources.

⇒ Just apply KVL around Mesh 1 & 2

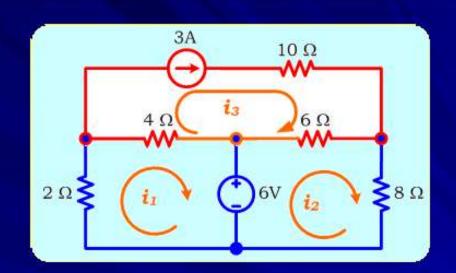
KVL around Mesh 1:

$$\Rightarrow 2i_1+4(i_1-i_3)+6=0$$

$$\Rightarrow 2i_1 + 4(i_1 - i_3) + 6 = 0$$

$$\Rightarrow (6i_1 - 4i_3 = -6)$$
(1)

KVL around Mesh 2:


$$\implies$$
 -6+6(i_2 - i_3)+8 i_2 =0

Solution (contd):

From the previous slide,

$$6i_1 - 4i_3 = -6 \tag{1}$$

$$6i_1 - 4i_3 = -6$$
 (1)
 $14i_2 - 6i_3 = 6$ (2)

Mesh 3 contains a 3A current source (not shared by another mesh) Do not apply KVL (because KVL involves voltage across the current source).

Apply only KCL
$$\Rightarrow$$
 $(i_3=3)$

[Note: Since we need only one equation from mesh 3, KCL provides it]

Solving (1), (2), and (3), we get: \Rightarrow $(i_1 = 1.000A \ i_2 = 1.714A \ i_3 = 3.000A)$

Mesh Analysis with Current Sources : Summary

If a current source is shared by two meshes, then follow the procedure described below:

- 1. Combine the two meshes into a Super Mesh
- 2. Apply KVL around the Super Mesh
- 3. Apply KCL

If a current source is in one mesh only (not shared), then:

⇒ Apply KCL only (do NOT apply KVL)